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THE CALCULATION OF AN INVARIANT FOR TOR

BRIAN D. WICK

Let λ be a limit ordinal such that λ is not cofinal with ω and let
G — Ίoτ{A, B) where A and B are reduced ̂ -groups. It is shown that the
invariant defined to be the dimension of the Z//?Z-vector space
/Ext(Z(/?°°), G/pxG)/pXΛ lEKt(Z(p°°), G/pλG) is zero. If A, B and
Ύoτ(A, B) are three totally projective ^-groups then either A or B must
be the direct sum of countable /?-groups.

1. Introduction. Warfield introduced in [6] the class of S-groups

and showed that these groups can be distinguished by a collection of

invariants. These invariants for the group G consisted of the classical Ulm

invariants and the invariant k(pλ, G), defined to be the dimension of the

Z//?Z-vector space pλExt(Z(p°°), G/pλG)/pλ+]Ext(Z(p°°), G/pλG)
where λ is a limit ordinal which is not cofinal with ω. In [7], it was shown

that the S-groups are the /?-groups protective relative to a class of short

exact sequences. Since the class of ^-groups has a protective characteriza-

tion and contains the totally protective /^-groups, and since each totally

protective /7-group is /? "-projective for some ordinal α, it was conjectured

that an S-group would also be/^-projective for some ordinal a. However,

it will be shown in this paper that an S-group is /? "-projective only if it is

totally projective; in fact, it is a summand of a group of the form

Toτ(A, B) where A and B are reduced /?-groups only if it is totally

projective, [Corollary 3.6]. These results will follow once it is shown that

the invariant k(pλ, Tor(v4, B)) is zero for all reduced/^-groups A and B,

[Corollary 3.4]. Finally, it is shown that if A, B and Tor(v4, B) are three

totally projective /^-groups then either A or B is the direct sum of

countable ^-groups, [Corollary 3.8].

2. Notation. If G is a group then let c(G) denote the cotorsion hull

of G, i.e., c(G) = Ext(Z(/?°°), G) where Zip00) is the divisible torsion

/7-group of Q/Z.

If G is a reduced /?-group then l(G) will denote the length of C, i.e.,

l(G) is the least ordinal for which pί(G)G = 0. Let Ω denote the first

uncountable ordinal.

3. Results. Dr. R. Nunke has communicated orally to me the

following result and proof which will be used in the proof of Lemma 3.2.
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THEOREM 3.1. Let {Aa, α 6 Γ ) be a collection of p-groups, and λ a

limit ordinal such that λ is not cofinal with ω. If for each a E Γ, pλc(Aa) = 0,

then pλc(Φa(ΞΓAa) = 0.

Proof. Let A — ®aGΓAa and e E pλc(A) represent the exact sequence

e: 0 -» A -*M -> Z(p°°) -* 0. For each a E Γ, the pushout sequence by

the projection map πa: A -* Aa is /?λ-pure; consequently, there exists a

map φα: Af -» Aa such that the following diagram commutes.

e:0 -> A -> Af -> Z(/?°°) -» 0

To show that the sequence e splits, it must be shown that φ — Θ α G Γ Φa'

M -+ ®a^γAa — A is a homomorphism, i.e., that for each x in M the set

{a\φa(x) φ 0, α E Γ} is finite. Suppose there exists an x in Af and a

sequence (α, E Γ} such that φa(x) Φ0. Let β be any ordinal which

satisfies the inequalities λ > β and β > height of φa(x) for each /. The

ordinal β exists since λ> a{ for each / and λ is a limit ordinal which is not

cofinal with ω. The sequence e being/?^-pure and the group Zip00) being

divisible imply there exists an element a in the subgroup v(A) —

v(®aGTAa) of M, and an element b vsxp^M for which x — a + /?, [3, 87].

For some α ,̂ φα(α) = 0; hence, Φa(x) = Φa(b). This is a contradiction

since the height of Φa(x) is less than β whereas the height of Φa{b) is

greater than or equal to β.

The following lemma will be used in the proof of Theorem 3.3.

LEMMA 3.2. Let λ be a limit ordinal which is not cofinal with ω and let G

be a p-group such that pλG = 0. Then pλc(Toτ(G, X)) = 0 for any reduced

group X.

Proof. There exists a reduced /?λ-injective group / and a /?λ-pure

sequence 0 -> G -> / -> U -> 0, [3, 84]. It follows that 0 -> Tor(G, X) ->

Tor(/, A") -> Tor(ί7, J\Γ) -> 0 is a pure sequence of reduced groups, and

the sequence

0 -> c(Tor(G, X)) -> c(Tor(/, X)) -> c(Tor(ί/, X)) -^ 0

is exact. Once it is shown that /?λc(Tor(/, X)) — 0, then the lemma is

proved. To show this let D be the injective hull of X and 0 -> X -» Z> -> Z>r

-^ 0 be the resulting exact sequence. Consequently, 0 -> Tor(/, X) ->

Tor(7, D) -* Tor(7, Z)') is an exact sequence of reduced groups. The
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group Tor(7, D) is isomorphic to the direct sum of γ copies of /(/), the
torsion subgroup of /, where γ is the dimension of the Z/pZ-vector space
D[p], and pλc(t(I)) Cpλc(I) = 0. Hence, it follows from Theorem 3.1
that/?λc(Tor(7, X)) C/?λc(Tor(7, D)) = 0.

THEOREM 3.3. 7/λ is a limit ordinal such that λ is not cofinal with ω9

then pλc(Ύoτ(A, B)) = c(pλTor(A, B)) whenever A and B are reduced
groups.

Proof. It need only be shown that pλc(Toτ(A, B)) is a subset of
c{pλΎor{A, 7?)), since there is an exact sequence

0 -> c(/?λTor(Λ, B)) ^pλc{Ίor{A, B))

->pλc{Ίoτ{A, B)/pλTor(A, B)) - 0,

[1, 56.1].

The sequence

0 -> Ύoτ(pλA9 B) -> Tor(^, B) ^ Ύoτ(A/pλA, B)^(pλA) ® B

is exact. If X is the image of π and Y the image of δ, then X and Y are
reduced subgroups of Ύoτ(A/pλA, B) and (ρλA) ® B, respectively. There-
fore it follows that the sequences

e: 0 -+ c(Toτ(pλA, B)) -> c(Tor{A, B)) -* c(X) -> 0

and

/: 0 ^ c(JT) -> c(Tor(^t//7λ^, 5)) -> c(7) -> 0

are exact sequences of reduced groups.

A(TorU, B)) C

since

pλc(X) Qpλc(Ύoτ(A/pλA, B)) = 0,

[Lemma 3.2]. Similarly,

/Λ (Tor(Λ, B)) c c(Tor(^ί, /7λ5)).

The conclusion follows from the identity

c(Tor(Λ, pλB)) n c(Tor(/>\4, 5)) = c(pλΊoτ(A, B)),

[1, 64.2].
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COROLLARY 3.4. // G is a summand of Ύor(A, B) where A and B are

reduced p-groups, thenpλc(G) - c(pλG) (equivalent ly,pλc(G/pλG) = 0 =

k(pλ,G)) for every limit ordinal λ such that λ is not cofinal with ω.

Consequently, if G ispa-projective for some ordinal a then pλc(G) = c(pλG)

andpaG = 0.

Proof. Since all the functors commute with direct sums, pλc(G) —

c{pxG).
If G is /? "-projective for some ordinal a then there is a reduced group

H such that ρaH = 0 and G is a summand of Tor(G, H). Hence, pλc(G)

= c(pλG). Also,/?"G = 0 since/?"Tor(G, H) = 0.

The equivalence of pλc(G) = c(/?λG) and pλc(G/pλG) = 0 follows

from the exact sequence 0 -> c(/?λG) ^pλc(G) -»pλc(G/pλG) -> 0, [1,

56.1].

COROLLARY 3.5. If0-*Z->M-^Hλ^>0isa sequence which repre-

sents px where λ w α ftm/ί ordinal which is not cofinal with ω, ί/zeπ ί/ze torsion

subgroup of M is not pa-projective for any ordinal a.

Proof. Let G be the torsion subgroup of M. G is a λ-elementary

S-group and in [6] it is shown that k(pλ, G) =£ 0, [Corollary 3.4].

COROLLARY 3.6. / / G is an S-group, then G is pa-projective if and only

if G is a totally projectivep-group andpaG — 0. Also, G is not a summand of

a group Toτ(A9 B) where A and B are reduced groups, unless G is totally

projective.

Proof. This result follows from Corollary 3.4 and the fact that an

S-group is totally projective if and only if k(pλ, G) — 0 for every limit

ordinal λ which is not cofinal with ω, [6].

THEOREM 3.7. If A and B are two totally projective p-groups such that

l(A) > l(B) — a > Ω, then Tor(^4, B) is not totally projective.

Proof. The proof will be by transfinite induction on the ordinal a.

Case 1. α = λ + / i + l where λ is a limit ordinal and n is a finite

ordinal. Let T be a/?λ+"-high subgroup of the group A and e\ 0 -> T -> A

-» D -* 0 be the resulting exact sequence. Since the sequence e is /?ft-pure,
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[3, 92], and the group Tor(Z), B) is/? "-projective, [3, 82], the sequence/:
0 -» Tor(Γ, B) -> Ύoτ(A, B) -> Tor(Z), JS) -> 0 is/^-pure, [5, 2], and splits.
Hence, Tor(Λ, 5) ^ Tor(Γ, 5) θ Tor(Z), B). The group Γ is an S-group
because pλT and T/pλT are both S-groups, [6, 5.3]. Three subcases will
now be considered. In each of the subcases TotζA, B) will be shown to be
not totally projective by showing that it has a summand which is not
totally projective.

Case 1.1. a — Ω + 1. The sequence e being /?α-pure implies that the
sequence 0 -> Hom(Z(/?°°), D) ^/?Ω + 1c(Γ) ^ pa+λc{A) = 0 is exact, [3,
89]. Since D is a non-trivial divisible /?-groups,/?Ωc(Γ) Φ c(pΩT) = 0 and
the group Γ is not /?Ω-projective, [Corollary 3.6]. Since l(T) < l(B),
Tor(Γ, B) is not totally projective, [4, 3.4].

Case 1.2. α > Ω + 1 and the group T is totally projective. Since
Ω</(Γ) = λ + « < / ( 5 ) , induction is used to show that Tor(Γ, B) is not
totally projective.

Case 1.3. a > Ω + 1 and the group T is not totally projective. By
Corollary 3.6, the group Γis not/?λ+"-projective. Consequently, Tor(Γ, B)
is not totally projective, [4, 3.4].

Case 2. a is a limit ordinal greater than Ω. There exists a summand W
of B such that the group W is totally projective and Ω < l(W) < α, [2,
83.1(e)]. By induction, Toτ(A, B) has a summand which is not a totally
projective /?-group.

COROLLARY 3.8. If A, B and Tor(^, B) are three totally projective
p-groups then either A or B is the direct sum of countable p-groups.

Proof. This corollary follows from Theorem 3.7 and noting that any
totally projective /?-group with length at most Ω is the direct sum of
countable /?-groups.
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