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TOPOLOGICAL METHODS FOR C*-ALGEBRAS III:
AXIOMATIC HOMOLOGY

CLAUDE SCHOCHET

A homology theory consists of a sequence {hn} of covariant func-
tors from a suitable category of C*-algebras to abelian groups which
satisfies homotopy and exactness axioms. We show that such theories
have Mayer-Vietoris sequences and (if additive) commute with inductive
limits. There are analogous definitions and theorems in cohomology with
one important difference: an additive cohomology theory associates a
Milnor lim1 sequence to an inductive limit of C*-aIgebras. As prere-
quisite to these results we develop the necessary homotopy theory,
including cofibrations and cofibre theories.

0. Introduction.

The construction of a homology theory is exceedingly complicated.
It is true that the definitions and necessary lemmas can be compressed
within ten pages, and the main properties established within a hundred.
But this is achieved by disregarding numerous problems raised by the
construction, and ignoring the problem of computing illustrative exam-
ples. . . .

In spite of this confusion, a picture has gradually evolved of what
is and should be a homology theory. Heretofore this has been an
imprecise picture which the expert could use in his thinking but not in
his exposition.. A precise picture is needed. It is at just this stage in the
development of other fields of mathematics that an axiomatic treatment
appeared and cleared the air.

S. Eilenberg and N. Steenrod
Foundations of Algebraic Topology

(1952).

There are several homology theories and cohomology theories defined
on suitable categories of C*-algebras. Here are some examples in rough
historical order:

(a) The #-theory groups K*(A) of Karoubi [7], [8], defined abstractly
in terms of modules or concretely via projections and unitaries in matrix
algebras over^l.

(b) The Ext groups Ext*(;4) of Brown-Douglas-Fillmore [3], [4] which
arise from the classification of extensions of C*-algebras of the form
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400 CLAUDE SCHOCHET

where % denotes the C*-algebra of compact operators on a separable
Hubert space.

(c) The groups Ext*(X; A) of Pimsner-Popa-Voiculescu [7] which
arise from the classification of homogeneous extensions of C*-algebras of
the form

0-> C(X9%) ^E^A->0.

Holding the space X fixed yields a cohomology theory.
(d) The groups Ext*(,4, B) of Kasparov [11], [12] which arise from the

classification of extensions of C* -algebras of the form

Holding B fixed yields a cohomology theory; holding A fixed yields a
homology theory.

There are other less well-behaved possibilities. Fix a C*-algebra D.
The functors [C0(Rn) ® D, A] and [D, C0(Rn) ® A] have properties analo-
gous to a homology theory in some respect. (Here [A, B] denotes homo-
topy classes of C*-algebra maps from A to B.) Similarly, the functors
[A, C0(Rn) ® D] and [C0(RΛ) ® A, D] have properties analogous to a
cohomology theory in some respect. Upon suspension stabilization these
yield "cofibre" homology and cohomology theories. (See Example 8.5.)

In this paper we offer a simple system of axioms for homology
theories on C*-aίgebras and an analogous system of axioms for cohomol-
ogy theories on C*-algebras. Theories (a)-(d) satisfy these axioms. The
homotopy theories do not, but they satisfy cofibre axioms which carry
much the same structure.

The axioms are strong enough to enable one to effectively compute
homology in diverse situations. As evidence we offer theorems on

(a) the homology of a triple
(b) the homology of a pullback (i.e., a Mayer-Vietoris theorem)
(c) the homology of an inductive limit

and analogous results in cohomology. The main theorems of [22] are also
available.

Here are the axioms for a homology theory.

DEFINITION. A homology theory is a sequence {hn} of covariant
functors from an admissible category β of C*-algebras to abelian groups
which satisfies the following axioms:
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Homotopy axiom. Let A: A -» C([0,1], B) be a homotopy from/0 = poh
iofx — pxh in β, where/?,(£) = £(ί). Then

Exactness axiom. Let

be a short exact sequence in β. Then there is a map 9: hn(B) -> hn_x(J)
and a long exact sequence

The map 9 is natural with respect to morphisms of short exact sequences.
A further axiom is sometimes assumed. If so then the homology

theory is said to be additive.

Additiυity Axiom. Let A — ®^=0Ai in 6. Then the natural maps
hn{At) -» hn(A) induce an isomorphism

®hn(A,)->hn(A)
i

The axioms for cohomology are quite similar.

DEFINITION. A cohomology theory is a sequence {A"} of contravariant
functors from an admissible category 6 of C*-algebras to abelian groups
which satisfies the following axioms:

Homotopy axiom. Let A: A -» C([0,1], B) be a homotopy from/0 = pQh
— pxh. Then/0* = /*: hn(B) -> hn(A) for all n.

Exactness axiom. Let

be a short exact sequence in β. Then there is a map δ: A"(/) -> hn+x(B)
and a long exact sequence

The map δ is natural with respect to moφhisms of short exact sequences.
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The following axiom is sometimes assumed. If so then the cohomol-
ogy theory is said to be additive.

Additiυity axiom. Let A = Θ°^o 4̂,. Then the natural maps

induce an isomorphism

We have not yet formally defined "admissible category of C*-alge-
bras". Roughly, a category of C*-algebras is admissible if it is closed
under the various homotopy constructions required to develop elementary
homotopy theory. Here are some admissible categories:

(l)allC*-algebras
(2) separable C*-algebras
(3) separable nuclear C*-algebras

In each case we allow all C*-maps as morphisms. This is a provisional
definition. It should be replaced by the closed model categories of Quillen
[18]. However, there is as yet no good notion of loop space or fibration
(the definitions by Karoubi [9] are not helpful here). Thus we proceed in
an ad hoc manner and return to this question at (2.12).

As indicated previously, there is another possible axiom framework. It
revolves about the notion of cofibration.

DEFINITION. A map of C*-algebras p: A -> B is a cofibration if it
satisfies the homotopy lifting property: any homotopy h: D -> C([0,1], B)
of a composite fp, /: D ~»A, can be extended to a homotopy
//:/)-> C([0,1], A) of /. That is, the diagram

D

commutes.
A map X -» Y of compact topological spaces is a cofibration in the

classical sense [25, p. 7] if and only if the map C(Y) -> C(X) is a
cofibration in the sense above. A cofibration/?: A -* B must be surjective.
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DEFINITION. A cofibre homology theory {hn} is a sequence of covariant
functors from an admissible category of C*-algebras to abelian groups
which satisfies the homotopy axiom and the following axioms:

Cofibre axiom. Let/?: A -» B be a cofibration, and let

Cp = {{ξ, a) e C([0, \],B)®A\ ξ(l) = 0, {(0) = p(a)}

be the mapping cone, with ττ(/?): Cp -* A by π(p)(ξ9 a) = α. Then the
sequence

is exact for each n.

Suspension axiom. There is a natural isomorphism

σA:hn(A)~hn_x(SA)

where &4 = C0((0,1), v4) is the suspension of 4̂.

These axioms imply the existence of a long exact sequence in homol-
ogy for the sequence

0 -+J-+A -» B -» 0

provided that ̂ 4 -> J5 is a cofibration.
There is an analogous definition in cohomology.

DEFINITION. A cofibre cohomology theory is a sequence {hn} of con-
travariant functors from an admissible category of C*-algebras to abelian
groups which satisfies the homotopy axiom and the following axioms:

Cofibre axiom, lip: A -> B is a cofibration then the sequence

is exact for each «.

Suspension axiom. There is a natural isomorphism

σA:hn(SA)*hn+ι(A).

We shall demonstrate that a homology theory is a cofibre homology
theory and that a cohomology theory is a cofibre cohomology theory.
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The paper is organized as follows.

Section 1 is devoted to homotopy theory. In it we introduce the basic

equipment—mapping cylinders, mapping cones, cofibrations, pullbacks,

and we verify their elementary properties.

Section 2 concerns cofibration sequences. The climax perhaps is

Verdier's axiom, which to a composite A -> C -> B associates a weave of

cofibre sequences.

Section 3 is devoted to demonstrating that the elementary properties

of homology theories are implied by our axioms. For example, we show

how to deduce the suspension axiom from the homotopy and exactness

axioms. Also included is the classical "homology of a triple" theorem and

analogous results for cofibre theories.

Section 4 is devoted to the Mayer-Vietoris theorem. Suppose given a

pullback diagram

Si

A
h

with /j and f2 surjective or fλ a cofibration and f2 arbitrary, and suppose

given a cofibre theory h*. Then there is a long exact sequence

If Λ* is a homology theory then it suffices to assume that f{ is surjective

and/2 is arbitrary.

Section 5 concerns limits. If A = lim Aι is the inductive limit of a

sequence of C*-algebras and h* is an additive homology theory then there

is a natural isomorphism

In §6 we turn to cohomology and establish results analogous to those

of §3 and the Mayer-Vietoris theorem of §4. Section 7 is devoted to limits

in cohomology. Here there is a real difference in the outcome (as is

predicted by the results in topology). \ίA— lim At is an inductive limit of

a sequence of C*-algebras and h* is an additive cohomology theory then

the natural map hn(A) -» lim ^(AJ is not an isomorphism. Rather, there

is a short exact Milnor lim1 sequence

1 1 ( ( {Al) -> 0.( / ) ()
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Finally, in §8 we discuss the various examples mentioned above and

show that the appropriate axioms are satisfied.

There are several topics which are not covered here, and deliberately

so: uniqueness, stability and periodicity.

Uniqueness. Eilenberg-Steenrod show that two ordinary homology

theories which satisfy the dimension axiom and which coincide on spheres

must coincide on finite CW-complexes. However, the analogous statement

for generalized homology theories (i.e., no dimension axiom) on spaces is

not true. To make it true one needs a natural transformation between the

theories. Given that additional hypothesis, the relevant uniqueness theo-

rem does hold for theories on C*-algebras as is shown in [22, Theorem

4.2]. The analogous result holds in cohomology.

Stability. One might require that hn(A ® Mk(C)) = hn(A) for k - 2,

for all fc, or that hn(A ®%) =hn{A). We never use such assumptions. We

believe them to be independent of our other axioms. Of course the

limit theorems and the assumption "hn(A ® M2(C)) = hn(A)" imply

"hn(A ® %) = hn(A)" and thus the fact that Λ# is really defined on the

homotopy category of Morita equivalences of C*-algebras. We regard

this sort of stability as still rather mysterious. For example, what can

be said about the sequence

[A, B] ->[Λ ® M2(C), B ® Af2(C)]

-+[A ®M 4 (C),5®M 4 (C)] -> >[A ®%,B® %].

Does it stabilize for k large, given some assumptions on A and BΊ

Periodicity. We have not assumed that hn(A) = hn(S2A)9 as is the case

with ΛΓ-theory and the other examples (a)-(d) considered. This also we

presume to be independent of exactness and homotopy. Periodicity is

quite rare in algebraic topology, and we believe it to be quite rare for

C*-algebras, though there is a counter-argument [19]. The homotopy

situation is not well-understood. Is there a Freudenthal suspension theo-

rem to tell us that for suitable B the sequence

[A, B] ->[&4, SB] -*[S2A, S2B]

eventually becomes a sequence of isomorphisms? Let [A, B] =

Km[SnA9 SnB]. How are {A,B} and {A ® %, B ® %} related? Rosenberg

[19] has some interesting observations and speculations on these matters.

Much of the material in §1 is scattered in the literature, particularly in

papers of Karoubi [7], [8], [9], P. Kohn [13], and L. G. Brown, cf. [2].
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Kohn's (unpublished) thesis [13] contains the basic definitions, and it
contains the construction of the mapping cone. A preprint by J. Hilgert
(received as this paper was being typed) establishes Theorem 4.5 and a
variant of Theorem 3.8 for ^Γ-theory by somewhat different methods. Our
exposition in §§1 and 2 follows that of J. P. May [14].

Many ideas in this paper may be traced back to papers, correspon-
dence or discussions with L. G. Brown. He was the first functional analyst
to take seriously the notion that there should be a subject called "non-
commutative algebraic topology", particularly in his influential "Rome
paper" [2]. J. Rosenberg's paper [19] was also quite influential, particu-
larly in pointing out the problems which arise in the absence of cofibra-
tions. We are deeply grateful to L. G. Brown and to J. Rosenberg for their
assistance and stimulation.

This paper is philosophically related to its predecessors [22], [23] but
there is no serious mathematical link between them.

1. Homotopy. We begin the paper by presenting the basic working
tools of homotopy theory for C*-algebras. As indicated before, much of
this has been in the folklore for some time.

Fix an admissible category β of C*-algebras and C*-algebra maps.
For a C*-algebra^4 in 6, define the cylinder of A as IA = C([0,1], A) with
canonical maps/?,: IA -> A given by pt(ξ) — ξ(t).

DEFINITION 1.1. For A and B in β, define a homotopy h: f-g
between C*-algebra maps /, g: A -» B to be a map h: A -> IB in β such
that poh = f and pλh — g. Let [A, B] denote the set of homotopy classes
of maps A -> B in 6 and let hG denote the resulting homotopy category;
its objects are the objects of G and its morphisms from A to B are the
elements of [A, B], A map in G is said to be an equivalence if it is an
isomorphism in hG (i.e., homotopy equivalence of C*-algebras.)

The term isomorphism will mean isomorphism in β (i.e., isomorphism
of C*-algebras.)

DEFINITION 1.2. A map p: A -» B is said to be a cofibration if it
satisfies the homotopy lifting property: any homotopy h: D -»IB of a
composite$?,/: D -* A, can be extended to a homotopy H: D -> IA of/.
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Write ht{d) = h(d)(t). Then a map is a cofibration if whenever given
a homotopy ht\ D -> B and a lift / of h0 to A, then the entire homotopy
lifts to Ht\ D ^ B withpHt = ht and Ho = /.

-+B

The simplest examples of a cofibration are the maps pr\ IB -> B.

LEMMA 1.3. The map pr\ IB -» B is a cofibration for each r G [0,1].

Proof. Suppose given maps h: D -> IB and /: D -* IB satisfying
Prf ~ Poh- We must find some H: D -» I(IB) withp0H = /and /(/?,.) ° H
= Λ. Regard /(/£) as C([0,1] X [0,1], B); then H(d)(x, y) must satisfy

i/(J)(0, >;)=/(</)(j)

and

Thus ΐΓ(ίi) is a priori determined on the subspace ({0} X [0,1]) U
([0,1] X {r}). Let v be some retraction of [0,1] X [0,1] onto that sub-
space. Define H(d) by

\ = ίfWM*' yV i f "(x' y) G { 0 } X [ 0 '1 ]

>y> \h(d)(p(x,y)) if,(xty)e[0,l]X{r).

Then H(d) satisfies the conditions above pointwise, and hence as a
C*-map. D

In general the natural map A+ -»A^/A — C is not a cofibration,
where A+ denotes the unitalization of A. For instance, let X —
{x, xsin(l/;c) G R 2 | 0 < ^ < 1}. Then C{Xγ = C{X+) where X+ =
X U {(0,0)}. The map C(Z) + -> C given by g -» g(0,0) is not a cofibra-
tion. We suspect that the natural map £ -» £/3C is not a cofibration.

DEFINITION 1.4. Given a diagram

C

the pullback is defined by

P = {(a, c) <EA® C\pa = qc)
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as the evident C*-subalgebra of A Θ C. There is a natural diagram

p ^

Note that p is injective/surjective if and only if p is injective/surjective,
and that Ker/? = Ker/?. The pullback has the following universal prop-
erty. Given a C*-algebra D in 6 and maps /: D -> ̂ 4, g: Z) -» C in 6 with
/?/ = gg, then there is a unique map in 6 making the diagram

commute.

PROPOSITION 1.5. If p: A -> B is a cofibration and q: C -* B is a map

then the map p: P -* C in the pullback diagram

w α cofibration. Thus the pullback of<ι cofibration (by an arbitrary map) is a

cofibration.

Proof. Suppose given maps h: D -* IC and f:D->P such that

poh — pf. Then qh: D -»IB, qf\ D -* A a n d p o q h = j^ς/'. Since j ^ : 4̂ -» 5 is

a cofibration, there is a map k: D ^ IA such that p^k — qf and pk — qh.

The diagram
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commutes, since/?/: = qh. Since IP is a pullback, there is a (dotted) map

H: D ^ IP making the diagram commute. Then

p0H = / sincepok = #/ and poh — pf

and /?// = h as required. D

DEFINITION 1.7. The mapping cylinder Mf of a map /: A -> 5 is

defined by the pullback diagram

AT/

The map Mf -» A is a cofibration since /?0 is a cofibration.

Let c: A -> IB be the map defined by setting c(a) to be the constant

path at f(a). Then poc — /. As Λf/ is a pullback, there is a map r making

the diagram

commute. Thuspr = 1

write Mf= {({, α) e

h: Mf^IMf by A({,

Then

and

In fact/? is an equivalence: rp ^ \Mf. To see this,

θ ^ | ^ o f =/β}. Then Γ(Λ) = (c(α), α). Define

) - (^, α), where fy. is the path {y(r) =

A({, α)(0) - (poζ9 a) = (c(a)9 a) = rp(ξ9 a)

h(ζ9a)(l) = {ξ9a)

so that A is a homotopy h: rp ^ 1M /. Thus r and /? are inverse equiva-

lences. In fact the map rp is a deformation retraction (see 1.12) of M/onto

rA C M/, since the homotopy h fixes r4 at each time s:

pshr{a) = Λ Λ ( C ( Λ ) , α) = Λ(c(α), α)(j)

= h(c(a)s, a) but c(α)5 = C(Λ)

= r(a).
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PROPOSITION 1.8. Let f: A -> B with mapping cylinder Mf. Define

j : Mf-*B byj(ξ, a) = £(1) (i.e.J is the composite Mf'-> IB^B). Then

j is a cofibration.

Proof. Suppose given a homotopy h: C -> IB and a map k: C -» Λf/
with /?0Λ = yfc. Write fc = (*', fc") with respect to Mf C IB ® A. Define
Λ: C -> /AT/as follows. Let Λ': C ->/(/») by

[h(c)(2s + t - 2) i f 2 s > 2 - ί

and let Λ": C -» L4 by A"(c)(/) = Λ"(c). Let

A = (A"', A""): C -* /(/5 θ A).

Then in fact Λ: C -»I(Mf). The verifications which remain are routine:

A"(C)(J,O) = (Λ'(C)(J) ,A:"(C)) = Λ(C)

and

( ( M ) ( 0 •

COROLLARY 1.9. 4̂/ίy map f\ A ^ B in β factors canonically in β

\ /

Λf/

where j is a cofibration and r is the natural equivalence. D

PROPOSITION 1.10. A map p: A -> B is a cofibration if and only if the
natural map υ: I A -» Mf determined by p0 and f splits.

Proof. The map v: I A -> Mfis determined by the puUback diagram

I A
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Suppose that / is a cofibration. Then p0: Mf-*A9 /: Mf'-* IB, and
Pof~fPo- By *he cofibration property, there is some w: Mf-^ IA with
/vv = /and/?ow = p0. But this says that vw = 1M/.

Conversely, suppose that ι> is split by some map w: Mf-> IA. Suppose
given A: C -* IB, g: C -> A, and /g = poh. By the pullback property the
maps A and g determine a map A: C -> M/ with fh — h, pQh — g. Define
k = wA: C ~> L4. Then

/it = /WA = fh — h and pok = /?owA = j50A = g

as required. Thus/is a cofibration. •
Note that if /: A -> 1? is a cofibration then the proposition implies

that t; is surjective.

PROPOSITION 1.11. For fixed nuclear F G 6 , the functor A -> A ®m i n T
7

preserves pullbacks and cofibrations (provided that β is closed under

Proof. The first preservation property is formal, since ( ) ®min F
preserves direct sums and kernels. In particular, if /: A -* B and/<8> 1 :̂
^ ®min ̂  -* Λ ®min F then M( / ® \F) s M/ ̂ ^ n i7. Thus the natural map

is simply the map

ϋ< ® lF: (IA) ®min F -

If /: 4̂ -> JB is a cofibration with splitting map wA: Mf -» L4 then ϋ^^^ is
split via wA ® 1F, so/® 1̂  is a cofibration. D

DEFINITION 1.12. A surjection/: A -» 5 is a deformation retraction if
there is some F: Λ -> L4 such that

(1) / V F = 1
(2) pt(If)F = f
(3) /^(Ker/) = 0.

If /: A -» 5 is a deformation retraction then/7jF factors as

with
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It is easy to see that

and thus / is an equivalence with homotopy inverse r. We cite the
following facts and refer the reader to G. W. Whitehead [25, I. 5] for
detailed proofs.

PROPOSITION 1.13.

(a) Let f: A -> B be a cofibration. Then f is an equivalence if and only if
f is a deformation retraction.

(b) The pullback of a deformation retraction is a deformation retraction.
(c) Suppose given a pullback diagram

A2-
h

such that /j is a cofibration and f2 is an equivalence. Then gx is an
equivalence.

Proof. Part (a) follows as in Whitehead [25, I., 5.9], and part (b)
follows as in [25,1., 5.4.]. For part (c) suppose first that/2 and hence g, are
cofibrations. Note that f2 is a deformation retraction, by (a), hence g, is a
deformation retraction, by (b), and hence gx is an equivalence, by (a)
again. This proves (c) in the special case where f2 is a cofibration. In
general, factor f2 as

where j is a cofibration and r is an equivalence. Consider the expanded
commutative diagram with/2 — jr.

v
*2-

Since f2 is an equivalence (by assumption) and r is an equivalence, the
map j is an equivalence and a cofibration. Apply the special case already
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proved to conclude that j is an equivalence. Finally, gλ — jr is the
composite of equivalences and hence an equivalence. D

We close this section with two more basic definitions.

DEFINITION 1.14. Define the cone CA and the suspension SA by

CA = {ξ G IB\ζ(l) = 0}

There are evident natural exact sequences

and

Po

SA -> CA^A ->0.

2. Cofibre sequences. In this section the analogue of the Barratt-
Puppe cofibration sequences are developed and Verdier's axiom is estab-
lished.

DEFINITION 2.1. Define the cofibre or mapping cone Cf of the map
/: A -> B via the pullback diagram

Cf ~—>A

For example, CB is the cofibre of the identity map B -> B. The map
p0: CB -* B is a cofibration and thus the natural map π(f): Cf-* A is a
cofibration. Note that if / = 0 then Cf = A® SB. In general there are
natural sequences

and

0 -> SB -> CF-^->A -> 0.
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PROPOSITION 2.2. ///: A -* B is the inclusion of an ideal, then there is a
natural diagram

0

I
Po

Proof. Regard C/as

Define q: Cf-+S(B/A) by q(ξ9 a) = irζ9 where π: B->B/A is the
projection. The map q is well-defined since ττ£(l) — πf(a) ~ 0. The map q
is surjective since Sπ: SB -» S(B/A) is surjective, and

(I E C5 I τr£ = 0} since/is injective.

{£ e C5 I £(*) G ̂  for all ή = C4. D

PROPOSITION 2.3. ///: A -* B is surjective with J - Kevfthen there is
a natural exact diagram

0

-SB >Cf-

CB

0

Proof. Let <?: C/ -» CB be defined by #(£, a) = | . The map 9 is
surjective, for a path ξ E C5 is hit by (£, α) where a is any element of
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ΓX 1(0)). Further,

Kerςr= {(ξ, a) E C/| £ = 0}

= {(0,/) E C5ΘΛ \fa = 0) =J. D

PROPOSITION 2.4. Letf: A -> B be a cofibration with kernelJ. Then the

inclusion J -> A is the composite of the inclusion t: J -» Cf and the natural

cofibration Cf-> A. Moreover, i is an equivalence.

Proof. Let w: Mf -> I A be a splitting of the natural map t;: I A -* A//",

which exists by Proposition 1.10. Then /^w: Mf -^ A. Let K denote the

restriction of pxw to C/ C Mf. Then K: Cf-+J9 since w(£, α)(l) E /. This

map is the required homotopy inverse to t. The retraction w preceeded by

ί induces a homotopy 1 — /α, while w together with the map h: CA -»I(CA)

specified by h(ξ)(s, t) = ζ(max(s, t)) induces a homotopy 1 — ικ. D

PROPOSITION 2.5. let f: A -> B with associated short exact sequences

ι(f) π(f)

// ψ: Cτr{f) -> 5 5 w Λ̂e equivalence of Proposition 2.4 ί/zeπ //ze

triangle commutes and the left triangle homotopy commutes in the diagram

where ~g: SA -» 5 5 is defined by ( — g)(s) = g(l — 5).

Proo/. Consider the right triangle, and write C(πf)CCAΘCB®A.
Then

so that vr(7r/)ψ = /(/) as required. For the left triangle we compute:

= ψ ( - (/T,)) = (0, fη(\ - j),0)



CLAUDE SCHOCHET416

whereas

Define h: SA -» I(C(τrf)) by ht(η) = (TJ(J + t - tf)> .ΛK' " st),O). This
is the required homotopy h: ψ( — Sf) ~ i(πf). D

Recall that [A, SB] is a group and [A, S2B] is an abelian group for
any C*-algebras^4, B.

PROPOSITION 2.6. Let f: A -> B and let C be a fixed C*-algebra. Then
the sequence of maps

S2f
S2B

-Sττ(f) -Sf ι(/) ir(/) /
SCf - SA -* SB -> Cf ^ A->B

gives rise to a long exact sequence of pointed sets, or of groups from the
fourth term on, upon application of the functor [C, — ].

Proof. By Proposition 2.5 it suffices to prove exactness at

[C,Cfl-»[C,A]^[C,B].

Suppose that g: C -> A and that/g: C -> B is null-homotopic. Then/g lifts
to h: C -» CB and the diagram

g

A
Po

f

commutes. Thus there is a map k: C -» Cf making the diagram

C-

commute. In particular, ir{f)k = f, so that/is in the image of τr(/)*. D
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REMARK 2.7. The sequence resulting in Proposition 2.6 has the follow-
ing additional properties; we refer the reader to May [14] for proofs in the
commutative case.

(1) The group [C, SB] acts from the left on the set [C, C/].
(2) /(/)*: [C, SB] ^ [C, Cf] is a map of left [C, SB]-sets.

(3)*'(/)*(•*) =/(/)#(* ') if a n d o n ly if * = (£/)*(.y)*' f°Γ s o m e

j e [C, &4].
(4) ττ(/)*(z) = ττ(/)*(z') if and only if z = xz' for some JC e [C, 55].
(5) The image of [C, S2B] in [C, SC/] is a central subgroup.

LEMMA 2.8. Suppose given maps /: 4̂ -» /5, g: B -> IC and for each
t E [0, \\pullback diagrams

where ft = /?r/, αftd gr = /?rg. ΓΛe« /Λere w β natural equivalence φ: Po -* P{

such that the diagram

" /o *°

homotopy commutes (and in fact φ may be chosen so that the diagram
commutes,)

Proof. Let P be the pullback of the diagram

A. ~i l

I . J
C I

. J '
The evaluation map pt\ IB -* B induces natural maps mt\ P -» Pt for each
/. As/?0 and/?! are deformation retractions, the resulting maps ra0 and m,
are equivalences with canonical choices for homotopy inverses. Set φ =
mxm^λ:PQ^Px. D
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The following proposition explores the naturality of the cofibre
construction.

PROPOSITION 2.9. Ifβf — fa in the following diagram, then there exists

a map γ which makes the middle square commute and the left square

homotopy commute.

f

Moreover, the following statements hold.

(a) If a and β are equivalences, then γ is an equivalence.

(b) The cofibres ofhomotopic maps are equivalent.

(c)///=* * then SB -> Cf -» A is equivalent to SB -> SB Θ A -> A.

(d) Iff is a cofibration and B is contractible then the inclusion Ker / «=•» A

is an equivalence.

(e) // βf = fa and the natural maps Cβ -> CBf and a are cofibrations

then the canonical choice of γ, namely the map determined by A -> A' and

CB -* CB\ is also a cofibration.

Proof. Let h: βf - fa and define γ: Cf -* Cf by

Clearly αir(/) = ττ(/')γ and yi(f) - i(f)Sβ. Observe that γ is obtained
by restriction from a map γ: Mf-> Mf specified by the same formulas,
and thaty'γ = aj: Mf'-»A'. By 1.7, 2.4 and a diagram chase, it follows
that (a) will hold if it does so when βf — fa and γ is the canonical choice.
Therefore (a) is a special case of the homotopy invariance of pullbacks,
proved in Lemma 2.8. Statement (b) is a special case of (a), and (c) follows
via (2.1) from (b). In (d), ττ(/): C(/) -»A is an equivalence, by (c), and
thus ker/-*yl is an equivalence, by Proposition 2.4. In (e), γ is the
composite

and is thus a cofibration. D

The following proposition is known as Verdier's axiom (cf. Adams
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PROPOSITION 2.10. If ge — f in the following diagram, then there exist
maps a and β which make the diagram homotopy commutative.

Moreover, there is a canonical equivalence ψ: Ca -> Ce such that βψ — π(a)
and ψ/(α) — i(e)Sπ(g). Thus, up to equivalence, the diagram is a braid of
cofibre sequences.

Proof. Let h: ge - /. Define a and β by

\(gξ{2s- \),a) s > \

a(η, a) =
UhΛ_2s{a),ea) * <

\(η(2s-\),ea) * >

(Actually a and β are both special cases of the maps γ of Proposition 2.9.)
It is immediate that π(f)β = π(e), βi(e) - i(f)Sg, ai(f) - i(g), and
aΊT(g) — eττ(f). Thus the diagram homotopy commutes.

The natural map CCg Θ Cf -> CC Θ A induces ψ: Ca -> Ce and it is
easy to verify that βψ — π{a) and that ψ/(α) — i(e)Sπ(g). Observe that a
and β are obtained by restrictions to subalgebras from the maps β:
Ce -> Cf and a: Cf -» Cg defined by the same formulas. By 1.7, 2.4 and a
diagram chase, ψ will be an equivalence as desired if it is so when ge — f,
/?(£, a) — (gξ, a), and a(η, a) = (η, ea). Here it is easy to see that there
is a deformation. Define ht: Ca -> Ca by ht(θ, ξ, a) — (θt, ξ, a), where
θt(s) = θ(s - ts). Then

and

ho(θ,ξ9a) = identity.
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Let D — Im(Λ,). Then ht fixes D for each t, so that ht is a deforma-
tion retract of Ca to D (fixing D). But the natural map \p: Cot -* Ce given

by , £, 0) = induces a C*-isomorphism ψ,: D-* Ce.
ψ" 1 : O -» Cα be the composition of
Then ψ~ι is a homotopy inverse to ψ.

with the inclusion Z>
Let
Cα.

D

COROLLARY 2.11. Suppose given a C*-algebra A and ideals J C H C A.
Then there is a cofibre weave

A/H

If the projection maps e, g, and {hence) f are cofibrations then the weave
becomes up to equivalence a cofibre weave of the form

S{H/J) A/H

REMARK 2.12. What is an admissible category? There are essentially
two requirements. First, if A E β then I A E β. Second, β should be closed
under taking some puUbacks. A minimalist view would suggest enumerat-
ing the necessary puUbacks. For instance, CB and SB are the kernels of
cofibrations and hence a very special sort of pullback. A maximalist
would require that G be closed under all pullbacks. This is sometimes easy
to check. For instance, separable C*-algebras are closed under arbitrary
pullbacks. A middle route would be to ask for closure for pullbacks when
at least one of the maps is a cofibration. In that case we have

h

B- • > 0
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If f2 is a cofibration then so is gγ. So this closure requirement is equivalent
to closure under kernels of cofibrations and closure under extensions by
cofibre maps. We prefer to leave the matter unsettled at this time.

3. Homology: first properties. In this section we derive the elemen-
tary properties of a homology theory from the axioms. Throughout this
section h* is understood to be a homology theory on an admissible
category of C*-algebras. Thus the homotopy and exactness axioms are
satisfied. No assumption is made concerning additivity until §4.

PROPOSITION 3.1. Let

λ λ 2 2
P\ Pi

be the canonical maps. Then there is a natural isomorphism

Proof. The split short exact sequence

0 -»Λ, '-^Ax θ A2^A2 -*0

induces a split short exact sequence

0 -> hn{Λλ) - hn(Aχ © A2) -> hn{A2) -» 0

and a similar sequence if Aχ and A2 are reversed. This implies the result. D

Letm: SB ® SB-* SB by

This is the map which induces the group structure on [A, SB], The
following proposition shows that the group structure on hn(SB) is de-
termined by (3.1) and the map m*.

PROPOSITION 3.2. The diagram

hn(SB) θ hn(SB) ( l l>l2>* >hn(SB θ SB)

commutes.



422 CLAUDE SCHOCHET

Proof. Let *„ x2 e hn(SB). Then

since m* is a homomoφhism. The maps m/, and m/2 are homotopic to the
identity, so (mix)* — (mi2)* = 1. Thus

as required. D

PROPOSITION 3.3. The natural map

[A,SB]->hom(hn(A),hn(SB))

is a homomorphism of groups.

Proof. Let fl9 f2: A -» SB. Then /j + / 2 is the homotopy class of the
composite

Thus

by (3.2).

D

COROLLARY 3.4. (a) ///: ,4 -> 5 w ίΛe constant map f(a) = 0

(b) A^Cί) = 0.

Proof, (a) Write f as A ^>SB -* B, the composite of constant maps.

We have/i = 0 by Proposition 3.3 and thus/* = 0.

(b) This is immediate from (a) and the homotopy axiom. D

THEOREM 3.5. (a) The natural suspension map σA: hn{A) -» hn_λ(SA)
from the sequence

is an isomorphism.
(b) ///: A -> B is a map with cofibre sequence

0-* SB->Cf-*A ->0



TOPOLOGICAL METHODS FOR C*-ALGEBRAS. Ill 423

then the diagram

K(A)

hn(B)

commutes. Thus f* corresponds to 3 up to isomorphism.
(c) ///: A -* B is a map then /*: h*(A) -» h*(B) is an isomorphism if

and only if h*(Cf) = 0.

Proof. Part (a) is immediate from the exactness axiom and the fact
that h*(CA) — 0. Part (b) follows from exactness, and (c) is immediate
from (b) and exactness. D

PROPOSITION 3.6. (a) Let f: A -»B be a surjection with J = Ker/.
Then the natural map J -* Cf induces an h^-isomorphism.

(b) Let f: A -* B be the inclusion of an ideal. Then the natural map
Cf'-> S(B/A) induces an h^-isomorphism.

Proof. There are short exact sequences

and

0-+CA-* Cf-* S(B/A) -» 0

respectively. As h*(CB) — h*{CA) — 0, exactness implies the result. D
Note that if / is a cofibration then the natural map J ^ Cf is an

equivalence, by Proposition 2.4. In general the maps / -> Cf and
C/-» S(B/A) are not equivalences; counterexamples exist even for com-
mutative C*-algebras. (See Remark 8.6.)

As indicated in the introduction, there is another possible choice of
axioms. We have assumed homotopy and exactness. Instead, one could
assume that h* satisfies homotopy and the following two axioms:

Suspension. The natural map σA: hn{A) -> hn_x(SA) is an isomor-
phism.

Cofibre. If /: A -> B is a cofibration then for each n the sequence

is exact.
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These axioms are weaker than exactness. We have shown that suspen-
sion is implied by exactness and homotopy (3.5). The following proposi-
tion shows that the cofibre axiom is also implied by the exactness and
homotopy axioms. In fact a stronger result obtains; / i s not required to be
a cofibration.

PROPOSITION 3.7. Let h* be a homology theory. Then for each n the
sequence

hm(Cf)-+hm(A)f-ihH(B)

is exact for any surjection f: A -* B.

Proof. Let / = Ker /. Then the sequence

hn(J)->hH(A)f-ihn(B)

is exact. The natural map hn(J) -> hn(Cf) is an isomorphism by (3.6a). D

We consider next a cofibre theory h*.

PROPOSITION 3.8. Let h* be a cofibre theory and let

>Ak~*Ak-l ~*Ak-2^ • • '

be a cofibre sequence. Then for each n there is a long exact sequence

• - h n { A k ) -* h n ( A k _ { ) - h n ( A k _ 2 ) ^ ••• .

In particular, for any cofibration f: A -> B with J = Ker / there is a long
exact sequence

Proof. The first part of the proposition is immediate from the cofibre
axiom. Let /: A -* B be a cofibration. Then there is a natural cofibre
sequence

-+SA -> SB-*Cf-*A ->B.

Apply the functor hn and the suspension axiom to obtain the exact
sequence

hn+x(A) - hn+x{B) - hn(Cf) - hn(A) - hn(B).

Since/is a cofibration, the map / -* Cf is an equivalence. Replace h*(Cf)
by h*(J) and the proof is complete. D



TOPOLOGICAL METHODS FOR C*-ALGEBRAS. Ill 425

COROLLARY 3.9. Let h* be a cofibre theory. Then:
(a)**(G4) = 0.
(b) Iff: A -> B thenf*: h*(A) -» h*(B) is an isomorphism if and only if

K{Cf) = 0.
(c) If f: A -> B is a cofibration with J = Ker / then /* is an isomor-

phism if and only ifh^(J) — O. •

PROPOSITION 3.10. Ifh* is a cofibre theory then
(a) the natural map

is an isomorphism.
(b) The diagram

commutes.
(c) The map

[A,SB]^hom(hn(A),hn(SB))

is a homomorphism. •

Finally we consider for homology theories the analogue of the "ho-
mology of a triple" sequence. That the sequence (3.12) below is exact is
almost immediate. The real point of the theorem is the identification of
the boundary homomorphism.

THEOREM 3.11. Homology of a triple. Let h* be a homology theory.
Suppose given (closed) ideals J C H C A with maps

A

and short exact sequence

0 -> H/J ^A/J ^A/H -> 0.

Then the boundary homomorphism b in the resulting exact sequence

(3.12) - hn(H/J) - hn(A/J) - hn(A/H) b~*hn_λ{H/J)
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arises as the composite

hn{A/H)lhn_x{H)^hn_x{H/J)

where 3 is the natural boundary map and k: H -> H/J is the projection. If

h* is but a cofibre theory and e, g, and {hence) f are cofibrations then there

is still an exact sequence (3.12) and the boundary homomorphism b still

satisfies b — kjd.

Proof. Refer to Corollary 2.11 where we see that the diagram

S(A/H)

commutes. D

4. The Mayer-Vietoris Theorem. This section is devoted to the proof

of the following theorem.

THEOREM 4.1. (Mayer-Vietoris.) Let h* be a cofibre homology theory on

6. Suppose given apullback diagram

g\

in 6. Suppose that f and f2 are surjective or that /, is a cofibration and f2 is

arbitrary. Then there is a long exact sequence

which is natural with respect to maps of pullback diagrams in β.

Proof. Assume initially that/j and/2 are surjective. We perform some

homotopy constructions in order to reduce to a situation covered by

Theorem 3.11. Note that for any map /: A -» SB, the map /: A -» SB

defined by f(a)(t) =/(α)(l - 0 satisfies (/)* - - ( / * ) by (3.3). Thus it

is reasonable to write " — / " for/, and then (— / ) * = —(/*).

Let g:P-*Ax@A2 be given by g(x) = (g,(x), g2(x)). Then

Cg = {(ξl9 ί2, x) E CΛλ θ CA2 θ P\φ) = g,(χ), | 2(0) - g2(x)}.
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There is a natural diagram

Cg >* Cgx y CAλ

427

[Po

(4.3)

-cί
where each small square is a pullback. Hence the outer square of (4.3),
namely

Cg

•4
G4,

iPo

fiPo
B

is a pullback, where Λ,(|], |2>
 Λ:) = /̂ The maps ft: A, -> B induce maps

/: CA, -> CB, and

PofM\) =Po(tei) =/iίi(0)

Thus the diagram

by symmetry.

(4.4)

commutes, where Q is the pullback, and there is a natural map Cg -» β, as
indicated, making the diagram commute.

The C*-algebra Q is isomorphic to SB but we must be quite careful in
the identification. A priori,

Q = {(r,,, η2) GCB® CB\ηx(0) = η2(0)}.

Define φ: Q -+ SB by

U 2 ( 2 r - 1 ) ί > i .
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The map φ is well-defined since 7^(0) = 772(O), and φ is evidently an

isomorphism. Replacing Q by SB in the diagram (4.4) yields a diagram

^-^SB

U J
CB >B

where /•,({)(/) = ξ(l - \t), r2(ξ) = ξ((t + l)/2), and

Uφ-2t) , < i
2'X Uί2(2ί-1) ' ^

It is easy to see that ψ is surjective. (This is where the assumption that the

/ are surjective is used.)

Write ^ = Ker/ : At-* B. Note that

Cg={(ξl9ζ2) G CM, θ CM 2 | / l Λ ) £i =/2Poi 2 }

and ψ d ] , | 2 ) i s a s above. Then

Ker ψ - {({„ ξ2) E C4, θ C42 |/,{, = / 2 { 2 = 0} - C(/,) θ C ( / 2 ) .

We have established the following proposition.

PROPOSITION 4.5. Let

be a pullback diagram, with all maps surjectiυe and Jt — Ker/ . Let g =

( £ i > £ 2 ) : ^ ~ * ^ i ® ^ 2 Then there is a natural short exact sequence

0 θ C(/ 2 ) -* Cg 0

where ψ w g/υew

|/2ί2(2/-l) / ^
D
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The diagram

SA, ® SA7 , SB

429

commutes if k is chosen properly: take

- 2 ί ) ί < i

Note that t ~* fλζλ(\ - 2t) is homotopic to t ^•/,|,(1 - t) = -/, ! ,(0
and that t ~* f2ξ2(2t — 1) is homotopic to / /v* / 2 | 2 (O Thus the diagram

homotopy commutes. The long exact sequence associated to the cofibra-
tion

reads

A2

-^^XQ) >hn(P)-

hn(SAx) © h,,(SA2)

where k*(x, y) = —/, x + / 2 JC. Applying the suspension isomorphism
leaves us with the long exact sequence

hn+λ(Aλ) ® hn+x{A2)
 k-*hn

hn(P)

The map hn+ι(P) -^ hn+{{Ax) ® hn+{{A2) is simply (g u , g2φ), since
σ/ψ = 9. This proves the theorem in the case that the/; are surjective.

Finally, suppose given a pullback diagram in β of the form

•+A,

k
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such that/j is a cofibration but/2 is arbitrary. Factor/2 as

by Corollary 1.8, where t is a cofibration and s is an equivalence. Consider
the resulting expanded pullback diagram

Since/! is a cofibration, so are/' and/" by Proposition 1.5. Proposition
1.6 implies that s' is an equivalence. Thus it suffices to prove the
Mayer-Vietoris theorem for the pullback square

I , I-
Mf2 >B

Since fλ and / are surjective, the theorem has previously been established
for this square. This completes the argument. D

Note that some assumption is necessary on the pullback squares in
order for Mayer-Vietoris to hold. For example, if

f\

is a pullback square for which the Mayer-Vietoris theorem holds and if
h*(B) **h*(B)® h*(B) (which is generally the case) then the Mayer-
Vietoris theorem will not hold for the pullback square

A, " " >B®B
2

(Note that it is a pullback!)
On the other hand, if Λ* is a homology theory then a better result

obtains.
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THEOREM 4.5. // Λ* is a homology theory, fλ is surjectiυe and f2 is

arbitrary then Mayer-Vietoris holds.

The proof is an elaborate diagram chase as in Eilenberg-Steenrod [5,

Chapter L]

5. Limits in homology. This section centers about the following

theorem.

THEOREM 5.1. Let h* be an additive homology theory. Let A = lim At

be the inductive limit of a sequence

Aχ —»A2 ~^A3 -*

of C*-algebra maps in 6. Then the natural maps hn(At) -» hn(A) induce an

isomorphism

Note that the/ are not assumed to be inclusions. The case

Ax «=*A2^>A3 >̂

is somewhat simpler; we remark on this case later.

The proof proceeds via a mapping telescope construction as follows.

Fix a sequence tt of real numbers of the form

0 = t0 < tx < t2 < < 1

which converges to 1. If ξ is some function defined on some interval

including ti then we let/?,£ = £(*,.) generically. Let

Let/.y.: At -> Aj andflo0: At -» A be the natural maps.

Let

({,)!{, G ΪAi+l9

and I |£i 11 is bounded independent of i}.

(The more precise notation f({Aj}) adds more clutter than clarity and is

thus avoided.) Then f(At) is a C*-algebra with \\ξ\\ = sup/H^H). We may

regard | as a function on [0,1): if tι < t < ί l+1 then set π(ί) = i + 1 and

ξ(t) = | r t ( / ) E ^4/+1. This is not continuous. However the function

£°°: [0,1) -*A given by f°°(0 = / π ( 0 f 0 0 f π ( 0 ( 0 is obviously continuous.
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DEFINITION 5.2. (L. G. Brown.) The mapping telescope T(At) is
defined by

T(At) = {(£, a) G f(At) ®A\ condition (*) holds}.

Define ξ(l) = a. Condition (*) then reads as follows. Given ε > 0, then
there is some δ > 0 such that

provided that 1 - δ < s < t < 1.
Here is an alternate description of T(At) which is probably more

intuitive. Define

f \ if t > ί

That is, ^(^ί,) consists of sequences which are "constant" in the only
sense possible beyond tm. Then it is clear that TJ^A^ C Tm+l(At) and
that

(5.3)

LEMMA 5.4. T(At) is a contractible C*-algebra.

Proof. Define h: T(At) -> /(f(^.) θ >4) by

hj(ξ, a){t) -

Then h0 = 0, Λj = id, and continuity is clear. It remains to show that
hjiTiAJ) C Γ(ΛZ). It is easy to see that hjiT^A^) C TJA^ for ally and
m; this implies the result. D

Define e: T(At) -» ̂ 4 by e(£, α) = a. This is a surjection; let/ = Ker e.
Define Mt by

This is of course a simple variant of the mapping cylinder construction. In
particular, the map Mz -»̂ 47 given by (ξ, α) -» α is an equivalence.

Define rz: Γ(i4z ) -» Af,- by restriction:
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As / C T(Aj) the maps/?, combine to induce a natural map

givenby (Π/>,•)(!),•= M i - I

LEMMA 5.5. The image of Π pt lies in Θ At, so that evaluation yields a

natural map J -> @t At.

Proof. Let ( | , 0 ) E / . We must show that | |£/-i(OH = \\P&-\\\ ap-
proaches zero as / -^ oo. In fact we show that ξ(t) -> 0 as t -» 1, which
suffices. Fix ε > 0 and choose δ = l — / 0 = l — ̂ > * 0 such that (*) holds
for £. Then

II . , , ,

< ε

for all t>t0. In particular, this holds if / = 1. However, ξ(l) = 0 since

(|,0) e / . Thus

lw.«ω|<.
for t > tQ. By the definition of the norm in A, there is some integer

k > n(t0) such that

Choose u E [tk_l9 tk]. Then (*) implies that

\\ξ(u)-fn(tohkξ(to)\ <e

and hence |||(w)|| < 2ε. Returning to (*) again we see that

for all t > w. Thus

11(011 <3ε foraU/>«

which implies that £ ( ί ) - > 0 a s ί - > l , completing the proof. D

By virtue of the previous lemma there is a natural commuting

diagram

Θr2ι

~ >®M2ι

ΘM 2 /

®/>2,+ l
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LEMMA 5.7. Diagram 5.6 is a pullback diagram with surjective maps.

Proof. It is easy to see that the maps are surjective. Let P be the
pullback. There is an obvious map / -> P; we construct its inverse. A
typical element of P is of the form (V, v2), where

with v* G Mft and

Ptf=Pivf+\'

Further, \\vf\\ ^ rαax(H^11|,lk2ll). Thus the elements yield v = (*>,) G
Since vt{tt) -» 0 as / -» oo, the element O,0) G /. This defines a map
P -» / which is visibly an isomorphism. D

The short exact sequence

yields a long exact sequence in homology. However T(At) is contractible,
by Lemma 5.3, and so / ^ ( Γ ^ ) ) = 0. Thus the boundary homomorphism

is an isomorphism for each n. The Mayer-Vietoris sequence associated to
(5.6) yields a diagram with exact row

(5.7)

— • hn(J) >• hn(®M2l) Θ Aβ(ΘΛ/2 l + I) —^->/i,,(ΦΛ,) ^Λ,

where φ = — (Θj92,)* + (®Pz,+ ι)* There are natural isomorphisms

and

where hn(Aj) -> hn(Mj) is the isomorphism (/?,)* !. Thus there is a natural
long exact sequence

(5.8) • - hn+ι(A) - θ hn(A,) - θ ^ ( A ) - ABU) -
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with

(5-9) Φ(̂ ) = ((/-,)*^-i-^)

Unsplicing yields short exact sequences of the form

(5.10) 0^>CokΦn->hn(A) - ^ K e r Φ ^ -> 0.

Since CokΦw = lim hn{A^) and KerΦ^ + 1 = 0 , the theorem is estab-

lished. D

REMARK 5.11. If each/: Aι -» Aι+, is an inclusion then we may regard

each At as a subalgebra of A. The telescope may be defined in a simpler

way:

The entire argument goes through with much less fuss. Our original proof

of Theorem 5.1 in this case went via this route and we had a convoluted

argument to derive the general case. L. G. Brown suggested the definition

of T(A{) given in (5.2) with this use in mind.

6. Cohomology theories. In this section and the next we enter the

results in cohomology analogous to those previously established in homol-

ogy. For the most part this is an exercise in translation and we omit

proofs. Where there is a significant difference we explore it. This occurs

primarily as a result of the different additivity axioms. The relevant

homology theorems are listed for comparison. Thus " ( = H4.3)" refers to

the homology Proposition 4.3.

Fix an admissible category β of C*-algebras and C*-algebra maps.

Let h* be a cohomology theory on β.

PROPOSITION 6.1. ( = H3.1.) The evident map induces a natural isomor-

phism

hn{Ax @ A2)
{-^^hn{Ax) ®hn(A2).

PROPOSITION 6.2

(a) The diagram

h

.(>H3.2.)

fl(S!R) m V
yon) ?

Ln ( C Ώ £P>

n y ojj *3J

\ y 1 j , / 2 J

'(SB) ®h

SB)

"(SB)

commutes, where d(x) — (x, x).
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(b) The diagram

hn(A ®A) > hn{A)

hn(A) ®hn(A)

commutes, where Δ(α) = (a, a).

Proof. Part (a) is immediate from the fact that ijm is homotopic to the
identity. Part (b) follows from the fact that pyΔ is homotopic to the
identity. D

PROPOSITION 6.3. (= H3.3.) The natural map

[A, SB] -» hom(hn(SB), hn(A))

is a homomorphism of groups.

Proof Let fl9 f2: A -» SB. Then fλ + f2 is the homotopy class of the
composite

Δ U\Ji) m

^A®A -> SB® SB -> SB.

Thus

/ 1 ,/ 2 )*(^x) by (6.2a)

= Δ*(PuPi)*(f?x,βx)=frx+/ϊx. by (6.2b). D

COROLLARY 6.4. (= H3.4.)
(a) ///: A -^ Bis the constant map f(a) = 0 thenf* - 0.
(b)Λ*(C4) = 0. D

THEOREM 6.5. (= H3.5.) (a) The natural suspension map

σA:hn(SA) -* hn+\A)

from the sequence

0-*SA->CA-*A^0

is an isomorphism.
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(b) ///: A -> B is a map with cofibre sequence

0-> SB -> Cf^A -»0

then the diagram

hn(SB) y hn+\A)

T

commutes.
(c) ///: A -* B then f*: h*(B) -> h*(A) is an isomorphism if and only if

Λ*(C/) = 0. D

PROPOSITION 6.6. (= H3.6.)
(a) Let f: A -» J5 be a surjection with J ~ Ker/. Then the natural map

J -> Cf induces an h*-isomorphism.
(b) Let f: A -> B be the inclusion of an ideal. Then the natural map

Cf ^ S(B/A) induces an h*-isomorphism.

Just as in homology, there is another possible choice of axioms. One
could replace the exactness axiom by suspension and cofibre axioms. (As
in homology, exactness plus homotopy imply suspension and cofibre.)

PROPOSITION 6.7. (= H3.8.) Let h* be a cofibre theory. If

is a cofibre sequence then there is a long exact sequence

hn{Ak~2) -> hn(Ak~]) -> hn{Ak) - > • • • .

In particular, for any cofibration / : A -> B with J — K e r / there is a long

exact sequence

> h"(B) ^ hn{A) -> hn(J) ^ hn+\B) - > • - . .

COROLLARY 6.8 ( = H3.9.) Ifh* is a cofibre theory then

(a) ///: A -* B then f* is an isomorphism if and only ifh*(Cf) — 0;

(b)Λ*(C4) = 0;
(c) ///: A -* B is a cofibration with J — Ker / then /* is an isomorphism

if and only if h\J) = 0. D
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PROPOSITION 6.9 ( = H3.10.) Ifh* is a cofibre theory, then

(a) the natural maps

hn{Aλ ®A2) ^hn{Aλ) ®hn(A2)

are isomorphisms for each n\

(b) the diagrams

hn{SB) — — >hn{SB θ SB)

®hn(SB)

and

hn(A®A)

h"(A) ®hn{A)

commute\

(c) the natural map

[A, SB] -> hom(h"(SB), hn(A))

is a homomorphism. •

THEOREM 6.10. (Cohomology of a triple ( = H3.ll).) Suppose given

ideals J C H contained in A. Then there is a natural long exact sequence

(*) hn(A/H)l^hn(A/J)Chn{H/J)^hn+ι(A/H)

where i andj are the natural maps

0 -> H/J ^A/J ^A/H -> 0

and k is the connecting homomorphism for (*) which coincides with the

composite

hn{H/J) >hn
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Mayer-Vietoris Theorem 6.11. ( = H4.1.) Suppose given a pullback

diagram

82 I /,

with f j and f2 surjectiυe or /, a cofibration and f2 arbitrary. Suppose given a

cofibre cohomology theory A*. Then there is a natural long exact sequence

Proof. We use the notation of the homology Mayer-Vietoris theorem.

After identifying Cg via Proposition 4.5, the long exact sequence associ-

ated to Cg -> P -» Ax@ A2 takes the form

®SA2)
 δ—>hn

hn(SB) k* > hn{SAλ) Θ h"(SA2)

where k*{x) — (—/*(*), Λ*(χ)) APPty Λe suspension isomorphism and
the fact that/*σ = δ to identify the map gf + g* Π

As in Theorem 4.5, we note that if /z* is a cohomology theory then it

suffices to assume that fx is surjective and f2 is arbitrary.

7. Limits in cohomology. In this section we prove that an additive

cohomology theory has a Milnor lim1-sequence for limits.

THEOREM 7.1. (= H5.1.) Let h* be an additive cohomology theory. Let

Ax -» A2 -» -» 4̂̂  -» 6e α sequence of C*-algebras and let

A — lim Ar Then the natural maps hn(A) -> hn(At) induce a map

hn(A) -» lim Λ/I(^4I) which fits into a natural long exact sequence

0->l im 1 Λ' I " 1 (^ l ) ^hn{A) -*UmAw(^ ί) -> 0.

(Recall that if Gx «- G2 ^- G3 «- is an inverse sequence of abelian

groups and ψ: Π Gz -> Π G, 6y ψ(g,) = (g, - αz g / + 1) then Ker ψ = Inn G,

and Cok ψ = lim G,. For further information on lim1 the reader is

referred to [15] J16], [6]).
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Proof. We adopt the notation of the homology Theorem (5.1). Recall
that we had defined the mapping telescope Γ(v4z) and had observed that it
was contractible. There were restriction maps η: T(At) -* Λf/5 evaluation
maps/?,, an exact sequence

(7.2) 0->/-> T{A,)^A -*0

and a pullback diagram

o ,

oo T θ/^+i oc

ΘM 2 / + 1 ^ θ -4,
o °

The exact sequence (7.2) implies that

8:hn~\J)-+hn{A)

is an isomorphism. The Mayer-Vietoris Theorem produces a long exact
sequence

-> A ^ V ) -» Λ ^ θ ^ ) ^ " ( Θ M 2 ( ) θ Λ Λ ( Θ M 2 I + 1 ) -* hn{J) -*

and thus an exact sequence

0 ->CokΦΛ~1 ->hn{A) -> KerΦ^ -^0.

So we must examine the maps Φn. By additivity and the fact that Mι is
equivalent to Ao the map Φ" is up to isomorphism a map

The Mayer-Vietoris map

) ( ) θ

is given by (— θ/?*,, θ/?*/+i) Identifying Λf, with ^ z via the equivalence
pt\ Mz -> τ4z we see that

Φ(x,) = ( - χ , + / * * , _ , ) .

Thus Ker Φ" = lim A"(Λ;) and Cok Φ"" 1 ss lim ' A " " ^ , ) . The map

is easily seen to be the obvious map, and the theorem is established. D
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8. Some examples. In this section we briefly discuss some exam-
ples of homology and cohomology theories.

EXAMPLE 8.1. K-Theory. The group K0(A) may be defined for any
ring. Karoubi (cf. [7], [8]) was apparently the first to set up the correct
definition for KX(A) to obtain K* as a homology theory on Banach
algebras (though Wood [26] proved, at Atiyah's instigation, the critical
extension of the Bott periodicity theorem to the setting of Banach alge-
bras.) The homotopy axiom appears in Karoubi's thesis [7, 1.2.21] as does
the exactness axiom [7, 2.3.1 and 2.3.3]. Additivity does not seem to
appear explicitly anywhere in the literature, though it is a well-established
folklore theorem used extensively. The theory K* has all C*-algebras as
an admissible category.

EXAMPLE 8.2. BDF-theory. Brown-Douglas-Fillmore establish the ho-
motopy, exactness, and additivity axioms in their seminal paper [4; 2.14,
2.19 + 6.8, 7.3], for the category of separable nuclear C*-algebras. Thus
Ext*(yί) is an additive cohomology theory on that category.

EXAMPLE 8.3. PPV-theory. Fix some finite-dimensional compact met-
ric space X and regard the Pimsner-Popa-Voiculescu functors Έx\*{X\ A)
as functors in the ^4-variable on separable nuclear C*-algebras. PPV
establish the homotopy [17, 5.12] and exactness [17, 8.4] axioms. They do
not show additivity, but it follows from [20] provided that X is a finite
complex or, more generally, provided that K*( X) is finitely generated, by
[20], [21]. In their treatment they insist that A be generalized quasi-diago-
nal. This is no longer a necessary restriction, as Rosenberg and Schochet
[21] show that the PPV groups correspond to certain Kasparov groups (see
below) which are known to be homotopy-invariant.

EXAMPLE 8.4. The Kasparov groups. Let A be a separable nuclear
C*-algebra and let B have a countable approximate unit. G. G. Kasparov
[11] has defined groups KK*(A, B) = Ext^^ί, B) which seem to be
crucial in many areas of C*-algebras. (The previous examples are all
essentially special cases of the Kasparov groups.) Fixing A, one obtains
covariant functors h*(B) = KK*(A, B). Fixing 2?, one obtains con-
travariant functors h*B{A) = KK*(A, B). The homotopy axiom and the
exactness axiom are satisfied by hi and by h% ([11], §4, Theorem 3 and §7,
Theorems 2 and 3). The theory h% is additive on the (large) category 9?
(which includes the direct limit of type I algebras) by [20]. The theory hi
is additive provided that A E 9Ϊ and K*(A) is finitely generated, by [20].
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EXAMPLE 8.5. Stable homotopy. Fix some C*-algebra D. Define func-
tors Dq{A) and D\A) for q G Z by

DA A) = lim [sk'W9 SkA]

Dq{A) = lim [sk+*A,SkD].
k-*co

These are obvious candidates for homology and cohomology theories
respectively. The homotopy axiom is satisfied trivially. The theories are
defined so as to make the suspension axiom hold. Exactness does not hold
in general, but it is easy to see that the cofibre axiom holds. Thus D* and
Z>* are cofibre homology and cohomology theories respectively.

The natural map

does not have Θ[Z>, At] as its image in general. Rosenberg [19, 3.6] points
out that an example is obtained by taking D — ®Ai with each A%

non-contractible. Then \D is not null-homotopic, and its image in Π[ A At]
is non-zero in every coordinate. Thus D* does not in general satisfy the
additivity axiom.

If D = D ® % (i.e. D is stable) then Rosenberg shows [19, 3.4] that

Thus Z>* is an additive cofibre theory when D is stable.

REMARK 8.6. The theories D* and D* are cofibre homology (cohomol-
ogy) theories but in general they are not homology (cohomology) theories.
Here is an example at the level of spaces. Let X be the following closure of
the sin(l/x) curve:

and let A be the left vertical side. The inclusion map c A -> X is not a
cofibration, even though ι+: π*(A) -» π*(X) is an isomorphism. (If
t: A->X were a cofibration then it would be an equivalence. But H\A) — 0
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and H\X) = Z, so A and X are not equivalent.) Let π: X -* X/A. The
space J¥/i4 is homeomorphic to a circle Sι — R + . Thus there is a short
exact sequence

0 -^ C0(R)^C(X) ^C(A) -> 0.

Since yί is contractible, the map π$ must induce an isomoφhism on any
cohomology theory. However πx( X) = 0 and thus exactness fails for the
cofibre theory C* which is the extension of πξ( —) to C*-algebras.

REMARK 8.7. Let πξ denote the stable homotopy ring. That is,

ir* = lim irn+k(Sk).
k-*oo

If h* is a cofibre homology theory then h*(A) is a graded module over TΓJ
and if /: 4̂ -> 5 then /*: h*(A) -* h*(B) is a map of τr^-modules. The
action

is given as follows. Let a E π£ be represented by a proper map
α: R"+* -• R\ This induces ά: SkA -» S"+A:yl. The composite

I s

gives a map in hom(Am(^4), hn+m(A)) as required. There are various
elementary checks which use (3.3); these we delete. Similarly, if A* is a
cofibre cohomology theory then there is a pairing

π* ®hm{A) -*hm~n{A)

with the same properties. Here is an easy consequence. Let φ: Sk -> Sk be
a map of degree d, and let/: 4̂ -> 5 be any C*-algebra map. Then

f®φ*:A ® C0(R^) ->.4 ® QίR^)

and the diagram

(J0ΦX > ^ -
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commutes, where the vertical maps are suspension isomorphisms and
(d f*)(x) = d(f*{x)). In particular, the map

(1A ® φ%: h*{A ® C0(Rk)) - Λ*(^ ® C0(R*))

is simply multiplication by the integer d.
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