WEAK COMPACTNESS IN SPACES OF BOCHNER INTEGRABLE FUNCTIONS AND THE RADON-NIKODYM PROPERTY

N. GHOUSSOUB AND P. SAAB

We characterize Banach spaces E such that E and E^* have the Radon-Nikodym property in terms of relatively weakly compact sets of $L^1[\lambda, E]$.

Introduction. It is well known [1] that if $(\Omega, \Sigma, \lambda)$ is a finite measure space and E is a Banach space, then a relatively weakly compact subset Kof $L^1[\lambda, E]$ is bounded, uniformly integrable and for every $B \in \Sigma$, the set $\{ \int_{R} f d\lambda, f \in K \}$ is relatively weakly compact in E. Moreover, it was shown in [1] that if the Banach space E and its dual E^* have the Radon-Nikodym property, then relatively weakly compact subsets of $L^1[\lambda, E]$ are completely characterized by the above three conditions. A question that arises naturally is the following: Are the conditions on E and E^* to have the Radon-Nikodym property necessary in order that relatively weakly compact subsets of $L^1[\lambda, E]$ be exactly those bounded, uniformly integrable subsets K such that for any $B \in \Sigma$, the set $\{\int_B f d\lambda, f \in K\}$ is relatively weakly compact in E? In [1], it was shown that the condition on E to have the Radon-Nikodym property is indeed necessary. The object of this paper is to show that the condition on E^* to have the Radon-Nikodym property is also necessary. This gives a new characterization of Banach spaces E such that E and E^* have the Radon-Nikodym property. We also study bounded linear operators T between Banach spaces such that T and its adjoint T^* are strong Radon-Nikodym operators.

Definitions and Preliminaries.

DEFINITION 1. A closed bounded convex subset C of a Banach space E is a Radon-Nikodym (R.N.P) set if for every finite measure space $(\Omega, \Sigma, \lambda)$ and any vector measure $G: \Sigma \to E$ such that the set $\{G(B)/\lambda(B), B \in \Sigma, \lambda(B) > 0\}$ is contained in C, there exists a Bochner integrable Radon-Nikodym derivative $f: \Omega \to C$ such that $G(B) = \int_B f d\lambda$, for every $B \in \Sigma$.

For more on (R.N.P) sets see [3] and [4].

DEFINITION 2. A bounded linear operator T from a Banach E into a Banach space F is called a *strong Radon-Nikodym operator* if the closure of $\{Tx, x \in E, ||x|| \le 1\}$ is an (R.N.P) set in E.

Accordingly, a Banach space E has the Radon-Nikodym property (R.N.P) iff its closed unit ball is an (R.N.P) set or equivalently if the identity operator on E is a strong Radon-Nikodym operator.

If $T: E \to F$ is a strong Radon-Nikodym operator then T is an (R.N.P) operator see [2] i.e., for every vector measure $G: \Sigma \to E$ with $\|G(B)\| \le \lambda(B)$ for all $B \in \Sigma$, there exists a Bochner integrable function $f: \Omega \to F$ such that $TG(B) = \int_B f \, d\lambda$ for all $B \in \Sigma$. The converse is not true as any quotient map Q from I^1 onto C_0 is an (R.N.P) operator but is not a strong Radon-Nikodym operator. But it follows from [4] if $T: E \to F$ is a bounded linear operator, then its adjoint T^* is a strong Radon-Nikodym operator if and only if T^* is an (R.N.P) operator.

Finally, given a finite measure space $(\Omega, \Sigma, \lambda)$ E and F two Banach spaces and $T: E \to F$ a bounded linear operator, we shall denote by \tilde{T} the natural extension of T to a bounded linear operator from $L^1[\lambda, E]$ to $L^1[\lambda, F]$.

For all undefined statements and notations we refer the reader to [1]. The following theorem extends the result of [1, p. 101] to operators T: $E \to F$ such that T and T^* are strong Radon-Nikodym operators.

THEOREM 1. Let E and F be two Banach spaces and let $T: E \to F$ be a bounded linear operator such that T and T^* are strong Radon-Nikodym operators. Then for any finite measure space $(\Omega, \Sigma, \lambda)$, the operator $\tilde{T}: L^1[\lambda, E] \to L^1[\lambda, F]$ sends into relatively weakly compact subsets of $L^1[\lambda, F]$ any bounded, uniformly integrable subsets K of $L^1[\lambda, E]$ such that for every $B \in \Sigma$ the set $\{\int_B f d\lambda, f \in K\}$ is relatively weakly compact in E.

Proof. Let $T: E \to F$ be a bounded linear operator such that T and T^* are strong Radon-Nikdoym operators. Let $(\Omega, \Sigma, \lambda)$ be a finite measure space and let $K \subseteq L^1[\lambda, E]$ be a bounded and uniformly integrable subset of $L^1[\lambda, E]$ such that for any $B \in \Sigma$ the set $\{\int_B f d\lambda, f \in K\}$ is relatively weakly compact in E. Let $(f_n)_n$ be a sequence in K. Proceed now as in [1, p. 101] to get a countably generated σ -field Σ_1 , such that each f_n is measurable with respect to Σ_1 , find a subsequence $(f_{n_k})_k$ of $(f_n)_n$ and define a countably additive vector measure $G: \Sigma_1 \to E$ of bounded variation by

$$G(B) = \text{weak limit } \int_{B} f_{n_k} d\lambda, \text{ for every } B \in \Sigma_1.$$

Since T^* is a Radon-Nikodym operator, it follows from [4] that there exist a Banach space Z, such that Z^* has RNP, and bounded linear operators $T_1: E \to Z$ and $T_2: Z \to F$ such that the following diagram commutes

$$E \xrightarrow{T} F$$

$$T_1 \searrow \qquad \nearrow T_2$$

$$Z$$

Case 1. Assume that for some $\alpha > 0 \|G(B)\| \le \alpha \lambda(B)$, for all $B \in \Sigma_1$. It follows that the set $\{T_1G(B)/\lambda(B), \lambda(B) > 0, B \in \Sigma_1\}$ is contained in the closure C in Z of the set $\{T_1x, x \in E, \|x\| \le \alpha\}$. But a glance at the construction of [4] reveals that the set C is affinely homeomorphic to the closure in E of the set E of the set E is an E one can show that the set E is an E one can show that the set E is an E one can show that the set E is an E one can show that the set E is an E on E one can show that

$$T_1G(B) = \int_B h \ d\lambda$$
, for all $B \in \Sigma_1$.

Moreover since Z^* has R.N.P and since $(\int_B T_1 f_{n_k} d\lambda)_k$ converges weakly to $\int_B h \, d\lambda$ in Z for every $B \in \Sigma_1$, it follows that the sequence $(\tilde{T}_1 f_{n_k})_k$ converges weakly to h in $L^1[\Sigma_1, \lambda, Z]$, thus $(\tilde{T}f_{n_k})_k$ converges weakly to $\tilde{T}_2 h$ in $L^1[\Sigma_1, \lambda, F]$, and hence in $L^1[\lambda, F]$. An appeal to Eberlein's theorem shows that $\{\tilde{T}f, f \in K\}$ is relatively weakly compact in $L^1[\lambda, F]$ and completes the proof of Case 1.

General case. Let $(\Omega_m)_m$ be a partition of Ω of elements of Σ_1 and such that

$$||G(B)|| \leq m\lambda(B)$$

for all elements B of Σ_1 contained in Ω_m . By restricting the sequence $(f_{n_k})_k$ to each of the sets Ω_m , by Case 1, and by an appropriate diagonal process, one can produce a subsequence $(h_j)_j$ of $(f_{n_k})_k$ and a sequence $(g_m)_m$ of Bochner integrable functions $g_m \colon \Omega_m \to F$ such that:

- (i) the sequence $(\tilde{T}h_{j|\Omega_m})_m$ converges weakly to g_m in $L^1[\Omega_m, \lambda, F]$,
- (ii) $TG(B \cap \Omega_m) = \int_{B \cap \Omega_m} g_m d\lambda$, for $B \in \Sigma_1$. Let $g: \Omega \to F$ be defined as follows:

$$g(w) = g_m(w)$$
 if $w \in \Omega_m$.

It is clear that $g \in L^1[\lambda, F]$ for g is obviously measurable and it follows from (ii) that

$$\int_{\Omega} \|g(w)\| d\lambda \leq \sum_{m} |TG|(\Omega_{m}) = |TG|(\Omega) < \infty.$$

The proof will be complete when we show that the sequence $(\tilde{T}h_j)_j$ converges weakly to g in $L^1[\lambda, F]$. For this let $L \in (L^1[\lambda, F])^*$. For each $m \ge 1$ let L_m be the restriction of L to $L^1[\Omega_m, \lambda, F]$. For every $m \ge 1$ we have

$$\left|L(\tilde{T}h_j-g)\right| \leq \left|\sum_{i=1}^m L_i(\tilde{T}h_{j|\Omega_i}-g_i)\right| + ||L|| \int_{U\Omega_i;\ i>m} ||\tilde{T}h_i-g|| d\lambda.$$

Since the sequence $(h_j)_j$ is uniformly integrable, there exists $m \ge 1$ such that $\int_{U\Omega_i; i \ge m} \|\tilde{T}h_j - g\| d\lambda$ is arbitrary small for all $j \ge 1$. Since $\tilde{T}h_{j|\Omega_i}$ converges weakly to g_i , it follows that $|\sum_{i=1}^m L(\tilde{T}h_{j|\Omega_i} - g_i)|$ is arbitrary small as $j \to \infty$. Hence $L(\tilde{T}h_j - g) \to 0$ as $j \to \infty$. This completes the proof.

The following proposition establishes the fact that if T^* fails to be a strong Radon-Nikodym operator, then the conclusion of Theorem 1 is no more valid.

PROPOSITION. If T is a bounded linear operator from a Banach space E into a Banach space F such that T^* fails to be a strong Radon-Nikodym operator, then there exists a finite measure space $(\Omega, \Sigma, \lambda)$, a bounded uniformly integrable subset K of $L^1[\lambda, E]$ such that the set $\{\int_B f d\lambda, f \in K\}$ is relatively weakly compact in E for any $B \in \Sigma$, but the set $\{\tilde{T}f, f \in K\}$ is not relatively weakly compact in $L^1[\lambda, F]$.

Proof. Suppose that T^* fails to be a strong Radon-Nikodym operator. Let $\Delta = \{-1,1\}^N$ denote the Cantor group with Haar measure m and let $\{\Delta_{n,i}, 1 \le i \le 2^n\}$ denote the standard nth partition of Δ with $\Delta_{01} = \Delta$, $\Delta_{n,i} = \Delta_{n+1,2i-1} \cup \Delta_{n+1,2i}, \Delta_{n,i}$ is clopen, and $m(\Delta_{n,i}) = 1/2^n$. It follows from the dichotomy theorem of Stegall [4] that the operator T must factor the Haar operator $H: l^1 \to L_\infty(m)$ which takes the basis of l^1 into the usual Haar basis of $C(\Delta)$ considered as a subspace of $L_\infty(m)$. Indeed the Haar operator is defined as follows:

if
$$h_{ni} = \chi_{\Delta_{n+1,2i-1}} - \chi_{\Delta_{n+1,2i}}$$
, $n \ge 0, 1 \le i \le 2^n$ then $He_{ni} = h_{ni}$,

here $\{e_{ni}, n \ge 0, 1 \le i \le 2^n\}$ is an enumeration of the usual l^1 basis. Let $U: l^1 \to E$ and $V: F \to L_{\infty}(m)$ be bounded linear operators such that $H = V \circ T \circ U$ as illustrated in the following diagram.

$$E \xrightarrow{T} F$$

$$U \uparrow \qquad \downarrow V$$

$$l^{1} \xrightarrow{H} L_{\infty}(m)$$

Consider the following sequence $(f_n)_n$ in $L^1[m, l^1]$ with

$$f_n(t) = \frac{1}{n} \sum_{j=1}^n \sum_{i=1}^{2^j} h_{ji}(t) e_{ji}, \text{ for } t \in \Delta.$$

The sequence $(f_n)_n$ is easily seen [2] to have the following properties

- (i) $\sup_{n} || f_n(t) || = 1$ m.a.e.
- (ii) $\sup_{\|x^*\| \le 1} \int |x^* \circ f_n| dm$ approaches zero as $n \to \infty$.

It follows that for every Borel B set in Δ the sequence $(\|\int_B f_n dm\|)_n$ approaches zero as $n \to \infty$. The sequence $(f_n)_n$ is bounded and uniformly integrable in $L^1[m, l^1]$ and $(\int_B fn dm)_n$ is a null sequence in l^1 . We claim that the sequence $(\tilde{H}f_n)$ is not relatively weakly compact in $L^1[m, L_\infty(m)]$. For this note that for each $n \ge 1$

$$\tilde{H}f_n(t) = \frac{1}{n} \sum_{j=1}^n \sum_{i=1}^{2^j} h_{ji}(t) h_{ji}, \quad t \in \Delta;$$

therefore $\tilde{H}f_n(t)$ takes its values in $C(\Delta)$, to prove the claim all we need to show is that $(\tilde{H}f_n)_n$ is not relatively weakly compact in $L^1[m, C(\Delta)]$. To this end note that since for every Borel set B the sequence $(\int_B \tilde{H}f_n dm)_n$ converges to zero in $C(\Delta)$, it follows that every weakly convergent subsequence of $(\tilde{H}f_n)_n$ in $L^1[m, C(\Delta)]$ must converge to zero. Let $L \in (L^1[m, C(\Delta)])^*$ be defined as follows: for $\psi \in L^1[m, C(\Delta)]$

$$L(\psi) = \int_{\Lambda} \psi(t)(t) \ dm$$

then

$$L(\tilde{H}f_n) = \frac{1}{n} \int_{\Delta} \sum_{j=1}^{n} \sum_{i=1}^{2^{j}} h_{ji}(t) h_{ji}(t) dm = 1.$$

This shows that the sequence $(\tilde{H}f_n)_n$ has no weakly convergent subsequence in $L^1[m, C(\Delta)]$. The sequence $(\tilde{U}f_n)_n$ is bounded and uniformly integrable in $L^1[m, E]$ and the set $\{\int_B \tilde{U}f_n d\lambda, n \geq 1\}$ is relatively weakly compact in E for all Borel sets B of Δ , yet since T factors the Haar operator H, the sequence $(\tilde{T}\tilde{U}f_n)_n$ cannot have a weakly convergent subsequence in $L^1[m, F]$. This completes the proof.

COROLLARY 3. A Banach space E and its dual E^* have (R.N.P) if and only if for every finite measure space $(\Omega, \Sigma, \lambda)$, any bounded and uniformly integrable subset K of $L^1[\lambda, E]$ is relatively weakly compact whenever for every $B \in \Sigma$, the set $\{\int_B f d\lambda, f \in K\}$ is relatively weakly compact in E.

REFERENCES

- [1] J. Diestel and J. J. Uhl, Jr. *Vector measures*, Mathematical Survey No. 15, A.M.S., Providence, 1977.
- [2] G. A. Edgar, Asplund operators and A. E. convergences, J. Multivariate Anal., 10 (1980), 460-466.
- [3] E. Saab, A characterization of w*-compact convex sets having the Radon-Nikodym property, Bull. Sci. Math., (2), 104 (1980), 79-88.
- [4] C. Stegall, The Radon-Nikodym property in conjugate Banach spaces, II, Trans. Amer. Math. Soc., 264 (1981), 507-519.

Received February 22, 1982.

THE UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, B.C., CANADA V6T 1Y4

AND

THE UNIVERSITY OF MISSOURI-COLUMBIA COLUMBIA, MO 65211