
PACIFIC JOURNAL OF MATHEMATICS

Vol. 116, No. 2,1985

AN ANALOGUE OF LIAPOUNOFFS CONVEXITY
THEOREM FOR BIRNBAUM-ORLICZ SPACES AND

THE EXTREME POINTS OF THEIR UNIT BALLS

I. GLICKSBERG

To Z. W. Birnbaum, on the occasion of his 80 th birthday

Let (X, S, μ) be a non-atomic probability space. Our purpose is to
note an analogue of Liapounoff s convexity theorem, as a statement
about L°°(μ), for certain real Birnbaum-Orlicz spaces Lφ(μ), in particu-
lar reflexive ones, under the usual norms: the extreme points of the unit
ball yield the full image of the ball under finite dimensional continuous
linear maps.

1. Of course such a result is trivial if the ball is strictly convex (when
each of its boundary points is extreme) since it just asserts that any finite
codimensional closed subspace which meets the ball meets its extreme
elements. But for Lφ(μ) the unit ball will have flat spots on its boundary
corresponding to horizontal segments in the graph of φ = Φ', and the
strong sort of density of extreme points the result implies is nontrivial. We
shall obtain the analogue in fact as an application of Liapounoffs
theorem (resulting from the use of support functionals suggested by [3]),
and, although characterizations of the extreme points of the balls could be
avoided, we shall obtain these too, so that Lindenstrauss' elegant proof of
the Liapounoff result [5,6] can also be applied.

Needless to say the assertion of the result makes sense for any Banach
space, and fails if no extreme points exist; indeed it fails for L°°(μ) if our
map is not w* continuous. But it easily fails with that restriction, for
example for the space of real measures on [ - 2, -1] U [1,2] and the map
into R provided by v -> / sgn t v(dt).

Finally we adapt the argument of [3] to one instance where neither of
the approaches to the reflexive case applies (Theorem 2 below).

2. Let Φ and Ψ be dual Young's functions [2, 7] i.e., Φ(x) =
/0* φ(t) dt, Ψ(x) = /o

x ψ(0 dt, where <p: R+-> R+ is 0 at 0, non-decreas-
ing and -» oo at oo, while ψ is its "inverse", both taken continuous from
the left for definiteness. As in [7] we complete the graph of φ by adding
vertical segments at any discontinuities, and speak of the resulting curve
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266 I. GLICKSBERG

as the extended graph of φ; then equality holds in Young's inequality

ab< Φ(a) + Ψ(b), aίla,b>0

iff (α, b) lies on the extended graph of φ. Assuming the convex function Φ
has at most exponential growth at infinity (so Φ(2t) < MΦ(t) for / large,
the "Δ2-condition" [1, 2, 7]) insures the class of real (or complex)
functions

is a linear space; this becomes a Banach space when appropriately
normed, in particular when

which is convex by Jensen's inequality, is taken as the closed unit ball
(yielding the Luxemburg norm || || [2]). The Δ2 condition then also
guarantees [2, p. 64] the dual is provided by the linear span R+Lψ(μ) of
Lψ(μ) under the pairing (/, g) = Jfgdμ. (Taking the polar B£μ of Bψ

as the ball in Lφ(μ) gives an equivalent norm || ||+, the functional norm,
and corresponding results hold then as well. It is probably worth noting
that Lφ(μ) c L\μ) always, since some line of positive slope lies under the
graph of Φ and μ is finite.)

When both Φ and Ψ satisfy the Δ2 condition Lφ(μ) and Lψ(μ) are
thus a dual pair of reflexive Banach spaces (and conversely [2]), and we
have the following, where Se denotes the set of extreme points of S.

THEOREM 1. If μ is α non-αtomic probability measure and the dual
Young's functions Φ, Ψ satisfy the Δ2 condition, then for any continuous
linear map p of Lφ(μ) to Rw

Finally, if {[a , bj]} are the maximal intervals of constancy1 of φ, and
bj/Oj > η > 1 for allj with aj > 0, then

p(Bi'φ) = p(B| J .

Assuming p is continuous is equivalent to assuming p weakly continu-
ous, and p(u) = f u(t)y(t) μ(dt), wherey = (yl9...9yn) h a s ^ e Lψ(μ).

1 More precisely these correspond to maximal horizontal intervals in the extended graph
(since φ(α 7 ) < cy = φ(α 7 4- ) is possible).
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In case the yi are in fact bounded we need not assume reflexivity; only Φ

need satisfy the Δ2-condition.

THEOREM 2. If μ is non-atomic and Φ satisfies the Δ2-condition while p:

Lφ(μ) -* R" is defined by bounded functions, then p(B£ μ) = ρ(Bφ μ), and,

under the additional hypothesis noted in Theorem 1, p(Bψe

μ) = p(B£ μ).

As we have remarked earlier the flat spots in the boundary of the

balls needed to make the results non-trivial are provided by intervals of

constancy for φ; these also figure in the following simple characterization

of Bφ which allows us easily to adapt Lindenstrauss' proof of Liapounoff s

theorem [6, 5.5] to obtain the first half of Theorem 1. The corresponding

and similar result for Bψ*μ9 along with the (more complicated) proofs

relating to B£ 9 will be given in §6.

THEOREM 3. Suppose μ is non-atomic and Φ satisfies the Δ2-condition.

Let {[αy, bj]} be the maximal intervals of constancy of φ. Then u0 G LΦ(μ)

is in Blμ iff JΦ(\uo\) dμ = 1 and, a.e. on \uQ\~\ap by], \uo(t)\ = ay or bp

unless a^ = 0 when |wo(OI = b instead.

With this in hand one easily modifies the final step in Lindenstrauss'

proof to obtain Theorem 1 (which applies since reflexivity provides the

needed weak compactness): we have only to see an extreme point of

the subset of Bφ μ mapping onto a given point is extreme in Bφμ. But

if not by Theorem 3 \uQ\~1(aJ, bj) has positive measure for some j , so

\uo\~llaj + ε> bj ~~ εί a ^ s o does for some ε > 0. Now one chooses a

non-zero u supported by that set with sgn u = sgn u0, \u\ < ε and p(u) =

0, / Φ(|w0 ± u\) dμ = 1, all of which are possible since Φ is linear on

\a}, bj] a n d \u0 + u\ = ( u 0 + u) s g n u0, \u0 - u\ = ( u 0 - w ) s g n u0, w h i l e

we can take Ju sgn u0 dμ = 0 and p(u) = 0 with u still non-trivial, indeed

of modulus ε on \uQ\~ι[aj + ε9 bj — ε] by Liapounoff s theorem itself.

Thus ρ(u0 ± u) = ρ(u0) and u0 ± u G BΦ μ, our contradiction.

3. Theorem 3 easily follows from the next two lemmas (as we shall

see later), which will prove basic to our argument.

LEMMA 1. For any dual Young's functions Φ, Ψ and 0 < v G Lψ(μ)

with I Ψ(λυ) dμ < oo for 0 < λ < λ1? we have

jφ{ψ(λv))dμ < oo forO < λ < λ lβ
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(In particular this applies for all λ > 0 if υ is bounded or Ψ satisfies
the Δ2 condition, our applications in Theorems 2 and 1, respectively.)

For the proof, note that because

jφ(ψ(λv)) dμ + jψ(λυ) dμ = jλvψ(λv) dμ

our hypothesis says the conclusion (for λ < λx — ε) is equivalent to

ίvχp(λv) dμ < oo (forO < λ < λλ - ε).

But since Ψ(x) = /0* ψ(ί) dt is convex, as h \ 0

\ [Ϋ((λ + Λ)i (O) - *(λι>(/))] \ v(t)φ(λv(t) +)

while the difference quotient is bounded by \ [^((λ 4- ε)v(t)) - Ψ(λυ(t))]
for 0 < h < ε. So by dominated convergence

+) dμ = Urn |

ε)y) - Ψ(λv) dμ < oo.

In essence we shall prove Theorem 1 by noting that for any x0 e
p(Bφ μ) (or ρ(Bψμ), later) there is an element w0 of the boundary of Bφ μ

which maps onto x0 (because p has a non-trivial kernel), whence x0 lies in
the image of a supporting subset of the boundary by Hahn-Banach. So it
will suffice to see each supporting subset has the desired property for its
extreme points. One is led thus to consider how an element of Lψ

maximizes on Bφμ, which we turn to next. We shall then give the proof of
Theorems 1, 3, and finally Theorem 2, as they relate to Bφ .

Suppose a non-zero v ^ Lψ(μ) is given and Ψ satisfies the Δ2

condition or υ is bounded. Then by Lemma 1 we haveψ(λ|ί;|) e Lφ(μ) for
all λ > 0. To see how

(1) c = maxlju(t)u(t) μ(dt): u e Bφ\

is achieved (if at all), note that if we could choose a λ 0 > 0 so that

(2)

then for
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since

(3) λ o ϋ(ί)«o(O =

we have for all u e Bφ

(4) Jλovuo dμ = Jφ(\uo\) dμ + fψ{λo\v\) dμ = 1 + / * ( λ 0 H ) dμ

> fφ(\u\) dμ + f*{λo\v\) dμ > fλovu dμ,

so u0 yields our maximum in (1). Moreover any maximizing uγ must
provide equality in (4) so it necessarily has

(5) /Φ(l«il) dμ = 1

and also, because of equality in Young's inequality,

(/)|, λo |ϋ(ί)|) lies in the extended graph ofφ and
(6)

sgn ux(t) = sgnv(t) a.e. (except where uv = 0).

Conversely (5) and (6) imply (3) and (4), hence that uλ maximizes.
In fact, precisely because of the horizontal segments in the graph of φ,

we may not have a λ0 yielding (2). Setting

and noting that Z?(λ)/ 'ooasλ/ f oo since \υ\ > 0 on a set of positive
measure, clearly λ 0 = sup{λ > 0: b(λ) < 1} yields our candidate; either
b(λ0) = 1 or b(λ0) < 1 < b(λ0 + ) = limλ N ι λ o6(λ). By monotone con-
vergence and our assumption that \p(t — ) = ψ(t)

because of Lemma 1, by dominated convergence

6(λo+)=/φ(ψ(λoK/)|

Let D = {Cj} be the set of discontinuities of ψ, αy = ψ(cy — ) = ψ(cy),
bj = ψ(Cj + ) (so (aj, Cj) and (bj9 Cj) are the endpoints of the correspond-
ing horizontal segments in the graph of φ). Then, with Df = (λo|ί;|)~1(Z>),

(7) b(λo+)=J Φ(t{λo\v\))dμ + Σ(
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while

b(λ0) = / Φ(ψ(λ0H)) dμ + Σ ί Φ(aj) dμ.
JX\D' j •'(λoMΓ1^)

Evidently since b(λ0 + ) > ϊ we can now alter u0 = ψ(λo|ί;|) sgn v on Dr

so as to obtain both (5) and (6), and thus (3) and (4) for the resulting u.
Indeed if b(λ0 + ) = 1 we simply increase \uo\ to bj on (λo|t;|)~1(cy) for
each j ; if not we choose the largest N for which the sum of the first N
terms on the right side of (7) is < 1, increase |wo| to bj on (λo\v\)~ι(cj),
j < N9 while, since μ is non-atomic, on an appropriate subset of
(λoMΓHc v+i) we increase \uo\ to bN+v

We can summarize most of the preceding as

LEMMA 2. Suppose v is a non-zero element of L ψ (μ) , and v is bounded,
or Ψ satisfies the Δ 2 condition. Let

λ0 = sup(λ > 0: /φ(ψ(λM)) dμ < l j .

Then there are u in Bφ which provide the maximum in (1), and they are just
those u satisfying (5) and (6). Moreover,

MU = j ^ ( l + /*(λ 0 M) rfμ) = rrΰn + /γ(λH)

For the final assertion, note that by (4) we have

and we only have to see Λ(λ) = ( l/λ)( l + j Ψ(λ\v\) dμ) minimizes at
λ = λ0. But h has a left hand derivative everywhere which is

v\) dμ)

dμ-l- fψ{λ\υ\) dμ

dμ-1

(using equality in Young's inequality), so the result is < 0 for λ < λ0, > 0
for λ > λ0. Since the convex function λ -> j Ψ(λ\v\) dμ is absolutely
continuous, so is A. Thus, as the integral of this derivative, it has its
minimum at λn.
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REMARK. For later use we should note that λ 0 alone provides our

minimum unless our derivative is zero on an interval ( λ 0 — ε, λ0] where

the range of λ\v\ lies entirely in the intervals of constancy of ψ.

We can now prove Theorem 3. First suppose / Φ(|wo|) dμ = 1 and

K ( O I = βj or bj a.e. on \uo\-ι[ap bj] (unless aj = 0 when |wo(OI = */)•

Then for v = φ(\uo\) sgn uθ9 which Ues in Lψ(μ) by Lemma 1 (with Φ and

Ψ interchanged) we have

o ( | o | ) (M) a e

so that

Juov dμ = fφ{\uo\) dμ + /*(M) dμ = 1 + f*{\υ\) dμ > fuv dμ

for any u e 2?φ μ . Thus if w0 = \(ux + w2) with wf e J5Φ μ, / = 1,2, each w

must maximize the right-most term, so again provide equality a.e. in

Young's inequality: (|w2(/)|, \v(t)\) Ues on the extended graph of <p and

sgn 11/(0 = sgn v(t) = sgn uo(t) a.e. except where utυ = 0. Evidently then

«,-(/) = wo(O a.e. except on the sets |wo |~1[αy, bj] where the extremity of

values of |u o | forces the same extremity for |ι/1|, \u2\. So uλ = w0, and w0 is

extreme.

Conversely suppose w G 5 | μ . Then / Φ (| w |) Jμ < 1 implies

/ Φ(λ|w|) dμ < 1 for some λ > 1 and u is interior to a segment in i?φ^. So

/ Φ(|w|) ί/ju = 1. Again, if for some j , |w| fails to assume the values ^ and

bj on a set of positive measure in |w|~1[^y, bj] then μ(\u\~ι[aj + ε, bj — ε])

> 0 for some ε > 0. Now we partition F = |w|~1[^y + ε, Z> — ε] into

disjoint subsets Fλ and i^ of equal measure, and, since Φ is linear on

[cij, bj], for |0| < ε we have

jφ(\u + θ(χFi - χFi) sgnufj dμ

= f Φ(\u\) dμ+ f Φ(\u\ +θ)dμ+ ί Φ(\u\ - θ) dμ
Jχ\F JFX

 JF2

= jφ(\u\)dμ = l.

Hence for h = (χ F χ - χF^) sgn u we have u ± εh e Bφfl so w cannot be

extreme, completing our proof.

4. In effect we have also proved Theorem 1 if we adapt Lin-

denstrauss' proof as indicated before. On the other hand, because p has a

nontrivial kernel, as noted earlier any x0 e ρ(Bφ μ) is the image of an
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element u0 of the boundary of Bφ μ. Thus we can invoke the Hahn-Banach

theorem to produce a functional, given by some υ e Lφ(μ) (by the

Δ2-condition for Φ), which maximizes over Bφ μ at u0. Since Ψ also

satisfies the Δ 2 condition, Lemma 2 implies the support set υ provides

consists of those u in Bφφ satisfying (5) and (6). The fact that an extreme

point lies therein which also maps onto x0 is in fact a consequence of

Liapounoff s theorem itself. For from our discussion of the maximization

question (1), we know all such u = u0 a.e. off Dr = (λo\v\)~ι(D); the fact

that / Φ(|w|) dμ = 1 = / Φ(|wo|) dμ says

D,
Φ(\u\)dμ = j Φ{\uo\)dμ.

Since sgn u = sgn u0 = sgn v, and Φ is linear on [aj9 bj]9 this is equivalent

to the fact that, for certain g , A e L\μ)9

ί Φ(\uo\)dμ=[ g\u\+hdμ=ί (tig sgnv + h) dμ.
JD, JD, JD,

Thus our supporting u, determined off D\ must satisfy two con-

straints o n ΰ ' :

a.e. on (λQ\υ\)~\cj), aj < \u\ < bj and sgnw = sgny

(9) (unless uυ = 0), or equivalently, unless Cj = 0, #y <

u sgn υ < by

(10) / ug sgn v dμ = k.
JD,

In order to map onto x0 any such u would also satisfy

(11) ί uydμ = x o - ί uoydμ,
JD' JX\D'

where^ = (yv... 9yn) e (Lψ(μ))n gives rise to p.

But now the variation possible on D' is trivially affinely equivalent to

that in an (n + l)-dimensional Liapounoff problem: setting

[ ^ + b o n ( λ o H ) " 1 ( ^ ) i f c j φ °

or u = (l/bj)u sgn v on that set if cy = 0, we are concerned precisely with

an n 4- 1 dimensional image of u in ball L°°(μD,). Hence Liapounoff s

theorem applies to assert (10) and (11) can be satisfied on Dr by u with

wsgnt; assuming the extreme values α} or bj a.e. on (λo |?;|)~1(cy) (except

when Cj = 0 and then u = ±bj clearly). Extending by u0 off Df we now

have a u mapping onto x0 which is extreme in Bφ μ by our old observation:
u = i(uι + "2) f°Γ wz G ^Φ,μ implies ut = uo = u a.e; off D ' since ut lies
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in our support set where v maximizes, while the extremity of u 's values on
(λo\v\)~ι[aj, bj] forces ut{t) = u(t) a.e. there too.

5. In the setting of Theorem 2 we cannot appeal wholly to either of
the approaches used for Theorem 1: without weak compactness we cannot
invoke the Krein-Milman Theorem as in Lindenstrauss' proof, and the
approach through Hahn-Banach and maximization cannot use the
boundedness of our components^. What will exploit that is the argument
of [3] giving a controlled approach to Liapounoff s result: given x0 in
p(Bφ μ) we choose a minimal set E G S capturing x0 in the sense that x0

lies in

(12) Ky(E) = {p(uχE) = f uydμ: u e Bφ^;

then x0 must lie in the boundary of this set so that an element θ of R"
provides a supporting functional there, and θ - y & Lψ(μ) then provides a
bounded function against which any uχE mapping onto x0 must maxi-
mize. We then shall see there is a « χ £ e BΦΦE mapping onto JC0, and we
extend this to all of X by an appropriate detour. The details will require
some technical refinements of the arguments of [3], all possible precisely
because of the assumed boundedness of y.

Let K*(E) denote the subset of Ky(E) defined similarly with Bφ μ in
place of Bφ μ. In order to proceed we first need to see Ky(E) (trivially
convex) is always closed. We can assume (.FiX£,...,J^χ^) are linearly
independent (or restrict our attention to a lower dimensional map). But
any point x0 in dKy(E) lies in a support set of Ky(E)~ given by a unit
vector θ in R", so x0 = p(uχE) for some u only if uχE provides the
supremum of / uχEθ ydμ over Bφfl, and such u exist by Lemma 2.
Moreover our maximizing u has, for some λ 0 = λθ> 0,(\u(t)\9λθ\θ - y(t)\)
in the extended graph of φ a.e., and so is bounded since y is.

In fact there is a bound M independent of our unit vector θ e Sn~λ:
for μ{ t e E: \θ y{t)\ > 0} > 0 by independence, so given θ,

μ{t^E: \θ -y{t)\> 2ε) > 8 > 0

for some ε and 8 > 0, and replacing 2ε by ε the inequality holds for
nearby θ in Sn~λ. Compactness of Sn~λ now shows we have μ{t e E:
\θ y(t)\ > ε) > 8 > 0 for some ε, 8 > 0 and every θ. But now

shows the existence of an upper bound m for λβ, hence an upper bound

M = φ(mM1 + ) for |M| < ψ(λ<,|0 •y\ + )iίM1 bounds \\y\\.
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Because of this no u e χE Bφ μ which assumes values of modulus
> M on a set of positive measure can have p(χEu) = p(u) e 9jfiΓjμ(£')
since then it would maximize for some θ. Consequently dKy(E) remains
unchanged if we alter φ on (2ΛΓ, oo) so as to obtain Φ1? Ψλ both satisfying
the Δ2-condition, as we can trivially do; in fact we can take <px linear on
(2M, oo) and thus insure that l im^^ Φλ(t)/t = oo. If we now set

then this is a compact convex set because of the weak compactness of
BΦιfJL reflexivity insures, and by the preceding all of dKy(E) is provided by
w's bounded by M so necessarily lies in Ky(E). We conclude Ky(E) =
Ky(E), and Ky(E) is closed as asserted. (Note that our M and Φλ

obtained for E can be used equally well for its subsets to obtain the same
conclusions.)

Now because of this and the boundedness of y we can also see
Ky(f\En) = ΠKy(En) for a decreasing sequence {En}, as we must to
construct our minimal E. To obtain this we only have to show x0 e
Π Ky(En) lies in Ky(E), E = Π En. But having chosen M and Φλ corre-
sponding to Ex as above, we have x0 = p(unχE) for each n, with
un e J5Φi?μ since Ky(En) = Kι

y(En); since [2, p. 94] l i m ^ Φ ^ O / ' = *o
implies {un} is equi-integrable | |p(wnχ^) - p(unχE)\\ = \\fEΛE unydμ\\
—> 0 since y is bounded. Thus x0 = lim ρ(unχE) lies in K (E) since the
set is closed and ρ{unχE) e i ^ ( £ ) = Ky(E).

We can now see how the argument of [3] adapts. Suppose x0 e Ky(E).
We let

cx = mί{μ{E): E^Eλ = X,x^ Ky(E)}

and choose an E2 from the competing E so that cx < μ(E2) < cλ +
ε~1(μ(£'1) — cx). Continuing we obtain a decreasing sequence {Ek} and a
non-decreasing sequence {ck} with

£ c Ek
k, x0

For .E = Π JÊ . we know by the preceding that Ky(E) = Π Ky(Ek), so
x 0 e Ky(E). As a consequence

(13) x o e 3 ^ ( £ )

since otherwise x0 is interior to Ky(E) and we can remove a bit of E to
obtain a subset F of smaller measure with x0 e ^ ( T 7 ) ; then ^(i 7) < <̂
for some /: since μ(F) < μ(E) < lim ck9 contradicting the definition of ck.
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Because of (13) we have a ί e R " supporting Ky(E) at x09 and by

(12)

(14) θ • x0 =

Now exactly the argument of §4, with μ replaced by μE and v by θ y9

shows that

xo= ί u(t)y(t)μ(dt)
JE

where u e Bφμ^ indeed u sgn θ y assumes extreme values wherever any

variation is possible for any μ maximizing (14). If u(E) = 1 then our u is

in B^μ since u = \(uγ + w2) implies uλ = u2 = u a.e. on 2?. But if

μ(E) < 1 the fact that / £ Φ(|w|) dμ = 1 insures that the only extensions of

u\E to all of X which lie in Bφ μ must have /^^^ Φ(|w|) dμ = 0, so w (and

ιι1, w2) must vanish a.e. o n l \ £ unless O G D and we have an initial

interval of constancy [0, b] of φ, b > 0.

But now we can choose an extension of u with

(15) f
X\E

hence p( w) = JC0, and \u\ = 6 a.e. on X\ E (so clearly extreme in Bφμ) by

exactly the final part of the argument of [3] establishing the version [3, (4)]

of (14) for u in the unit ball of L°°(μx^E). Our proof of Theorem 2 for

Bφ μ is now complete.

It might be noted that the role of the induction step in our proof [3]

has been taken by Liapounoff s Theorem itself.

6. We now turn to B£tli and the functional norm || H* on Lφ(μ). In

order to obtain analogous results we consider the problem of maximizing

a functional given by v e Lψ(μ) over B£ μ. Recall that by Lemma 2 (with

Φ and Ψ interchanged) we have

(16) /

whereλM = supjλ > 0: jψ(ψ(λ\u\)) dμ\,j
if Φ satisfies the Δ 2 condition or u is bounded.

LEMMA 2°. Suppose Φ and Ψ satisfy the Δ2-condition or v e Lψ(μ) is

bounded, while / ̂ (^1) dμ = 1 (so \\v\\ = 1). Then there are u in B^μ which
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provide

maχ{d I uv dμ: u

and they are precisely those with \\u\\+ = 1 and, a.e., (λ jκ( f) | , \v(t)\) in the

extended graph ofφ and arg u(t) = arg v(t) (except where uv = 0). Finally

u -> λ~ι is affine on our support set except when \υ\ has its range entirely in

the set of discontinuities D = {Cj} ofψ, i.e. μ(|y|~1(Z>)) = 1.

Let λ 0 = 1 + / Φ(ψ(|ι>D) dμ, which is finite by Lemma 1 (using our

hypothesis on Ψ and v), and let u0 = (l/λo)ψ(|ί;|) sgny, which is

bounded iff υ is. Then since λo|wo| = ψ(\v\)

fλouov dμ = /Φ(λ o | n o | ) dμ + fψ(\v\) dμ = /φ(λ o | ι ι o | ) dμ + 1 = λ 0 ?

so

(17) juovdμ=l.

We claim λ 0 = λw (as in (16)). Indeed \v\ = φ(λ o |w o | ) a.e. except where

ψ " 1 is not well defined; if D' = {Cj} are the discontinuities of φ, and

(c'j, a'j), (c'j, bj) the endpoints of the corresponding vertical segments in

the extended graph of φ, then on l*; ! " 1 ^, Z>j], λo |wo | = c'} so φ(λ o |w o | ) =

φ(c;.) = α; < \υ\ < b). Thus

(18) / * ( φ ( λ o | « o l ) ) dμ < f*(\v\) dμ = 1.

On the other hand no λ > λ 0 yields this, for as in Lemma 2

>Jψ{\ϋ\)dμ=l.

As a consequence, since λo |wo | = ψ(M), by (16) and the definition of

so u0 e 5ψffl. By (17) now J uov dμ = 1 = ||woll*> a n ( i s i n c e f uv dμ <

IMUIMI = ||u|U, forany u e 5 ^ μ w

ίwϋ ί/μ < 1 = ίu o v dμ
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and u0 provides our maximum. Moreover any maximizing u in B£ μ now
clearly has / uυ dμ = 1 = ||w||* so λM = 1 4- / Φ(λ Jw|) dμ by (16). Conse-
quently

(19) fλuuυ dμ = λM = 1 + / Φ ( λ Jiι|) dμ

and again by equality in Young's inequality we see u must satisfy our
necessary conditions.

Conversely these imply (19), hence / uυ dμ = 1 = ||«||*, whence u
maximizes.

For the final assertion, since Φ' = φ = c, on ψ~\cj) = \ap bj], and
λjw| = Ψ(M) on X\\υ\-\D) whereD = {cy }, we have

(20) I = ^

= T- + Σ ί c |M|rfμ = γ~ + Σ / c M sgn ϋ ί/μ

so that u -*• l/λ w is affine on our support set except where K = 0. But
since Φ(«7) + ̂ (cy) = ajCj (because (Cj, ctj) is on the extended graph
ofφ)

K=l + [ Φ{t(\v\))dμ + Σ[ Φ(aj)-cJaJdμ
JX^vΓ\D) j J\v\-\cj)

= 1 +

= 1 + / Φ{t\υ\)dμ-f

Since J Ψ(\v\) dμ = 1 we conclude u -* l/λ u is affine on our support set
except precisely when μ(\υ\~\D)) = 1. Finally, as we shall need later
K = 0 is also equivalent by (20) to
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(21) l=Σί Cj\u\dμ=f uvdμ
j Ί»ΓHcj) J\v\-\D)

since sgn u = sgn υ.
We can now almost characterize B^μ, but the result is incomplete and

certainly more complicated than its predecessor.

THEOREM 3°. Suppose Φ and Ψ satisfy the Δ2-condition and {[ay, bj]}
are the maximal intervals of constancy of φ. Let u e LΦ(μ) and λu =
sup{λ > 0: /*(φ(λ|«D) dμ < 1). Then u e B^μ if(ϊ) \\u\\* = 1, (ii) a.e.
on \u\-ι[\-ιap λ~ιbjl \u(t)\ = A" 1^ or λ'1^ (unless a} = 0 when \u(t)\
= λ-1^ instead), and (iii) if μ(\u\-\\χ\-ιap λ " ^ ] ) ) = 1 and
JΨ(ψ(λu\u\)) dμ = 1 then μOwΓ^λ"1^.)) > 0 for some j as well Con-
versely u e Bψe

μ implies (i) and (ii), and, provided bj/aj > η > 1 for all j
with a > 0, it also implies (iii).

In fact if u is bounded we do not need the Δ2-conditions. Note that in
particular if there are only finitely many intervals of constancy we have a
complete characterization.

Suppose first our u satisfies (i)-(iii). Exactly as in the proof of Lemma
2 (with Φ and Ψ interchanged) we can alter v = ψ(λu\u\) sgn u so as to
obtain v e Lψ(μ) with /Ψ(M) dμ = 1 while (λu\u(t)\, \v(t)\) lies on the
extended graph of φ and sgn υ = sgn u a.e.. Note moreover that (with cp

a'j, b' as in Lemma 2°) in altering v on the sets (λM|w|)~1(cj), unless we are
forced to increase \v\ to b'} for ally (just the case where

we can always alter \υ\ so that on some such set a'j < \v\ < bj on a set of
positive measure, and thus have μ(\v\~~ι(D)) < 1 necessarily (since such
values cannot give rise to points on the horizontal segments of the
extended graph of φ). So we have

(22) μ(\υ\~\D)) < 1, or / * ( φ ( λ > ( 0 l +)) μ(dt) = 1.

Now by Lemma 2°, as a functional v maximizes over B£ , at our w,
hence Ίί u = \ux + \u2 with ut G 1?£ , necessarily at each w, as well. So
(λM li/ ίOI? 1̂ (01) li e s o n the extended graph and sgn ut = sgny = sgn u
a.e., andλ^w,. = \uu except on the \v\~1(cJ). Henceλ uu i = λuu except on
the \v\~\cj) where αy- < \u\ut\ < bj, or λ"1^. < \ut\ < λ~*bj.
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We now have two cases: either (21) fails (K Φ 0) and u -> λ" 1 is
affine, or (21) holds. In the first case since λ" 1 = K λ " 1 4- λ^1) we have

on \v\~~\Cj) and thus from the assumed extremity of the values of \u\ on
that set we must have Ittxl = λ" 1 ^ and \u2\ = λ^α,- where |w| = λ"1^.
(and similarly for the bj)9 which says λWi|w21 = λu\u\ = λwjw2| a.e. on all
X. But now λw = 1 + /Φ(λM|w,|) dμ = 1 + /Φ(λjw|) dju, = λM and we
conclude ui = w, so u is extreme, as desired.

In the second case, where by (21) S\υ\-ι{D) uv dμ = I and also
μ(\v\~\D)) = 1, we necessarily have υ = vχM-ι{D) so /Ψ(|uχ | £ ; Γi ( Z ) )D ί/μ
= 1. Since \υ\ = φ(λM|w|) on |^|~1(e/) except when (αy is a discontinuity of
φ and)

(23) μ( | W Γ 1 (λ: 1 ^)) > 0,

when (23) fails for ally we obtain / Ψ(ψ(λu\u\)) dμ = 1. Thus by (iii) (23)
holds for somey.

On the other hand when μ(\v\~1(D)) = 1 we cannot have λjw| < ηbj
for ally, with η < 1, since then λ = η~ιλu has the property that ay < λ\u\
< bj on \v\~ι(Cj)9 whence φ(λ|w|) = φ(^ y + ) = cJ9 all j9 so
jψ(φ(λ\u\)) dμ = JΨ(φ(λu\u\ + )) dμ = 1 by (22), which contradicts
the definition of λM. Consequently for ε > 0 we have λ Jw| > (1 — ε)bj on
a set of positive measure for somey, and thus

λ^(l - t)bj < \u\ = έk | + \\u2\ < \\fbj + \\-Jbj

on that set. So λ ' ^ l - ε) < ^λ^1 + ̂ λ^1 for any ε > 0, and λ" 1 < ^λ"1

By (23) we have the reverse inequality: for

iλ- 1*, + J λ - ^ . < \\uλ\ + \\u2\ = |M| = Kιaj on lu

Now we conclude as in the first case that λM = λM and thus ut, = u, so u is
extreme.

Conversely suppose u e jff̂ .̂ Then \\u\\* = 1 of course and if, for
somey, (ii) fails then for some ε > 0 we have

Exactly as in Theorem 3 we now partition
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into disjoint subsets FΎ and F2 of equal measure; because Φ is linear on
[ap bj], for |*| < ε, ut = u + t(χFi - χFΐ) sgn u will have

so that

whence ||u,||* < 1 by the final assertion of Lemma 2. So (ϋ) must hold.
Finally suppose (iii) fails, so μ(\u\~ι(U[λ~ιaj, X~lbj])) = 1,

/Ψ(φ(λjw|)) dμ = 1 and μdul'^λ^aj)) = 0 for ally. Because of the
first and last of these, and (ii), we have the range of \u\ in the sequence
{λ-1^}, and for v = φ ( λ > | ) sgn u = φ(bj) sgn u on |M|"1[λ^1Λy, λ" 1 ^] ,
the second condition says / Ψ(|ί;|) dμ = 1. Of course / uυ dμ = 1 since
(19) holds.

Now by hypothesis bj = λ jκ | > ηcij on |^|~1(cy) for ally, with η > 1,
so that if η > η1 > 1 we can assert that for λ = η{λλu we have bj > λ\u\
> ηϊιηaj > a} on \υ\'\cj). Thus / Ψ(φ(λ|w|)) dμ = 1 still, as
Σy^ίcyJμdϊ p^Cy)). Indeed for some set F c l ^ " 1 ^ ) of positive mea-
sure and ε > 0 small, clearly the same is true with u replaced by u ± = u ±
ε(χF i - χFi) sgn w, where again FXΌ F2 = F and μFx = /xF2, and

ίu±v dμ = I = fuv dμ

since |t>| = Cj on F, and sgn w = sgn v. But now

Jλu±v dμ = fφ(λ\u±\) dμ + fψ(\v\) dμ=l + fφ(\\u±\) dμ,

so 1 = / u±υ dμ = (l/λ)(l + / Φ(λ|w±|) dμ) > \\u±\\*. Since u =
\{u++ u_) we have our contradiction, showing (iii) cannot fail and
completing our proof of Theorem 3°.

We can now simply observe that our adaptation of Lindenstrauss'
proof to show p ( 5 | ) = ρ(Bφ ) applies with little change to yield the
assertion of Theorem 1 in the present case (where we assume bj/aj > θ >
1). Indeed if u0 is extreme in the subset of Bψ mapping onto a given
x0 in R", and not in B^e

μ then ||wo||* = 1 (or choosing ux Φ 0 in kern p
we have u0 ± εuλ in B£ ). Since u0 is not extreme, by Theorem 3°
we know that (iii) fails or that there is a j and ε > 0 for which
|wo|~

1[λ~o

1βy + ε, λ~*bj — ε] has positive measure. In the second case we
now choose a non-zero u supported by that set with sgn u = sgn w0,
p(w) = 0 and (l/λMo)(l + /Φ(λU o | ιιo ± u\) dμ) = 1, all of which are
possible (with \u\ = ε on our set) by Liapounoffs theorem as before.
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Just as in the preceding paragraph the last condition says \\u0 ± u\\*
< 1, contradicting the extremity of u0 in ρ~ι(x0) Π B$φ.

Finally in case (in) fails we have |wo| = λ " ^ on \uo\~ι[\~ulap KobA
for all j and we can proceed as in the final paragraph of the proof of
Theorem 3°, using λ = η^λ^ to replace u0 by u = u0 ± εuλ sgnw0,
where \uλ\ < 1 and ε is small enough to guarantee J Ψ(φ(λ\u\)) dμ =
ΣΨ(Cj)μ(\v\~1(cJ)) = 1 as before, while / uλv dμ = 0 and fu1ydμ =
ρ{uλ) = 0, uλ Φ 0, is guaranteed by Liapounoff s theorem. Thus (in) fails
only if u0 is not extreme, and our proof of Theorem 1 is complete.

In order to prove Theorem 2 for B£ we first note that by Lemma 2°
for x0 = p(χEu) e dKy(E) and θ supporting there (λθju(t)\9 \θ y(t)\)
lies on the extended graph of φ a.e., where λ^ = 1 + / Φ(λθ μ\u\) dμ > 1,
so one has \u\ < \\y\\ = M with a bound independent of x0. Again one has
Ky{E) = Ky(E), so the former is closed as before.

Once more we obtain our minimal E with x0 Ξ dp(χEB^ ). Now
exactly as in the proof of the first assertion of Theorem 2 we can take

independent, and thus for some ε > 0

n-\(24) μ { / e £ : \θ y(t)\ > e) > ε for all θ e 5

As a consequence, in Lψ(μE) \\θ ^|| has a positive lower bound indepen-
dent of θ: for if we choose k > 0 so that Ψ( A:) > 1/ε then by (24)

so (λ;/ε)||0 j | | > 1, and m = ε/k is our lower bound. Thus

θ y(t)
m-ι\\y\\<m-ιM.

\\θ y\\

Let Mλ be the larger oim'ιM and
If we now alter φ on (2Λfl9 oo) to obtain a φx yielding a dual pair Φ1?

Ψx of Young's functions both satisfying the Δ2-condition, as earlier, then
we know x0 e dp(χEB% μ) = dρ(χEBξiμ) and we can now appeal to
Theorem 1 to obtain u e B$*φE with ρ(χEu) = x0, and |w| < M as above.
Moreover for some θ G Sn~ι,χEθ - y maximizes over B^με at u, and with
ί; the normalized element of LΨi(μE) θ y/\\θ j ; | | (so / ^ ( M ) dμE = 1)
we know by Lemma 2° that (λ^Jwl, |ϋ|) lies a.e. on the extended graph of
φl9 (hence of φ since )}\u\ < ψ(m - 1M) < Mλ) where

(24) λ1,, = sup λ > 0: f%(Ψί(λ\u\)) dμ<\\.
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Further (still in terms of Lφ (μE))

1 = Hull* = ( l A j ( l + / Φ i ( λ > | ) dμE),

and so / uυ dμE = 1 (essentially since (19) obtains):

luuυdμE = /Φ1(λ1

M|w|) dμE + /^i(|^|) ί/μ^

= fφ1{λ1

u\u\)dμE+l=λ1

u.

But 1 = / uυ dμE = / %(\v\) dμE implies / Ψ(\v\) dμE = 1, whence
||υ|| = 1 in L^{μE), and consequently that u has its functional norm 1 in
Lφ(μE). Finally we claim λ1,, in (24) coincides with

λu = supjλ > 0: Jψ{φ(λ\u\)) dμ < 1

Indeed

since λ1 |̂w| < ψ(m ιM) < Mv and thus λ1^ provides

But from our remark following Lemma 2 our minimum is provided only
on an interval [λM — ε, λ j (so λx

M < λM), and then for λ in that interval
λ|w| has its range entirely in our maximal intervals of constancy:

(25) μ

and / Ψ(φ(λ\u\)) dμE = 1 (because the derivative in our remark is zero on
[λu — ε, λM)). Thus from the converse portion of Theorem 3°(iii) for
λ = λ1^ we know \u\ = (λ1^)"1^ on a set of positive measure for somey, so
that (25) cannot hold for all λ in (λ1^ λx

M + δ), δ > 0. Consequently
λx

M < λM is impossible, and λx

M = λM as asserted.
But now u e B$* has its consequences from Theorem 3° precisely

the conditions sufficient to insure u e B*%e by the same result. If φ has no
initial interval of constancy we can simply extend u to be 0 on X\E
obtaining the desired element of B^e

μ (by Theorem 3° again) mapping
onto x0. But if we have an initial interval of constancy [0, b) we can
choose an element ux of the b ball of L°°(μx^E) with p(χ^\£Wi) = 0 and
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\u\ ΞΞ b by Liapounoff s theorem, so u + uλ is evidently the desired ele-

ment of B^ e

μ. Our proof of Theorem 2 is finally complete.

Lastly we note that complex versions of these results only require

appropriate attention to conjugation and absolute values at various points

in the proofs.
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