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NONOSCILLATORY SOLUTIONS OF

ALAN L. EDELSON AND JERRY D. SCHUUR

We study the existence and growth rates of positive, monotonic,
bounded solutions of the equations

( 1 " ) (r(t)xin))ia) ±/(/, x)x = 0, /(/, x) > 0.

First we prove our results for the linear equation with /(/, x) — p(t),
then by a fixed point method we extend these to the nonlinear equation.
We also obtain some oscillation results for (1 ~).

1. Introduction. Fixed point theorems have proved very effective in

solving problems posed for nonlinear equations of the form

(1.1) x' = A(t,x)x.

The reason is that if one considers the mapping φ -> Γφ, where φ lies in a

suitable set in a function space and Tφ is the solution of the linear

equation

(1.2) x'=A{t9φ(t))x

satisfying a suitable property P, then a fixed point of T will be a solution

of (1.1) satisfying P. Thus results for linear equations may be extended to

nonlinear equations.

For A(t, x) a matrix-valued function, this method was used by Conti

[4] and Opial [14] to solve boundary value problems associated with (1.1).

Corduneanu [5] used it to describe the growth behavior of solutions for

large /. Kartsatos [10] also studied the growth of solutions and he used

fixed point theorems from set-valued mappings — thus eliminating the

need that property P describe unique solutions to (1.2). In some recent

papers, [2] and [15], the method has been applied to the growth of

solutions of n th order nonlinear equations of the type

(1.3) x(n) + an_x{t, x)x^~X) + -• +ao(t, x)x = 0.

These results become especially interesting when one realizes: (i) any

equation x' — f(t, x) with /(/,0) = 0 and / continuously differentiable

with respect to x can be put into the form (1.1) (cf. [2], [15]); and (ii) the

theorems apply to families of nonlinear equations, not just single equa-

tions.
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In this paper we apply the fixed point method to oscillation-nonoscil-
lation theory. In §2 we consider the equations

(1.4) (K0*(/7))('° ±/( ' , χ)χ = o; fO, x), r{t) > o

and we obtain necessary conditions and sufficient conditions for the
existence of certain mono tonic, nonoscillatory solutions (the so-called
minimal solutions).

The theorem on minimal solutions relates to work of Hartman and
Wintner [8]; in §3 we extend their main theorem to nonlinear vector
equations.

In §4 we obtain several results about oscillatory solutions. In particu-
lar, we derive sufficient conditions for the existence of an oscillatory
solution of

(1.5) jc ( 4 )=/(ί,x)x

and we show that if

(1.6) J C ( 2 W ) = / ( / , x)x

has a bounded oscillatory solution x(t), with 0 <\imί^OQx(2n l)(t) < oo,

then every eventually positive solution of (1.4) is either strongly increasing

or strongly decreasing. Finally we generalize theorems of Hille and

Leighton-Nehari to (1.6).

2. We begin by studying the differential equations

(2.1) (r(t)x^)(n) + p(t)x = 0

and

(2.2) {r(t)χM)(n)+f(t,x)x = 0

where p and r are positive and continuous on [T, OO), /T°° dt/r(t) = oo,
and/is positive and continuous on[τ,oo) X (-00,00).

For now we are interested in nonoscillatory solutions. In (2.2), with
r{t) — 1, one sees, by means of Rolle's theorem, that if x(t) is a solution
satisfying x{t) > 0 on [p, 00), then there exists σ > p such that x{k)(t) ^ 0
on [σ, 00), 1 < k < In. If, further, x(t) is bounded on [p, 00), then we
may choose σ so that x(k\t)x(k+]\t) < 0 on [σ, 00), 1 < k < In - 1.
(This statement requires the integral condition on r.)

Kusano and Naito [12] studied (2.2) with n — 2 and Kreith [11]
studied (2.2) with r(t) = 1. Among their results were necessary and
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sufficient conditions for (2.2) to have a solution satisfying

J C ( 0 > 0 , (-\)k+]x{k)(t)>0 (1 < * < / ! - 1),

(2.3) (-l)n+k+ι(r(t)x<n)(t)){k) > 0 (0 < A: < w - 1)

all on [σ, oo) (for some σ > T) and lim x(ί) = c > 0.
r->oo

We consider this problem and we begin with a similar result for the

linear equation:

THEOREM 2.1. Let c > 0 be given. Then (2.1) has a solution xc satisfying

(2.3) if and only if

(2.4)

where

(2.5)

.00

/ Λ(τ, s)p(s)ds > -oo

T < / < ί < oo.

Further, xc satisfies

lim bkx<k)(b) = 0 ( l<jfc<π-l),

(2.6)
= 0 (0<A:<«lim

/>—> oo

([ ] denotes d/db). And, for a given c, xc is unique.

Proof, (i) A solution of (2.1) satisfies

- 1),

n-\

(2.7) x(ί)-x(fe)= 2
1

(-\)k(b-t)kχ<kKb)

k\

+ Σ [(- l
o

*/* i?(r, u)p{u)x{u)du.
* t

(If π = 1, the first term on the right-hand side is omitted.)

Formula (2.7) follows from Taylor's theorem:

k\

(-1)"
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If we substitute (b) into (a) and reverse the order of integration on the

double integral, the result is (2.7).

(ii) Necessity. Suppose (2.1) has a solution satisfying (2.3). In (2.7)

hold t fixed and let b -» oo. The limit of the left-hand side exists. On the

right-hand side each term is negative, the limit of the whole side exists,

and hence the limit of each term exists, i.e.

l im (b — ΐ) x{k)(b) = cΛt),

b-* oo

and
.00

/ R(t, u)p(u)x(u) du > -oo

(hence (2.4) holds). We shall show that the cA.'s and dks are constant

functions. Then (2.7) can be changed to

.00

x(t) — c0— / R(t,u)p(u)x(u) du

1

and since the left-hand side goes to zero as / -> oo and each term on the

right-hand side has the same sign, each ck and each dk equals zero. Hence

(2.6) will hold.

(a) lim (b —
b—» oo

and

b — t b ~ τ

T < / < b < oo,

implies \ϊmh^oc(b — ΐ)k ιx(k)(b) = 0, uniformly in t. Hence we may

differentiate within the limit and dck(t)/dt — 0.

(b) l im {r{b)x{n){b)){k)R[n-χ-k](t, b) - dk(t)
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and

-R["-χ-k](t, b) < -R[n~ι'k](τ9 b)9 τ <t<b< oo.

By the Second Mean Value Theorem of Integral Calculus,

fb(b ~ U)k(u ~ τ)"~l

 ( λ fb(b ~ u)k{u ~ τ ) ' ? ~ 2

Jr r(u) Jτ r(u)

r<ξh<b9

and ξh -» oc as b -> oo. So

lim (Γ(6)Λ<->(ft)f > / * f c ^ - ^ Λ = 0,

uniformly in /. Hence ddk(t)/dt — 0.

(iii) Sufficiency. Assume that (2.4) holds and let σ > T be such that

/σ°° R(σ, s)p(s) ds > - 1 . Let X be the space of functions which are

bounded and continuous on [<τ, oo) and for x E X let ||x|| = sup{|x(0 | :

σ < / < oo}. Define Γ: Z -> A^by

/

oo

R{t,s)p(s)x(s)ds.

Then Γ is a strict contraction and its unique fixed point is seen to satisfy

(2.1), (2.3).

(iv) Uniqueness. A solution of (2.1), (2.3) was shown, in (ii), to satisfy

(2.6). Combining (2.6) and (2.7) we see this solution must also be a fixed

point of (2.8) — and hence unique.

THEOREM 2.2. Let (2.2) be given and define fa(t) = sup{/(ί, x)\ 0 < x

(2.9) ί R(τ,s)fa(s)ds> -oo /or some a > 0,

(2.2), (2.3) (w//A c = a), (2.6) Aαs Λ solution, (ii) 7/(2.2), (2.3)

solution, this solution satisfies (2.6). (iii) If (22), (2.3) /zαs α solution and if

x <y implies /(•, JC) </(*, j>), Âe« /Λ/51 solution is unique and (2.9) /z6>W5

>v/Y/z a — c (c given in (2.3)). (iv) If (2.2), (2.3) Aαs* # solution and if x <y

implies /( , x) > /( , >0, ^ e π ̂ / 5 solution is unique and (2.9) /20/ds /or β/7jμ

<2 G (0, c).

Proof, (i) Let X be the Frechet space of continuous functions on

[T, 00) with the compact-open topology (i.e. \\xn — x|| -> 0 means
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sup Ixn{t) — x{t) |-> 0 uniformly on each compact / C [r, oo)). Let S =

[x e X: 0 < x(ϊ) < c o n [ τ , oo)}; S is closed, convex, and bounded. De-

fine T: S -» S by Tu is the solution of the linear equation

(2.10) (r(t)x{n))(n) + f(t9 u(t))x = 0, M G S ,

which satisfies (2.3), (2.6).

By Theorem 2.1, Γis well-defined and, if x = Tu,

fC°R(tJs)f(s,u(s))x(s)ds.

Now w G S and (2.9) holds so from the line above we have \x(ΐ)\,

\x'(t)\< M (M — M(c, /)) on each compact / C [T, OO) and hence, by

Ascoli's theorem, TS is relatively compact.

Now T is continuous: Let {un} be a sequence in S converging to u0

and let {xn} be the corresponding solutions of (2.10); let / C [T, oo) be

compact. By compactness, some subsequence of {xn} converges to x0. On

/, a solution of (2.10) is a continuous function of u. Hence the full

sequence {xn} converges to x0.

By Schauder's theorem T has a fixed point which satisfies (2.2), (2.3).

(ii) If u is a solution of (2.2), (2.3), then u is a solution to the linear

equation (2.10) and (2.3) and hence, by Theorem 2.1, satisfies (2.6).

(iii) Suppose that xλ and x2 are two solutions of (2.2), (2.3) (with the

same c) and suppose that x2 > xx on [/, oo). Using (2.7) and (2.6)

*,.(/) = c + ί°°R(t9 s)f(s, xt(s))x,(s) ds.
Jt

Also/( , x2)x2 >/(*, X\)x\ andi?(/, s) < 0 on / < s < oo. Then

0<x2(t) - x , ( 0

- ΓR(t, s)[f(s, x2(s))x2{s) - f{s, xx(s))xλ(s)] ds < 0.
Jt

Likewise x2(a) = xγ(a), x2(b) = X\(b), x2 > xλ on (a, b) is impossible:

0 =[x2(b) - xx(b)] -[x2{a) - xx{a)}

— I (same integrand) < 0.
J a

So xx = x2. That (2.9) holds follows from the monotonicity on/,

(iv) The proof is similar to that of (iii).

REMARKS. (1) In (i) we cannot apply the Contraction Mapping

Theorem directly to (2.2) without further assumptions on /. In (iii) (and
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iv) we are very close to a Lipschitz condition (x > y =»/(•, x)x — /( ,

>/(/, jy)(.x — >0) and this suggests that with monotonicity a contraction-

type proof could be constructed.

(2) Theorem 2.2 includes the corresponding results of Kusano and

Naito and Kreith and adds the growth condition contained in (2.6) and

the uniqueness.

We next consider

(2.1) ( r ί O * 0 0 ) 0 0 - / > ( / ) * = <>

and

(2.2)' {r(t)x<"in)-f(t,x)x = O

where r,p and/are as in (2.1), (2.2).

A bounded, positive solution for either of these equations must satisfy

J C ( O > O , (-l)kx(k)(t)>0 (1 < * : < / ! - 1),

(2.11) (-l)n+h(r(t)x(n))(k)>0 ( 0 < * < w - l ) , a l lon[τ,oo),

limjc(ί) = c > 0 .

For (2.1)~ , that such a solution exists is a special case of a theorem of

Hartman and Wintner [8], its uniqueness was shown by Etgen and Taylor

[7]. For (2.2)~ with n — 2 and monotonicity conditions on /, necessary

and sufficient conditions for the existence of a solution satisfying (2.11)

with c > 0 were given by Wong [16] and existence for arbitrary n, with

r(t) — 1, follows from a theorem of Chow, Dunninger and Schuur [3], We

now add the following two theorems:

THEOREM 2.3. (i) Let xc be a solution of(2Λ)~ satisfying (2.11) (and xc

is known to exist). Then xc satisfies (2.6). (ii) For a given c > 0, xc will exist

if and only if (2.4) holds. This xc is unique, (iii) For c = 0, xc will exist if

and only if j? R(t, s)p(s) ds - -oo. In this case /τ°° i?(/, s)p(s)xc(s) ds >

-oo. (iv) 7/(2.1)~ has no oscillatory solutions, then the xc of (iiϊ) is unique up

to scalar multiplication.

Proof. The proof of (i) and (ii) uses (2.7) and is similar to the proof of

Theorem 2.1.

To prove (iii) we note that xc exists, satisfies (2.6) and (2.7), and hence

satisfies

xί(t) = c- R(t,s)p(s)xc(s)ds.
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Now xc is decreasing. If c — 0 and if (2.4) holds, then

xc{t) < xXtyi-pRit, s)p(s) ds\ < xc(t) for large /

and this is impossible.

To prove (iv) assume that x(t) and y(t) are two solutions of (2.1)~

satisfying(2.11) withe = 0. Let A: = -[JC(τ)/y(τ)] andz(t) = x(t) - ky{t)

(so z(τ) = 0). Now z(t) = -ft°° R(t, s)p(s)z(s) ds, so z(σ) = 0 for some

σ > T, z(t) Φ 0 on (σ, oo) is impossible. (Part (iv) was proved by Etgen

and Taylor [7].)

3. Matrix equations. The Hartman-Wintner result, mentioned at

the end of §2, is a special case of a theorem for matrix equations:

THEOREM 3.1 (cf. [8]). Let A{t) be an n by n matrix of continuous

functions satisfying A{t) > 0, T < / < oo. Then the equation

(3.1) x'=-A(t)x (x£R")

has a nontriυialsolution xo(t) satisfying

(3.2) *o(O^O, -x'0(t)>Q,

for T < t < oo. (For a vector or matrix, >: means the inequality holds

componentwise.)

This suggests two possibilities: applying the fixed point method to the

nonlinear matrix equation

(3.3) x' = -F(t9x)x (x e/?'7),

or extending Theorems 2.2 and 2.3 to the equations

(3.4) x" -A(t)x = 0, A(t)>0.

(3.5) x" -F(t,x)x = 0.

Here F: [T, oo) X R" -> Ln (the linear functions from Rn into Rn) is

continuous and satisfies

(3.6) x > 0 =*F(t,x) > 0 for each / G[T,OO).

THEOREM 3.2. Equation (3.3) has a nontriυial solution xo(t) satisfying

(3.2).
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Proof. Let X denote the Frechet space of continuous functions [ r, oo)

/?", topologized by the compact open topology, and let

5 = jjc G *:*(/) ^ 0 for f>

For w G S w e have the linear equation

(3.6) x' = -F(ί , u(/))x, ^ ( ί , u{t)) > 0 for ί >: 0.

Define

ΓM = {i G 5: jc is a solution of (3.6) and x(t) < x(s) for * > 5}.

We do not, in this case, know that the monotonically decreasing

solutions of (3.6) are unique and hence Tu is not necessarily single-valued.

In place of the Schauder theorem we must use the corresponding result for

set-valued mappings: if S is a closed, convex, nonempty subset of a

Frechet space X and if T satisfies: (i) for each u E S, Tu is a nonempty,

compact, convex subset of S; (ii) T is a closed mapping; and (iii) TS is

contained in a compact subset of S) then there is a u E S such that

u E 7Y/.

To verify (i) we note that Tu is convex because (3.6) is a linear

equation. For the compactness we let {x;} be a sequence in Tu. The

conditions

a n d

sup \x'(t)\< I sup \F(t9u(t))\)\\x(t)\\

for each compact interval / C [T, 00), imply that {x;} contains a subse-

quence {xk} converging to x0 in C°(J). Putting xk into (3.6) we see that

x[ -* z and that x0 is a solution of (3.6) with z = x'o. It follows that Tu is

compact. That Tu is nonempty follows from Theorem 3.1.

To show (ii) we consider a sequence {uk} C S such that wA -* w0 in

C°(/), and assume that xk E 7wAo xk -» x 0 . An argument similar to the

preceding shows that xQ E 7"w0, and so T is closed. The proof of (iii) is

similar.

The fixed point of T is the solution JC0.
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THEOREM 3.3. Let c e Rf\ c>0,be given. Then (3.4) has a solution xc

satisfying

(3.7) x(t)>09 x'(t)<0, l i m j c ( ί ) = c > 0

if and only if

(3.8) ΓsA(s)ds< oo.

Further xc satisfies

(3.9) Kmtx'(t) = 0

r-^oo

and xc is unique.

Proof. We observe that a solution x(t) of (3.4) can be written as

x(t) = x(b) - x\b){b- t)

+ ί (s — t)A(s)x(s) ds, T < / < b < do.

The rest of the proof follows the lines of the proof of Theorem 2.1.

THEOREM 3,4. Let (3.5.a) denote (3.5) with the additional condition that

x>y => F(t,x)>F{t, y) for all t E [T, OO) {or < for all t). Then (3.5.a),

(3.7) Λαs ̂  solution if and only if

/

oo

sT^s, a) ds < oo /or some <z > 0.
• /

Further, this solution is unique and satisfies (3.9).

. Similar to the proof of Theorem 2.2.

4. Oscillation theorems. A proof of the existence of oscillatory

solutions is complicated by the absence of a suitable topological structure

in the set of oscillatory solutions. We shall first study the disconnection

between oscillatory solutions and a certain type of monotonic solution.

Consider the equations

(4.1) x(2n) - p(t)x = 0

and

(4.2) jc(2π>-/(ί,jc)x = 0

wherep(t) and/(/, JC) are as in (2.1), (2.2).



NONOSCILLATORY SOLUTIONS OF (rχn)" ± f(t, x)x = 0 323

We note that every eventuality positive solution of (4.1) or (4.2) is of

one of the following types:

(i) x(ι)(t) > 0 for 0 < i < In (strongly increasing)

(ii) (-\)ιxU)(t) > 0 for 0 < i < 2^ (strongly decreasing); or

(iii) * ( / )(/) > 0 for 0 < / < 2£, A: > 0, and ( - 1)'JC(I)(/) > 0 for

2 £ < z <2/i.

Our first theorem collects some known results for these equations.

THEOREM 4.1. (a) For n = 2 or 3: Equation (4.1) has an oscillatory

solution if and only if every eventually positive solution is either of type (i) or

of type (ii). (b) Equation (4.2) has an oscillatory solution if every eventually

positive solution is either of type (i) or of type (ii).

Proof. For n — 2, (a) was proved by Ahmad [1]. For n = 3, (a) follows

from results of Edelson and Kreith [6] and Jones [9]. Part (b) was proved

by Edelson and Kreith.

Equations (4.1) and (4.2) always have solutions of types (i) and (ii);

Jones [9] has shown that for n > 3, equation (4.1) may have both oscilla-

tory solutions and solutions of type (iii). We have the following result on

oscillatory solutions and solutions of type (iii):

THEOREM 4.1. // (4.1) has a solution of type (iii), then no oscillatory

solution can satisfy

(4.3) \x(t)\<M9 0< \imx(2"-l)(t)<oo.

Proof. Let x^t) be an oscillatory solution, and x2(t) a solution of

type (iii). If | x , ( ί ) | < M, then the solution x(t) — x}(t) + x2(t) is either

strongly increasing or of type (iii). The conditions limt_^CX)x
(2n~l)(t) = 0

and 0 < lim/_>oox{2π~1)(ί) < oo imply that x(t) is a solution of type (iii)

which satisfies 0 < limt^QQx(2n~l)(t) < oo, and this is impossible.

Now we are able to give quantitative criteria for oscillation of (4.2), in

the case n — 2.

THEOREM 4.2. ///(/, x) is non-decreasing in x, and if

(4.4) f°°t'ιf(t,x)dt = oo

for every c > 0, and for some q < 3, then (4.2), with n — 2 is oscillatory and

every nonoscillatory solution is either strongly increasing or strongly decreas-

ing.
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Proof. We will show that if (4.4) holds, then (4.2) has no solutions of

type (iii). If, on the contrary, xo(t) is a solution of type (iii), then the

corresponding linear equation

(4.5) *<*>=/(/, *„(*))*

has a solution of type (iii) and is therefore nonoscillatory. By Theorem

4.59 of [13], we must have /°° tqf(t, xo(t)) dt < oo for any q < 3, but since

JCO(O is positive and increasing, and /(/, x) is nondecreasing in x, this

contradicts (4.4).

We note that the equation x{4) — jζt~Ax is nonoscillatory, and there-

fore the conclusion of Theorem 4.2 fails when q — 3.
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