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BOOLEAN POWERS, RECURSIVE MODELS,
AND THE HORN THEORY OF A STRUCTURE

G. C. NELSON

This paper concerns the algebraic constructions of Boolean powers
and bounded Boolean powers of structures 3ί for an arbitrary first-order
language. The notion of ^-separating is used to improve results about the
logic of reduced power structures. For 2ί recursive we construct recursive
models of the theory of each reduced power of 2ί. Finally, it is shown
that any complete theory is equivalent to a finitely axiomatizable exten-
sion of its Horn consequences.

0. Introduction and notation. Throughout this paper we have tried
to conform to the terminology and notation described in [6]. However,
there are a few exceptions which we will point out here. First, L always
denotes a first-order language with equality. A structure 21 for L is defined
as usual and its domain is denoted by |2l | or A; the interpretation of a
relation symbol R of L in 31 is denoted by R® and the interpretation of a
function symbol/of L in 2ί is denoted by /*. By Th(2l) we mean the set
of sentences of L true in 21. The symbol ω usually denotes the set of
natural numbers and whenever we refer to an operation such as + or <
(order) on ω, it is to be interpreted as the standard addition or order on ω.
By 93 we always denote a nontrivial Boolean algebra with the first-order
language L — (Π , U,',0,1) and abuse our notation to always write Π
for Π93, etc. By 2 or {0,1} we mean the Boolean algebra with two
elements where 0 is the smallest element. Our notation for the elementary
characteristic (n, p,q) of a Boolean algebra © is defined in [7] or [29]
except that we use ω instead of oo.

In §1 we study the Boolean powers and bounded Boolean powers of
structures 21 for an arbitrary first-order language L. This idea was intro-
duced by Burris in [3] for algebraic languages (first-order with only
function symbols). By characterizing the elementary characteristics of
complete Boolean algebras, we show that the theories of bounded Boolean
powers are much more general than those of Boolean powers and partially
answer a question of [3] by exhibiting a sentence preserved by all Boolean
powers which is not equivalent to a disjunction of Horn sentences. We
also introduce a standard language construction which allows one to
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obtain ^-separating structures %f with algebraic language Lf from ^-sep-
arating structures 21 with first-order language L. Moreover, this allows us
to easily adapt many of the results of Burris [3] to our setting.

In §2 we give a result promised in [22], namely, an explicit algebraic
construction which yields recursive models of the theory of 2ί r/D whenever
2ί is recursive.

In §3 we show that the results in [20] (§3) hold for any first-order
language L with a binary (or higher order) relation symbol.

In §4 we study 3C(2ί), the set of Horn structures true in 21. We show
that for 21 Γ-separating that 2ί//Z> is finitely axiomatizable over 3C(2t) iff
2J/D is finitely axiomatizable. Also, we demonstrate that for all 2ί there is
a sentence φ such that 3C(2l) U {φ} axiomatizes Th(2ί).

1. Boolean powers. In this paper our main objects of study are the
Boolean powers and bounded Boolean powers as defined in [3]. In order
to generalize these definitions to an aribtrary first-order language and for
the reader's convenience we state explicitly these definitions.

DEFINITION 1.1. Let 21 be a structure for a first-order language L and
93 = (B9 Π, U/,0,1) be a Boolean algebra. For 2ί infinite, 93 is required
to be complete. We denote by 21 [93] the Boolean power of% with respect to
93 which is a structure for L defined as follows: The domain |2ί[93]| of
21 [93] consists of all functions ξ in AB such that for all a09 aλ in A, a0 Φ aλ

implies ξ(a0) Π ξ(ax) = 0, and UaGAξ(a) = I. Let c be a constant
symbol of L, c*m = ξc where £c(c*) = 1 and ξc(a) = 0,iΐaΦ c%. Let R
be an n-aτy relation symbol of L. Then (ξl9...9ξn) E Z?a[SB1, if for all
α ι , . . . , α n v α A 9 ξ ι ( α ι ) n ••• Γ i ξ n ( α n ) Φ 0 i m p l i e s ( a , , . . . 9 α n ) E ί l L e t /
be an H-ary function symbol of L, then

/«IβI(€,,.. ,O(β)= U ({,(*,) n - n { A ) ) .

The bounded Boolean power 2ί[93]* is defined for any Boolean algebra
93, not necessarily complete, exactly as above except that the domain
12ί[93]* I of 81 [SB]* consists of all functions £ in AB such that{α | a e A and
£(α) 7̂  0} is finite, U β G / ί | ( a ) = 1, and a0 φ aλ implies ξ(a0) Π | ( Λ , ) =
0.

Waszkiewicz and Weglorz in [30] construct for any reduced power
21 ^/D an extremely elegant elementary substructure. We point out here
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that their models are isomorphic to some bounded Boolean power of 2ί

and that this observation is implicit in [3] (Lemma 4.1). Given an arbitrary

Boolean algebra 39, let / be the set of points of the Stone space of 93 with

its usual topology [13] or [27]. A subset of / is clopen, if it is both open

and closed. Let θ be the canonical Boolean isomorphism of the clopen

subsets of / onto 93. As in [30] define 2Ϊ93* to be the substructure of

2ί7 = Π / e / 2ί with domain equal to the set of all functions/in rA such that

range of/is finite and for all a in A9f~\{ά)) is clopen. It is straightfor-

ward to verify that 2ί 9 3 *=2l[93]*byσ where σ(/) = £ such that for a in

A9 ξ(a) = θ(f~\{a})). Alternatively, as in [32], 121 ®* | can be described as

the set of all continuous functions from / into A where A has the discrete

topology since by the compactness of the Stone space such a continuous

function has finite range.

From the above it is clear that the Feferman-Vaught-Weinstein Theo-

rem holds for 21 [93]*, see [5] which adapts the particular form of this

result given in [6] (pp. 341-345) and observe that this gives a uniform

setting in regards to [20].

It is important to recall that for the reduced power of 2ί, 217/Z> =

%\2ι/D\* [3] (Th. 4.3(v)) and that Th(2ί7/£>) is completely determined by

Th(2ί) and Th(27/£>) [6] (Theorem 6.3.4). Ershov [7] ([6] Lemma 6.3.21)

has shown that for any Boolean algebra 93 there is a filter D o n w such

that 2ω/D = 93. Consequently, when dealing with the theory of a reduced

power of 2ί we frequently describe it by 21 [93]*.

The complete theory of a Boolean algebra 93 has been uniquely

characterized by its elementary characteristic which we write as (n9 p9q)

and one should see [7], [29], [6], or [23] (but the notation is different in [6]

and [23]). As in [24] or [23] we define (n9 p9q)X (r9s,t)= the elemen-

tary characteristic of (2T/D)r/D' where 21/D)r(r9s9t) and 2r/D'v
(n9 p9q). In [25] Quackenbush has shown for Boolean algebras 930, 93,

that 93O[93,]*=93O*93, where 930*93, is the free product of these

Boolean algebras. In view of Burris [3] (Theorem 2.7 and Corollary 2.8)

this shows that {n9p9q)X (r9s9t)= the elementary characteristic of

93O * 93, where 93Oι= (/% s9 t) and 93, t= (n9 p9 q). This yields the result [31]

([9]) that X is commutative and (2t[930]*)[93,]* = 2ί[93, * 932]* [3]

(Corollary 2.8). A complete multiplication table for X as a commutative

semigroup is given in [23] ([24]) and will be extremely useful for some of

our proofs. In view of the above, we will sometimes use 2ί[(π, p, q)]* to

denote 2ί[93]* where 93 ι= (n9 p9 q).

The next result is rather unfortunate since it severely restricts the

theories of 21 [93] for infinite 21.
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LEMMA 1.2. // 33 is a complete Boolean algebra^ then its elementary
characteristic is (0, p9 q) for some p and q.

Proof. A Boolean algebra 33 has elementary characteristic of the form
(0, p, q) iff for each b in 33 the supremum of the atoms below b exist. The
latter condition holds in any complete Boolean algebra. D

The next results give some insight on Problem 7 of [3] (p. 358).

LEMMA 1.3. There is a sentence preserved by all Boolean powers which is
not equivalent to a disjunction of Horn sentences.

Proof. We observe first that for any elementary characteristic (0, p, q)
there are complete Boolean algebras having elementary characteristic
(0, p, q). In view of [7] or [27] since the property of being complete is
preserved by arbitrary direct products, it is sufficient to check that there is
a complete Boolean algebra of elementary characteristic (0,0,1). But by
[13] (p. 25) the regular open algebra of the Cantor space is complete and
atomless since the clopen sets form a basis of open sets.1

Let L be the language of Boolean algebras and let φ be the sentence
of L which asserts that any model 21 of φ is a nontrivial Boolean algebra
with an atomless element and has elementary characteristic of the form
(0, p9 q) [7], [6], or [17]. Let 31 be a model of φ and consider 21 [33]. Since
21 is infinite by Definition 1.1, 33 must be complete and, hence, 33 has
elementary characteristic (0, /?, q). By [2], 21 [33] = 2ί[33]* which is iso-
morphic to 33[21]* by [3] (Corollary 2.8). Using results about combining
elementary characteristics at level 0 [7], [29], or [23], it is easy to verify
that2ί[33]l=φ.

In order to see that φ is not equivalent to a disjunction of Horn
sentences, it is sufficient to show that it is not preserved by a bounded
Boolean power [3] (Theorem 4.3 (vii)). Let 33 0 have elementary character-
istic (0, /?, 1) with/? φ 0 and let 33, have elementary characteristic (1,1,0).
Clearly, 330^φ while » o l * i Γ ^ ^ l ί ^ o l * PI (Corollary 2.8) which has
elementary characteristic <l,/?,0) by [7], [29], or [23]. Hence, 33O[33,]*
N-^φ. •

REMARK 1.4. We point out that in [1] a more general notion of 21 [33]
has been defined since the condition that 33 is complete may be consid-
ered too restrictive. It is obvious that for 1211 denumerable it is sufficient

1 The author thanks E. W. Madison for this observation and for other conversations
concerning this paper.
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to assume that 93 is σ-complete [13], and, in general, for | |α| | = K, it is
sufficient to assume 93 is κ+ -complete (which means that the supremum
of K or fewer elements of 93 exists in 93). Most results of [3] hold for this
alternative definition of Boolean power. Since we do not know whether or
not there are σ-complete Boolean algebras of elementary characteristic
other than (0, p, q)9 we do not consider in this paper this alternative.

Question. What are the elementary characteristics of Boolean algebras
which are σ-algebras?2

The next definition will be fundamental for many of our results; the
notion of ^-separating occurs in [3] (p. 347).

DEFINITION 1.5. 3ί is B-separating if for all 53O, 33l9 3l[330]* = 2t[93,]*
implies SBQSSB,. » is T-separating if all 93O, 931? 2l[»0]* = SlfSBJ*
implies 93 0 = 33 ̂

We introduce for a given first-order language L with relation symbols
a corresponding language Lf with only function symbols. This will enable
us to adopt many of the results in [3] to our setting.

Let L be a first-order language with relation symbols and perhaps
some function symbols. Lf has two new constant symbols c0 and c1 and
has as function symbols all the function symbols of L together with a new
ft-ary function symbol dίR for each «-ary relation symbol R in L. For 2ί a
structure for L with more than one element we define a corresponding
structure %f for Lf as follows: First 121/1 = 1211 and cj/ and cff are chosen
to be distinct elements of 21. For each function symbol / of Lf which also
occurs in L we define/21/ = / a . For each n-axy function symbol £R of Lf

introduced to replace the «-ary relation symbol R of L we define

£*/(«„...,«„) = cf/, if («„...,«„) e i ? a

3E«/(a l 9...,αB) = c*/, if (α, , . . . ,*„) £ R*.

Clearly %f satisfies cλ ^ c0 as well as VJ^ \fxn (3ίR(x^... ,xn) — cι V

dcR(xx,... 9xn) = c0) for each R in L. Conversely, any structure © for Zy

satisfying these sentences determines a unique 3ί for L such that %f = ©.

2 Professor Fred Galvin has provided an answer to this question in [11]. He has an
extremely elegant argument which shows that for any infinite cardinal K and any Boolean
algebra 23 there is a /c-complete field of sets which is elementarily equivalent to 53. Galvin
also obvserved that under the hypothesis that K is measurable Ershov's construction in [7]
also yields /c-complete Boolean algebras of any given elementary characteristic. In view of
Galvin's result one can conclude that a sentence is preserved by all these "Boolean
powers" of [1] iff it is equivalent to a disjunction of Horn sentences.
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LEMMA 1.6. Let 21 and %f be as above and R an n-ary relation symbol
ofL.

(b) For any proper filter D on /,

iff Π = c

Proof. The proof of (a) is straightforward and (b) follows easily from
(a). D

The following results of Burris [3] now hold in our setting.

THEOREM 1.7. (a) // 2ί is finite and D is any proper filter on /, then
Π 9ίΓ9^ l/D~9ίΓTT 93 /Dl

j'GΞ/ ^ H ^ / J / ^ = = ^W^IELI *® i/^J"

(b) // 2ί is finite and B-separating, then 2ί is T-separating.

Proof. Part (a) with 21 replaced by %f follows by [3] (Proposition 2.6)
and from this and Lemma 1.6(b) one deduces part (a) as stated.

Part (b) follows exactly as in [3] (Theorem 4.3(x)) using part (a). D

The next result is useful for later results and an example is given to
show that its converse it not true.

COROLLARY 1.8. σ: ^ [ S B Q Γ ~ ^ / I ^ I Γ
 imPlies σ : W o Γ = SΓ[93i]*.

Hence, if 2ί is B-separating, then 2ίy is Bseparating.

Proof. The first part is immediate by Lemma 1.6(a) and the second
part is immediate from the first. D

EXAMPLE 1.9. Let 2ί = ({a9 b), {(a, a)}) be a structure for L consist-
ing of a single binary relation R. Let cff — b and c^f — a. %f is J9-separat-
ing by [3] (Theorem 3.4) since it is term equivalent to the 2-element
Boolean algebra by [18] (p. 27). However, for any infinite Boolean algebra
93, the interpretation of R in 21 [93]* is {( | 0, £0)} where ξo(a) = 1 and,
hence, the theory of 2ί[93]* is categorical in all infinite powers. Conse-
quently, by letting 93 0 and 93 { be two Boolean algebras of the same
cardinality and different complete theories, one obtains 2ί[930]* s 2l[93J*
while 2ί/[930]* se 21^93,]* and 93O ^ 93^
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2. Recursive models* In this section we construct for any recursive
structure 9ί a recursive model of Th(9ί7//)). Using [3] this can be carried
out easily as follows. By [7] any elementary characteristic (n9p9q)
determines a complete theory of a Boolean algebra and this complete
theory is decidable. Consequently, if 2T/Dt (n9 p, q)9 then there is a
recursive model 93 ((Λ, p, q)) of that elementary characteristic. Given that
9ί is recursive, it is easy to see that 2t[93((π, p, q))]* is recursive by
definition in [26] and 3C[SB«n, p9 q))]* = %J/D by [3] (Theorem 4.3(i)
and (v)).

One can also be very explicit as to the construction of a recursive
93 ((Λ, p,q)). In fact in [16] recursive prime models of each elementary
characteristic are constructed explicitly in terms of an ordered basis. The
prime models are the smallest countable models of these theories in
contrast to the countable saturated models in [23] which are the largest
countable models of these theories. Moreover, the models of [16] have
recursive satisfaction relation and the property that 91 has a recursive
satisfaction relation will be preserved by these particular bounded Boolean
powers by the Feferman-Vaught-Weinstein Theorem. Next we give an
example of the models of Th(9ίω) obtained using [16] from the point of
view of [22].

EXAMPLE 2.1. Let 93((O, ω,0» denote the substructure of 2ω with
domain consisting of all functions in 2ω which are eventually constant. It
follows by [16] that ©((0, ω, 0» is the prime model of Th(2ω) and by [7]
(Theorem 3) that 93«0, ω9 0» -< 2ω. Let © be the substructure of 31ω with
domain consisting of all functions in 2ίω which are eventually constant. It
follows that © = 3t[93«O, ω,0»]* and that (5 -< 2ίω [3] (Theorem 4.3(v)).

3. Applications to logic of reduced power structures. In [20] for
each elementary characteristic («,/?, q) of a complete theory of a Boolean
algebra and any first-order language L, we defined semantically
V((n, p,q)) the set of valid sentences of L of reduced power structures of
type {n9 p9q). Also we gave a syntactic characterization of V({n9 p,q))
[20] (Theorem 1.4) and proved the following [20] (Theorem 1.6):

THEOREM 3.1. % N V((n9 p9 q)) iff for some ©, 91 = © 7 /D where 2r/D

*{n9p9q).

In [20] (§3) we demonstrated numerous results about the logics
V((n9 p, q)) and the more interesting of these results required that L be
sufficiently large, i.e., contain the language of Boolean algebras. In this
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section we intend to show that all of the results of [20] (§3) hold under the
hypothesis that L contains a binary relation. It is sufficient to consider L
with exactly one binary relation denoted by R.

Let 2l2 be a structure for L where |2l 2l~ {#, b), a φ b and R®2 =
{(a, a),(b9 b),(a, b)}9 i.e., 2ί2

 ιs a linear order of order type 2. We are
interested in the theories obtained by taking reduced powers of 312 and it
is sufficient to consider 2ί2[93]*. We observe first that 212[93]* is a
partially ordered set which is a distributive complemented lattice with a
first and a last element.

LEMMA 3.2. 212 is B-separating.

Proof. Let 93 be a Boolean algebra and consider 2ί2[93]*. It is not
difficult to see that 212[93]* is isomorphic to 93 as a partially ordered set,
i.e. isomorphic to (2?, < " ) where for x9 y in 5, x < 5 y iff x Π j = Λ: in 93.
Suppose 9ί2[930]*=9ί2[931Γ, then <50, <®°>s ( ^ <*«> and, hence,
93 0 s SB j since the lattice structure of 93 0 determines 93 0 up to isomor-
phism. D

COROLLARY 3.3. 312 is T-separating.

Proof. This is immediate by Theorem 1.7(b). D

Let (3ί2) / be defined as in §1.

COROLLARY 3.4. (3t2) / is B-separating.

Proof. This is immediate by Corollary 1.8. D

The next result demonstrates that the theory of distributive comple-
mented lattices behaves like a universal Horn theory.

LEMMA 3.5. // 31 is a structure for L and %r/D is a distributive
complemented lattice with first and last elements, then 21 is a distributive
complemented lattice with first and last elements.

Proof. First note that 31 is embeddable in 31 [93]* via a -* fa where
fa{a) — 1. Since 3ί[93]* is a partially ordered set, so is 2ί since the
property of being a partially ordered set via R can be expressed by a
universal (Horn) sentence of L. One can argue directly that in 21 [93]*,

= fc for some c in 1211 and fa^fb— fd for some d in 12ί | . Moreover,
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the first and last elements of 21 [93]* are also of the form/β axιdfb for some
a and b in 1211. The distributive complemented property in 21 follows
readily. D

The next result allows us to generaize the results [20] (§3) using
exactly the same reasoning as in [20]. For our notation and background
see our comments prior to Lemma 1.2.

LEMMA 3.6. For the language L = (R), V((r9 s9 /» C V((n9 p, q)) iff
there exists (n\ p\ qf) such that (n9 p, q) — (n'9 p\ q') X (r9 s, t).

Proof. Suppose (n9 p9 q)= (n\ ρ\ q')X (r9 s9 t). Let Wl f=
V((n9 p9 q)). By Theorem 3.1, Tt = &r/D such that V/D f= (n9 p9 q). But
{^J/EY/D' = ^/D where 2V/DΎ (n'9 p\qf) and 2J/Ev(r9s9t).
Hence ffll \= V((r9 s, t)) by commutativity and Theorem 3.1.

Conversely, suppose V((r, s, t)) C V((n9 p, q)\ Let 35 be a Boolean
algebra of elementary characteristic (n9 p, q) and consider 3t2[93]*, i.e.,
2ί2[93]* = %{/D9 where 2r/D ^ (n9 p9 q). Thus by Theorem 3.1, 212[93]*
tV((n9p9q)) and, hence 2ί2[»]* = &J/E where 2J/Ev(r9s9t). By
Lemma 3.5, © is a distributive complemented lattice with first and last
elements. Hence, © = (Bθ9 <"°) where 93 0 has the elementary character-
istic {n'9p'9q'). Thus, 2ί2[93]* = {%2[S8Q]*)[2J/E}* so 2ί2[93]* =
212[93O * 2J/E}*. By Corollary 3.3, » = » 0 * P V ^ l and, hence,
(n9 p, q) — (n\ p\ q') X (r, 5 ί) by commutativity. D

THEOREM 3.7. For any language L containing a binary relation symbol
(n-ary for Λ? > 2), V((n9 p9q)) are all different and are partially ordered
under C exactly as in [20] {also see [23]).

A similar result holds for all of the assertions in [20] (§3).

4. Axiomatizations over %(21).

DEFINITION 4.1. DC(21) = {φ | φ is a Horn sentence and 2ί \= φ}.

In this section we show that if 2ί is Γ-separating, then the complete
extensions of DC (21) behave exactly as the complete theories of Boolean
algebras with respect to finitely axiomatizability over DC (21). Next we
show that for any 21, Th(2t) is finitely axiomatizable over DC(2l). This
improves a result of Galvin [10] (Theorem 9.1(a)).
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The following combinatorial result is in [6] (Exercise 6.2.3).

LEMMA 4.2. Π / e / ( 2 l V A ) / ^ S Πf e A- 9ϊ/£, wλere 2K/E ^

The next result shows that 5C(3ί) has only countably many complete
extensions, each of which is the theory of a reduced power of 3ί.

LEMMA 4.3. Wl t= %{%) iff for some I and Z), 9K Ξ %r/D.

Proof. By Lemma 4.2, it follows that {Wl\ for some / and D,
$1 = %r/D) is an elementary class since it is closed under ultra-products.

Thus, any 3ft which is a model of Th{3ft | for some / and D, Wt = 9
is elementarily equivalent to %!/D for some / and D. Hence, Wl is a
model of 5C(2l) by [6] (Proposition 6.2.2). Suppose 3ft is a model of
3C(2ί), then any Horn sentence true in 91 holds in Wl and, hence, some
elementary extension of Wl is isomorphic to a proper reduced power of 2t
[6] (Lemma 6.2.4). Thus, Wl=%r/D for some / and Zλ D

DEFINITION 4.4. Let Tbe a theory and T be a complete extension of T.
V is finitely axiomatizable over T if there is a sentence φ such that T is
equivalent to ΓU {φ}.

The following result is analogous to [6] (Theorem 4.1.12).

LEMMA 4.5. V is finitely axiomatizable over T iff {Wl\Wl£T and not
311= V) is closed under ultra-products.

The next result is implicit in Ershov [7].

LEMMA 4.6. The finitely axiomatizable complete theories of Boolean
algebras are those of elementary characteristic (n, p9q) where p Φ ω and
n Φ ω.

We can deduce from [3] (Theorem 4.3) that 31 is Γ-separating iff
2ίr/D = %J/E implies 2r/D = 2J/E. Using the above machinery we can
now show the next result.

THEOREM 4.7. 7/91 is T-separating, then 217/Z> is finitely axiomatizable
over %(%) iff2T/D is a finitely axiomatizable Boolean algebra.
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Proof. Consider an ultra-product of models 31VA of 3C(3ί) which
are not elementarily equivalent to %!/D. By Lemma 4.2,
Π / e r (3l V A ) / ^ r = Π / e 7 %/E where 2J/E = Π, e r (2VA )/£>'• Suppose
2r/D is finitely axiomatizable, then since 3ί7</A ^ ^ V A we know
2I'/Dι ^ 27/Z) since 31 is Γ-separating. Since 2r/D is finitely axiomatiz-
able, it follows that Π/e/(l^/D^/D' sε 27/Zλ Thus, 2 J /£ z 2r/D and,
hence, 21V^ ̂  %r/D s i n c e ^ i s ^-separating. Thus, by Lemma 4.5 %*/D
is finitely axiomatizable over %{%). Suppose 2ι/D is not finitely axioma-
tizable, then for some 2r'/Di z 2T/D and ultra-filter Df over /' we have
(Π ιeΓ2h/Di)/D f = 2ι/D. Consequently, Π/eΓ(3lr'/Dt)/Df = δ ί 7 / ^ Ξ

%J/D. Thus, there is an ultra-product of models of %(%) each of which is
not elementarily equivalent to %!/D such that the ultra-product is
elementarily equivalent to %J/D. Thus, by Lemma 4.5 %*/D is not
finitely axiomatizable over DC (31).

EXAMPLE 4.8. Let co = (ω, +, , 0,1). ω is Γ-separating since in ωr/D
the set {x\ωr/Dtx - x — x) forms a partially ordered set under x <y
defined by x y — x which is isomorphic to the partial order of 2ι/D.
Thus, co is finitely axiomatizable over %(ω) and clearly Th(co) is axioma-
tized by 0C(ω) U {VxVj(x y = 0 =* x = 0 V>> = 0)}.

We remark that (ω, •> is also ^-separating and Γ-separating by the
above observations. Also, (<o, + ) is 5-separating and Γ-separating, see
[28].

It has been shown in [12] that there are ̂ -separating structures 3ί
which are not Γ-separating. The next result is an easy consequence of
known results.

LEMMA 4.9. //3ί is T-separating, then %k is T-separatingfor 1 < k < ω.
//3ί is B-separating, then %k is not B-separating for 1 < k < ω.

Proof. 23* has elementary characteristic (n9 k - p,q) if 23ι=(«, p,q)
where k - ω = ω by [7] or [29]. Since 31 is Γ-separating, so must also be
«*, since by [3] (Proposition 2.1 (iv)), Sί*[»] s9t[5B*]*. Also by [14]
(Theorem 2) there are denumerable Boolean algebras @ and ® such that
©* s ® k but © s* ©. Hence 3ί*[<£]* = Si*!©]* but © ̂  Φ. D

Now we give two preliminary results about ways in which 3ί can fail
to be Γ-separating and we will proceed to the last main result of this
section.

LEMMA 4.10. 3 i ^ 3 i x 3 i / # 3 i ^ Π/ G ω 3Ϊ.
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Proof. Suppose 21 = 21 X 31. Then by induction 21" ΞΞ 21 for n > 1.

Hence by [8], 21 = Π ί e ω 2t. Suppose 2ί = Π , e ω 2t. Then since Π ί ( Ξ ω 2t X

Π , e ω 21 β Π , e ω 2ί, it follows that 21 X 21 = 2ί. D

LEMMA 4.11. // 2P = 2l<? for some 1 <p <q<ω, then there is a

smallest k such that %k = Π , e ω 21.

Proof. » ' = 21« = 2P X » « " ' = 2t ? X a * " ' = 21' X 212(<?~P). Thus,

by induction 2P = 8t ' X »"<*-'> for n>\. Thus, 2P Ξ Π , e ω 21 by [8].

Hence, 2 ί ' ΞΞ 21", for n > p. Thus there is a smallest such p. D

Recall the comments prior to Lemma 1.2 for the definition of

THEOREM 4.12. Th(9l) is finitely axiomatizable over 3C(2l).

Proo/. Cβ^e 1. 9t is Γ-separating. The result is immediate by Theorem

4.7.

Case 2. 9ί ^ 2ί X 91. The strategy will be to write down a list of

axioms for Th(9t). By hypothesis, the proof of Lemma 4.11, and Lemma

4.10, 9ί ^ %p for 1 <p < ω. Let ^ O t o 0 > denote a Horn sentence true in

2l[<0, ω,0)]* and false in 9ί since %(ύ) C %(%ω) [10] (Lemma 7.5) and

[6] (Proposition 6.2.2). By [8] σ ( 0 ω 0 ) is true in all but infinitely many 91p,

1 <p < ω. For each p such that Sl^-i^cω.o) s e l e c t a Horn sentence
σ<o,̂ ,o> t Γ u e i n ^P a n ^ ^ s e ^n ί̂ by the same argument as above. Since

(ω,0,0)X (0, co,0>= (ω,0,0>, it follows by [6] (Proposition 6.2.2) that

Sί[(ω,0,0)]*Nσ^0ϊfc)ί0y By the Feferman-Vaught-Weinstein Theorem, let

(σ; ψ j , . . . , ^ ) be the determining sequence for σ^OϊωO> a n d , hence,

(ω,0,0)ί=σ[c 1,...,cm] where c, = 0 if 9tι=-,ψ/, or cf = ϊ if SH=ψ,, for

1 < / < m. By [29] (Theorem) for all (n, p,q) with « sufficiently large

(/i, />, q)*o[cx,...9cm] and, hence, 9ί[((«,/?, ^ » ] * ι= σ ( O ω O ) . Clearly,

9ί[(0,0,1)]* t=σ^OωO>; moreover, by easy calculations for r > 0 and (/? =

O V ; > 1 ) , 9I[(r, /?, 0 1 * «= σ(o,ω,o> v σ<o ,̂o> since 9ί[(r, p, t)]* =

%p[(r,\,t)]* for p>\9 and for /? = 0, 9ί ω [(r,0,1)]* Ξ 9ί[(r,0,1)]*.

Thus, the only models o f Γ = 3 C ( 9 ί ) U {-,σ |σisa Horn sentence consid-

ered above} are of the form 9t[(r, 1,1)]* or 9ί[(r, 1,0)]*. For each such

elementary characteristic 91 [(r, 1, />]* ̂  9ί, find a Horn sentence σ true in

9ί[(r, 1, /)]* and false in 9ί and add its negation to T. In this way we

obtain a finite extension V of T and hence of 3C(9ί) such that 911= T

implies Wl = 9ί.
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Case 3. 31 = at X 31. Suppose 2ί = 2l[<0,0,1)]*. Then Th(3l) is a
complete Horn theory by [10] and, hence, Th(9ί) = 3C(9t). Suppose
21 5Ξ 21 [(0,0,1)]*. Let σ ( 0 0 1 > be a Horn sentence demonstrating this. If
21 ΞΞ 2ί[((o,0,0>]* and 21 2 2ί[(0,0,1)]*, then we are done since Th(2l) is
equivalent to %(2ί) U {-iσ/001)} since Wlt%(%) U {-.σ(001>} implies
by Lemma 4.3 that m = w)b where 2 7 /D* (0,0,1) and, hence, Wl =
2l[(ω,0,0>]* Ξ2ί by [24] or [23]. If 21 ̂  2l[<ω,0,0>]* and 2ί ^
2l[(0,0,1)]*, let σ ( ω 0 0 > be a Horn sentence true in 2ϊ[(ω, 0,0)]* and false
in 21. As in Case 2, by the Feferman-Vaught-Weinstein Theorem and [29],
σ<ω,o,o> i s t Γ u e i n a 1 1 2t [(>*>/>>#}]* f o r w sufficiently large. Consider
0C(3l) u {-iσ(ω00>} = T. There is an n such that if 30? ι= Γ, then 3Qΐ =
%*/D for some/ and Z) such that 2r/D ι= (r, s, t) and r < n. By Lemma
4.10, 2ί = 21ω and, hence 2T[(r, s9 />]* Ξ 2ίω[<r, ,y, />]*. Thus, the models
of T which are not elementarily equivalent to 21 are elementarily equiva-
lent to 2ϊ[(r,0,1)]*, 2ί[(r, ω,0>]* or 2l[(r, ω, 1)]* with r < n. For each
one select a Horn sentence true in it and false in 21; add the negation of
each Horn sentence so selected to T to obtain T. Hence, 30? v T implies
3^ΞΞ21. •

REFERENCES

[I] C. J. Ash, Reduced powers and Boolean extensions, J. London Math. Soc. (2), 9
(1975), 429-432.

[2] B. Banaschewski and E. Nelson, Boolean powers as algebras of continuous functions,
Dissertationes Mathematicae, 179 (1980), Warsaw.

[3] S. Burns, Boolean powers, Algebra Universalis, 5 (1975), 340-360.
[4] , Bounded Boolean powers and = „ , Algebras Universalis, 8 (1978), 137-138.
[5] S. Burris and H. Werner, Sheaf constructions and their elementary properties, TAMS,

248 (1979), 269-309.
[6] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam, 1973.
[7] Yu. L. Ershov, Decidability of the elementary theory of relatively complemented lattices

and the theory of filters, Algebra i Logika, 17 (1964), 17-38. (Russian)
[8] S. Feferman and R. L. Vaught, The first order properties of algebraic systems, Fund.

Math., 47 (1959), 57-103.
[9] F. Galvin, Reduced Products, Horn sentences, and decision problems, Bull. Amer.

Math. Soc, 73 (1967), 59-64.
[10] , Horn sentences, Ann. Math. Logic, 1 (1969), 389-442.
[II] , Personal communication.
[12] S. Garavaglia and J. M. Plotkin, Separation properties and Boolean powers, Coll.

Math., (to appear).
[13] P. R. Halmos, Lectures on Boolean Algebras, Van Nostrand, Princeton, 1967.
[ 14] W. Hanf, On some fundamental problems concerning isomorphisms of Boolean alge-

bras, Math. Scand., 5 (1957), 205-217.
[15] J. Lawrence, Boolean powers of groups, Proc. Amer. Math. Soc, 82 (1981), 512-515.
[16] J. Mead, Recursive prime models for Boolean algebras, Coll. Math., 41 (1979), 25-33.



220 G. C. NELSON

[17] J. Mead and G. C. Nelson. Model companions and k-model completeness for the

complete theories of Boolean algebras, J. Symbolic Logic, 45 (1980), 47-55.

[18] E. Mendelson, Introduction to Mathematical Logic, 2nd ed., D. Van Nostrand, New
York, 1979.

[19] A. Mostowski, On direct powers of theories, J. Symbolic Logic, 17 (1952), 1-31.
[20] G. C. Nelson, Logic ofreduced power structures, J. Symbolic Logic, 48 (1983), 53-59.
[21] G. C. Nelson, Addendum to "Logic of reduced power structures", J. Symbolic

Logic, 48 (1983), 1145.3

[22] G. C. Nelson, The periodic power of & and complete Horn theories, Algebra Universa-
lis, 14 (1982), 349-356.

[23] P. Olin, Free products and elementary type of Boolean algebras, Math. Scand., 38

(1976), 5-23.
[24] A. I. Omarov, On subsystems of reduced powers, Algebra i Logika, 12 (1973), 42-46

(English translation).
[25] R. W. Quackenbush, Free products of bounded distributive lattices, Algebra Universa-

lis, 2 (1972), 393-394.

[26] M. O. Rabin, Computable algebra, Trans. Amer. Math. Soα, 95 (1960), 341-360.
[27] R. Sikorski, Boolean Algebras, Academic Press, New York, 1964.
[28] A. Tarski, Remarks on direct products of commutative semigroups, Math. Scand., 5

(1957), 218-223.
[29] J. Waszkiewicz, ^-theories of Boolean algebras, Coll. Math., 30 (1974), 171 -175.
[30] J. Waszkiewicz and B. Weglorz, Some models of theories of reduced powers, Bull.

Acad. Polon. Sci. Math. Astron. Phys., 16 (1968), 683-685.
[31] B. Weglorz, Substructures of reduced powers, Fund. Math., 89 (1975), 191 -197.
[32] V. Weispfenning, Model-completeness and elimination of quantifiers for subdirect

products of structures, J. Algebra, 36 (1975), 252-277.

Received April 28, 1982, and in revised form November 9, 1982. The author acknowledges
the many helpful suggestions that the referee has contributed to this revision of a
previously submitted article.

UNIVERSITY OF IOWA

IOWA CITY, IA 52242

3 In [21] it is pointed out that Galvin in [9] had announced many of the results in §2 of
[20].




