PACIFIC JOURNAL OF MATHEMATICS
Vol. 116, No. 2, 1985

AN ANALOGUE OF LIAPOUNOFF’S CONVEXITY
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To Z. W. Birnbaum, on the occasion of his 80th birthday

Let (X, S, u) be a non-atomic probability space. Our purpose is to
note an analogue of Liapounoff’s convexity theorem, as a statement
about L*(p), for certain real Birnbaum-Orlicz spaces L4 (1), in particu-
lar reflexive ones, under the usual norms: the extreme points of the unit
ball yield the full image of the ball under finite dimensional continuous
linear maps.

1. Of course such a result is trivial if the ball is strictly convex (when
each of its boundary points is extreme) since it just asserts that any finite
codimensional closed subspace which meets the ball meets its extreme
elements. But for L(p) the unit ball will have flat spots on its boundary
corresponding to horizontal segments in the graph of ¢ = ®’, and the
strong sort of density of extreme points the result implies is nontrivial. We
shall obtain the analogue in fact as an application of Liapounoff’s
theorem (resulting from the use of support functionals suggested by [3]),
and, although characterizations of the extreme points of the balls could be
avoided, we shall obtain these too, so that Lindenstrauss’ elegant proof of
the Liapounoff result [5, 6] can also be applied.

Needless to say the assertion of the result makes sense for any Banach
space, and fails if no extreme points exist; indeed it fails for L*(p) if our
map is not w* continuous. But it easily fails with that restriction, for
example for the space of real measures on [—2, —1] U [1, 2] and the map
into R provided by » — [ sgn ¢ »(dt).

Finally we adapt the argument of [3] to one instance where neither of
the approaches to the reflexive case applies (Theorem 2 below).

2. Let ® and ¥ be dual Young’s functions [2, 7] ie., ®(x) =
[&e(t) dt, ¥(x) = [§¢(t) dt, where p: R, — R is 0 at 0, non-decreas-
ing and — oo at oo, while ¢ is its “inverse”, both taken continuous from
the left for definiteness. As in [7] we complete the graph of ¢ by adding
vertical segments at any discontinuities, and speak of the resulting curve
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266 I. GLICKSBERG

as the extended graph of ¢; then equality holds in Young’s inequality
ab < ®(a) + ¥(b), alla,b>0

iff (a, b) lies on the extended graph of ¢. Assuming the convex function ®
has at most exponential growth at infinity (so ®(2¢) < M®(z) for ¢ large,
the “A,-condition” [1, 2, 7]) insures the class of real (or complex)
functions

Lo(k) = {7: [o(l71) dn < oo

is a linear space; this becomes a Banach space when appropriately
normed, in particular when

Bop = {13 foUrD) du <1},

which is convex by Jensen’s inequality, is taken as the closed unit ball
(yielding the Luxemburg norm || - || [2]). The A, condition then also
guarantees [2, p. 64] the dual is provided by the linear span R, Ly(pn) of
Ly (p) under the pairing (f, g) = [fg du. (Taking the polar Bg , of By,
as the ball in L(p) gives an equivalent norm || - ||, the functional norm,
and corresponding results hold then as well. It is probably worth noting
that Lg(pn) © LY(p) always, since some line of positive slope lies under the
graph of ® and p is finite.)

When both ® and ¥ satisfy the A, condition L,(p) and Ly (pn) are
thus a dual pair of reflexive Banach spaces (and conversely [2]), and we
have the following, where S¢ denotes the set of extreme points of S.

THEOREM 1. If p is a non-atomic probability measure and the dual
Young’s functions ®, ¥ satisfy the A, condition, then for any continuous
linear map p of Ly(p) to R”

p(Bdi,u) = p(B(D,;.L)'
Finally, if {[a;, b;]} are the maximal intervals of constancy' of ¢, and
bj/a; = n > 1 forallj witha; > O, then

o(Bss) = p(BS,)-

Assuming p is continuous is equivalent to assuming p weakly continu-
ous, and p(u) = [ u(t)y(t) p(dt), where y = (yy,...,y,) has y, € Ly(p).

!More precisely these correspond to maximal horizontal intervals in the extended graph
(since p(a;) < ¢; = p(a, + ) is possible).
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In case the y, are in fact bounded we need not assume reflexivity; only ®
need satisfy the A ,-condition.

THEOREM 2. If p is non-atomic and ® satisfies the A ,-condition while p:
Lg(p) = R” is defined by bounded functions, then p(Bg ,) = p(By ), and,
under the additional hypothesis noted in Theorem 1, p(Bg*,) = p(Bg ,)-

As we have remarked earlier the flat spots in the boundary of the
balls needed to make the results non-trivial are provided by intervals of
constancy for ¢; these also figure in the following simple characterization
of Bg , which allows us easily to adapt Lindenstrauss’ proof of Liapounoff’s
theorem [6, 5.5] to obtain the first half of Theorem 1. The corresponding
and similar result for Bg¢, along with the (more complicated) proofs
relating to By ,, will be given in §6.

THEOREM 3. Suppose p is non-atomic and @ satisfies the A ,-condition.
Let {[a,, b;]} be the maximal intervals of constancy of ¢. Then uy € Lo(p)
is in Bg , iff [ ®(Juol) dp =1 and, a.e. on |ug|™[a,, b/}, lus(t)| = a, or b,
unless a; = 0 when |u(1)| = b, instead.

With this in hand one easily modifies the final step in Lindenstrauss’
proof to obtain Theorem 1 (which applies since reflexivity provides the
needed weak compactness): we have only to see an extreme point of
the subset of Bg , mapping onto a given point is extreme in B, ,. But
if not by Theorem 3 |uy| }(a » b;) has positive measure for some j, so
]uol‘l[aj + & b, —¢] also does for some &> 0. Now one chooses a
non-zero u supported by that set with sgn u = sgn u,, |u| < € and p(u) =
0, [®(|lug + u]) dp =1, all of which are possible since ® is linear on
[a,, b;] and |uy + u| = (uy + ) sgnu,, luy — u| = (1, — u)sgn u,, while
we can take [u sgn u,dp = 0 and p(u) = 0 with u still non-trivial, indeed
of modulus & on |uy| '[a , + & b, — ¢] by Liapounoff’s theorem itself.
Thus p(u, + u) = p(u,) and u, + u € By ,, our contradiction.

3. Theorem 3 easily follows from the next two lemmas (as we shall
see later), which will prove basic to our argument.

LeMMA 1. For any dual Young’s functions ®, ¥ and 0 < v € Ly(p)
with [ ¥(Av) du < oo for 0 < A < A, we have

f<D(¢(Av)) dp < oo for0 <X <A
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(In particular this applies for all A > 0 if v is bounded or ¥ satisfies
the A, condition, our applications in Theorems 2 and 1, respectively.)
For the proof, note that because

Je(s (o) du+ [¥(ho) dp = Aoy (Ao) di
our hypothesis says the conclusion (for A < A; — ¢) is equivalent to
fm[x()\v) du< oo (forO <A< —e).
But since ¥(x) = [5 {(¢) dt is convex, as h \y 0

% [F((A + h)o(1)) — F(Ao(1))] s o(2) ¥ (Ao(7) +)

while the difference quotient is bounded by + [¥((A + &)v(2)) — ¥(Av(1))]
for 0 < h < &. So by dominated convergence

Jod (Mo +) dp = lim 5 [#((A + k)o) — ¥(Ao) dy

< L [¥((A + €)v) ~ ¥(Ao) dit < co.

In essence we shall prove Theorem 1 by noting that for any x, €
p(Bs,) (or p(Bg ), later) there is an element u, of the boundary of B, ,
which maps onto x, (because p has a non-trivial kernel), whence x lies in
the image of a supporting subset of the boundary by Hahn-Banach. So it
will suffice to see each supporting subset has the desired property for its
extreme points. One is led thus to consider how an element of L
maximizes on By ,, which we turn to next. We shall then give the proof of
Theorems 1, 3, and finally Theorem 2, as they relate to By, .

Suppose a non-zero v € Lg(p) is given and ¥ satisfies the A,
condition or v is bounded. Then by Lemma 1 we havey/(A|v]) € Ly(p) for
all A > 0. To see how

(1) c= max{fu(t)v(t) p(dt):ue Bq,,”}

is achieved (if at all), note that if we could choose a A, > 0 so that
(2) Jo(w(Aqlel)) dp =1

then for

Uy = x[/()\0|0|) sgn v
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since

(3) Ao (t)uy(z) (l“o(t)l) + ‘I'( 0|U(t)|) a.c.

we have forallu € By,
@) [Aouodn = [®(lufl) du+ [¥(Nlo]) di =1+ [¥(AJo]) 4

> f®(|u|) dp + f\I'()\OIUI) dp > f)xovu du,

so u, yields our maximum in (1). Moreover any maximizing u, must
provide equality in (4) so it necessarily has

(5) Jo(u)) du =1
and also, because of equality in Young’s inequality,
©) (| (2)], Aol (2)]) lies in the extended graph of ¢ and

sgn u,(¢) = sgnv(t) a.e. (except where uv = 0).

Conversely (5) and (6) imply (3) and (4), hence that #; maximizes.
In fact, precisely because of the horizontal segments in the graph of ¢,
we may not have a A, yielding (2). Setting

b(A) = [®(¥(A])) 4

and noting that b(A) 7 co as A 7 oo since [v| > 0 on a set of positive
measure, clearly A, = sup{A > 0: b(A) < 1} yields our candidate; either
b(Ag) =1 or b(Ay) <1< b(Ay +) = lim,, b(A). By monotone con-
vergence and our assumption that ¢(¢z — ) = {(¢)

b(Ao =) = [@(y(Aolol)) di = B(A,);

because of Lemma 1, by dominated convergence

(Ao +) = [O(¥ (Ao ()] +)) p(dr).

Let D = {c;} be the set of discontinuities of ¥, a; = Y (c; =) = Y(c)),
b, = y(c; +) (so(a;, c;) and (b;, c;) are the endpoints of the correspond-
ing horizontal segments in the graph of ¢). Then, with D’ = (A |v]) "}( D),

M bot)=[  o(¥(Aoel))du+ L [ @(b,) du

Jj (AoloD™ (C )
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while
b(A,) = Q(y(A dp + ®(qa;) dp.
(o) = [, el an+ D[ @) dy

Evidently since b(A, + ) > 1 we can now alter u, = Y(A,|v]) sgnv on D’
so as to obtain both (5) and (6), and thus (3) and (4) for the resulting u.
Indeed if b(A, +) = 1 we simply increase |u,| to b; on ()xolvl)“l(cj) for
each j; if not we choose the largest N for which the sum of the first ¥
terms on the right side of (7) is < 1, increase |u,| to b; on (>\0|v|)‘1(cj),
J < N, while, since p is non-atomic, on an appropriate subset of
(Aolv) "X ey 1) We increase |u,| to by, ;.

We can summarize most of the preceding as

LEMMA 2. Suppose v is a non-zero element of Ly (), and v is bounded,
or ¥V satisfies the A, condition. Let

}\0 = Sup{}\ >0: f‘b(\l/()\ll)l)) dp < ].}
Then there are u in By , which provide the maximum in (1), and they are just
those u satisfying (5) and (6). Moreover,

lolle = 5\1—0(1 + f‘I’()‘0|U|) dn) = min %(1 + f‘I'(le) du)-

For the final assertion, note that by (4) we have

lolle = (1/A0) (1 + [¥(Xolv]) dp),

and we only have to see A(A) = (1/A)(1 + [ ¥(A|v]) dp) minimizes at
A = A,. But & has a left hand derivative everywhere which is

1 1
= (1 JONRD) i) + 5 f(oly (Nol) )
1
= 5[ by (el d = 1= f¥(No))
1
= p(f‘l’(tl'(?\lvl)) dp — 1)
(using equality in Young’s inequality), so the resultis < 0 forA <A,, > 0
for A > A,. Since the convex function A — [ ¥(A|v]) dp is absolutely

continuous, so is 4. Thus, as the integral of this derivative, it has its
minimum at A .
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REMARK. For later use we should note that A, alone provides our
minimum unless our derivative is zero on an interval (A, — &, A,] where
the range of A|v| lies entirely in the intervals of constancy of .

We can now prove Theorem 3. First suppose [ ®(|u,|) dp =1 and
lug(2)| = a; or b; a.e. on |ug|"'[a;, b;] (unless a; = 0 when |uy()| = b)).
Then for v = @(|u,|) sgn u,, which lies in Ly (p) by Lemma 1 (with ® and
¥ interchanged) we have

ugw = ®(Jugl) + ¥(v]) ae.

so that

Juowdn = [®(udl) du + [¥(o]) di= 1+ [¥(jol) ds = fuo di

for any u € By ,. Thus if u, = 3(u; + u,) withu, € B, ,, i = 1,2, each u,
must maximize the right-most term, so again provide equality a.e. in
Young’s inequality: (Ju;(¢)|, |[v(¢)|) lies on the extended graph of ¢ and
sgn u,(t) = sgnv(t) = sgn uy(t) a.e. except where u,v = 0. Evidently then
u;(t) = uy(t) a.e. except on the sets ]uol‘l[a], b;] where the extremity of
values of |u,| forces the same extremity for |u,], |u,|. So u; = u,, and u is
extreme.

Conversely suppose u € Bg,. Then [ ®(Ju) dp < 1 implies
J ®(A|u)) dp < 1 for some A > 1 and u is interior to a segment in By ,. So
[ @(Ju]) dp = 1. Again, if for some j, |u| fails to assume the values a, and
b, on a set of positive measure in |u]’1[aj, b;] then p(|ul” 1[a + & b, —¢€])
> 0 for some & > 0. Now we partition F = |u|” 1[a + &, e] into
disjoint subsets F, and F, of equal measure, and, since P is linear on
[a;, b;], for |0] < & we have

f(IJ(|u +0(xp — xﬁ)sgnul) dp.

= [ o) du+ [ @(lul+0) du+ [ & (ul =) dy

= [o(lu)) 4

Hence for & = (xy — Xp)sgnu we have u + ¢h € B, , so u cannot be
extreme, completing our proof.

4. In effect we have also proved Theorem 1 if we adapt Lin-
denstrauss’ proof as indicated before. On the other hand, because p has a
nontrivial kernel, as noted earlier any x, € p(Bg ,) is the image of an
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element u, of the boundary of By ,. Thus we can invoke the Hahn-Banach
theorem to produce a functional, given by some v € Ly(p) (by the
A,-condition for ®), which maximizes over By, at u,. Since ¥ also
satisfies the A, condition, Lemma 2 implies the support set v provides
consists of those u in By, , satisfying (5) and (6). The fact that an extreme
point lies therein which also maps onto x, is in fact a consequence of
Liapounoff’s theorem itself. For from our discussion of the maximization
question (1), we know all such u = u, a.e. off D’ = (A |v])"}(D); the fact
that [ ®(|u) dp = 1 = [ (Juq)) dps says

[ @) dp = [ @(juo) d

Since sgn u# = sgn u, = sgn v, and @ is linear on [a
to the fact that, for certain g, h € L'(p),

f®(luol)du=f g|u|+hdu=f (ugsgnv + h) dp.
D’ D’ D’

Thus our supporting u, determined off D’, must satisfy two con-
straints on D’:

;» b], this is equivalent

a.e. on (Aglv)~N(c,), a;<|u|< b, and sgnu = sgnv
(9) (unless uv = 0), or equivalently, unless ¢, =0, a, <
u sgnv < b,.

(10) f ugsgnvdp = k.

D
In order to map onto x, any such u would also satisfy
11 uydp = x, — uyydp,
(11) fD,yu ofX\D/OYF*

wherey = (y;,...,5,) € (Lg(p))" gives rise to p.
But now the variation possible on D’ is trivially affinely equivalent to
that in an (n + 1)-dimensional Liapounoff problem: setting

= (usgnv—l(aj+bj)) on()\o}v|)_1(cj) ifc, # 0

1
b,—a; 2
or # = (1/b;)u sgnv on that set if ¢; = 0, we are concerned precisely with
an n + 1 dimensional image of # in ball L*(p,.). Hence Liapounoff’s
theorem applies to assert (10) and (11) can be satisfied on D’ by u with
usgn v assuming the extreme values a, or b, a.e. on (AoloD) X ¢;) (except
when ¢; = 0 and then u = +b; clearly). Extending by u, off D’ we now
have a u mapping onto x, which is extreme in By, , by our old observation:

u = 3(uy + u,) for u, € B, , implies u, = u, = u a.e. off D" since u, lies
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in our support set where v maximizes, while the extremity of #’s values on
(AolvD) ~M[a,, b;] forces u,(t) = u(t) a.e. there too.

5. In the setting of Theorem 2 we cannot appeal wholly to either of
the approaches used for Theorem 1: without weak compactness we cannot
invoke the Krein-Milman Theorem as in Lindenstrauss’ proof, and the
approach through Hahn-Banach and maximization cannot use the
boundedness of our components y,. What will exploit that is the argument
of [3] giving a controlled approach to Liapounoff’s result: given x, in
p(Bsp,,) we choose a minimal set E € § capturing x, in the sense that x,
lies in

(12) K,(E)= {P(uxE) =fEuydu: u€ B@,#};

then x, must lie in the boundary of this set so that an element § of R"
provides a supporting functional there, and 6 - y € Ly (p) then provides a
bounded function against which any ux  mapping onto x, must maxi-
mize. We then shall see there is a ux ; € B3, mapping onto x,, and we
extend this to all of X by an appropriate detour. The details will require
some technical refinements of the arguments of [3], all possible precisely
because of the assumed boundedness of y.

Let KJ(E) denote the subset of K (E) defined similarly with Bg , in
place of By ,. In order to proceed we first need to see K (E) (trivially
convex) is always closed. We can assume (y;Xg,---,V,Xg) are linearly
independent (or restrict our attention to a lower dimensional map). But
any point x, in 9K (E) lies in a support set of K (E)~ given by a unit
vector 6 in R", so x, = p(ux) for some u only if ux, provides the
supremum of [ux .0 -ydp over By ,, and such u exist by Lemma 2.
Moreover our maximizing  has, for someA, = A, > 0, (Ju(2)], A0 - y(2))
in the extended graph of ¢ a.e., and so is bounded since y is.

In fact there is a bound M independent of our unit vector § € "%
foru{t € E: |0 - y(¢)| > 0} > 0 by independence, so given 6,

p{t€E:|0-y(t))>2e} >8>0

for some ¢ and § > 0, and replacing 2¢ by ¢ the inequality holds for
nearby 6 in S"~'. Compactness of S”"! now shows we have p{t € E:
|6 - y(t)| > €} > 6 > O for some ¢, § > 0 and every 6. But now

12 [o(y(Ael6 - 51)) dis = @ (¥ (Aee)8

shows the existence of an upper bound m for A,, hence an upper bound
M = y(mM, + ) for |u| < Y(A4|0 - y| + ) if M; bounds || y||.
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Because of this no u € x - By, which assumes values of modulus
> M on a set of positive measure can have p(x zu) = p(u) € 3K (E)
since then it would maximize for some §. Consequently 0K ( E) remains
unchanged if we alter ¢ on (2 M, o0) so as to obtain ®,, ¥, both satisfying
the A,-condition, as we can trivially do; in fact we can take ¢, linear on
(2M, ) and thus insure that lim,_,  ®,(7) /¢ = co. If we now set

K,(E)= {/;Y uydp: u € Bq,bﬂ}

then this is a compact convex set because of the weak compactness of
By , reflexivity insures, and by the preceding all of 9K yl( E) is provided by
u’s bounded by M so necessarily lies in K (E). We conclude K (E) =
K yl(E ), and K (E) is closed as asserted. (Note that our M and @,
obtained for E can be used equally well for its subsets to obtain the same
conclusions.)

Now because of this and the boundedness of y we can also see
K,(NE,) =NK/(E,) for a decreasing sequence { E,}, as we must to
construct our minimal E. To obtain this we only have to show x, €
N K, (E,) lies in K (E), E = E,. But having chosen M and ®, corre-
sponding to E; as above, we have x, = p(u,xz) for each n, with
u, € By , since K (E,) = K (E,); since [2, p. 94] lim,_, , ®,(2)/t = oo
implies {u,} is equi-integrable [|p(u,X ) — p(u,X )| = Il 5\ £ 4,7 dpl]
— 0 since y is bounded. Thus x, = lim p(u,x ;) lies in K ,(E) since the
set is closed and p(u,x ;) € K}(E) = K (E).

We can now see how the argument of [3] adapts. Suppose x, € K (E).
We let

¢, =inf{u(E): ECE, = X,x, € K,(E)}
and choose an E, from the competing E so that ¢; < u(E,) <c¢; +

e '(u(E,) — ¢;). Continuing we obtain a decreasing sequence { E, } and a
non-decreasing sequence { ¢, } with

Cr = inf{“(E)3 ECE,x,€ Ky(E)} < p(Egsr)

< ¢, + 27K (p(Ey) — )
For E =N E; we know by the preceding that K (E) =N K (E,), so
X € K,(E). As a consequence
(13) X € aKy(E)
since otherwise x, is interior to K (E) and we can remove a bit of E to

obtain a subset F of smaller measure with x, € K (F); then u(F) < ¢,
for some k since p(F) < p(E) < lim ¢,, contradicting the definition of ¢,.
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Because of (13) we have a § € R” supporting K ,(E) at x,, and by
(12)

(14) 0-x0=max{fEu(t)0-y(t)p,(dt):uEBq,’#}.

Now exactly the argument of §4, with p replaced by p and v by 8 - y,
shows that

xo = [ u(t) y(1) p(ar)

where u € Bg , ; indeed usgnd - y assumes extreme values wherever any
variation is possible for any p maximizing (14). If u( E) = 1 then our u is
in B, since u = 3(u; + u,) implies u; = u, =u ae. on E. But if
p(E) < 1 the fact that [, ®(Ju|) dp = 1 insures that the only extensions of
u| to all of X which lie in B, , must have [y z @(|u]) dp = 0, so u (and
u,, u,) must vanish a.e. on X\ E unless 0 € D and we have an initial
interval of constancy [0, b] of ¢, b > 0.
But now we can choose an extension of # with

(15) f uydp =0,
X\E

hence p(u) = x,, and |u| = b a.e. on X\ E (so clearly extreme in By ,) by
exactly the final part of the argument of [3] establishing the version [3, (4)]
of (14) for u in the unit ball of L*(p .\ z). Our proof of Theorem 2 for
Bj , is now complete.

It might be noted that the role of the induction step in our proof [3]
has been taken by Liapounoff’s Theorem itself.

6. We now turn to Bg, and the functional norm || ||y on Lg(p). In
order to obtain analogous results we consider the problem of maximizing
a functional given by v € Ly(p) over Bg . Recall that by Lemma 2 (with
® and V¥ interchanged) we have

fluell o = 11—(1 + fcb(xu|u|) d”)
(16) “

where A, = sup{}\ > 0: f‘I’((p(MuD) du},
if ® satisfies the A, condition or u is bounded.

LEMMA 2°. Suppose ® and ¥ satisfy the A ,-condition or v € Ly (p) is
bounded, while [ ¥(|v]) dp = 1 (so||v|| = 1). Then there are u in By , which
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provide
max{fuv du:u € Bg’u}

and they are precisely those with ||u|l, = 1 and, a.e., (A Ju(t)|, |v(¢t))) in the
extended graph of ¢ and arg u(t) = arg v(t) (except where uv = 0). Finally
u — A is affine on our support set except when |v| has its range entirely in
the set of discontinuities D = {c;} of ¥, i.e. p(jo| (D)) = 1.

Let A, =1+ [ ®(Y(|v]) dp, which is finite by Lemma 1 (using our
hypothesis on ¥ and v), and let uy= (1/A,)¢(|v]) sgnv, which is
bounded iff v is. Then since A j|uy| = (o))

JXouaw dp = [@(Nofual) dix + [¥(jol) di = [@(Xoluol) dip + 1 =X,
(17) fuov dp=1.

We claim A, = A, (as in (16)). Indeed |v] = @(A,|u,) a.e. except where
¢! is not well defined; if D’ = {¢}} are the discontinuities of ¢, and
(¢}, a}), (c;, b)) the endpoints of the corresponding vertical segments in
the extended graph of ¢, then on |v|~'[a}, b1, Aqug| = ¢} s0 @(A|u,)) =
¢(c;) = a; < |v| < b. Thus

(18) J¥(@(Aoluol)) du < [¥(jol) du = 1.
On the other hand no A > A, yields this, for as in Lemma 2

Iim | ¥ A du = + ¥(b))d
ALAO'/ ((p( |u0|)) # X\Aoluo) 1D ;'/("\oluol)—l(cf) (j) *

> f\I'(|v|) dp=1.

SoAg=A,.
As a coonsequence, since A gluy| = ¢¥(|v]), by (16) and the definition of
Ao

ol = 5 (1 + f@(Nul) | = 5-(1+ (o)) ) =1

sO0 uy € By ,. By (17) now [u@wdp =1 = ||uylly, and since [uvdp <
llullxllvll = ||ullx, for any u € By , we have

fuvdusl=fuovdu
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and u, provides our maximum. Moreover any maximizing u in By , now
clearly has fuvdp =1 = |ju|l, soA, =1 + [ ®(A |u]) du by (16). Conse-
quently

(19) f)\uuv dp=A,=1+ f@()\ulun d

= [¥(lol) du = [®(A,Jul) 4

and again by equality in Young’s inequality we see u must satisfy our
necessary conditions.

Conversely these imply (19), hence [uvdp =1 = ||u|l,, whence u
maximizes.

For the final assertion, since ®’ = ¢ = ¢; on qfl(cj) = [a;, b], and
A Jul = ¢(Ju)) on X\ |v|~}(D) where D = {¢;}, we have

(200 1= %(1 + fo(nJul) du)

+Lf

e ®(a;) + cj()\u|u| - aj) dy]

K
=+ ¢ uldp = —+ c;usgnv dp
Ao 5 flvl"(c) | wal e

so that u = 1/A, is affine on our support set except where K = 0. But
since ®(a;) + ¥(c;) = a;c; (because (c;, a;) is on the extended graph

of p)

K=1+
‘/X\IUI_‘(D)

14 iy D A+ D[ () i

ol

(o) du+2[ @) = cada

=1 ® Ju— . ]
+waw)(wm M wa>(w)“

Since [ ¥(|v]) du = 1 we conclude u — 1/A , is affine on our support set
except precisely when u(Jv|"}(D)) = 1. Finally, as we shall need later
K = 0 is also equivalent by (20) to
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(21) 1=Zf‘

v e)

¢ juldp = f . uvdp
[oI7*(D)
since sgn u = sgn v.
We can now almost characterize By, but the result is incomplete and
certainly more complicated than its predecessor.

THEOREM 3°. Suppose ® and ¥ satisfy the A ,-condition and {[a;, b;]}
are the maximal intervals of constancy of . Let u € Ly(p) and N, =
sup{A > 0: [ ¥(@(A|u]) du < 1}. Then u € B¢, if (i) |lully = 1, (ii) a.e.
on |u|"[\la;, N b)), [u(t)| = N.'a, or A,'b, (unless a; = 0 when |u(t)|
= A.'b, instead), and (iii) if ,u.(lu|_1(U[}\;1aj, A;lbj])) =1 and
J¥(@(A, |u) du =1 then p(|u|"'(A;"a;)) > O for some j as well. Con-
versely u € By*, implies (i) and (ii), and, provided b;/a; > m > 1 for all j
with a; > 0, it also implies (iii).

In fact if u is bounded we do not need the A ,-conditions. Note that in
particular if there are only finitely many intervals of constancy we have a
complete characterization.

Suppose first our u satisfies (i)—(iii). Exactly as in the proof of Lemma
2 (with @ and ¥ interchanged) we can alter v = ¢(A |u|) sgnu so as to
obtain v € Ly (p) with [ ¥(|v]) du = 1 while (A, ju(?)], |[v(2)]) lies on the
extended graph of ¢ and sgnv = sgn u a.e.. Note moreover that (with ¢/,
a, b/ as in Lemma 2°) in altering v on the sets (A Ju) X ¢;), unless we are
forced to increase |v| to b; for all j (just the case where

Je(e(AJu(0)1 +)) du=1

we can always alter |v] so that on some such set a < [v] < b/ on a set of
positive measure, and thus have u(|v]”}(D)) < 1 necessarily (since such
values cannot give rise to points on the horizontal segments of the
extended graph of ¢). So we have

(@) (el (D) <1, o [¥(e(AJu(r)]+))p(dr) = 1.

Now by Lemma 2°, as a functional v maximizes over By, L at our u,
hence if u = Ju;, + ju, with u, € B ,, necessarily at each u, as well. So
(A, lu(2)], |v(z)] lies on the extended graph and sgnu; = sgnov = sgnu
a.e., and A, u, = A u except on the [v|"'(¢;). Hence A, u, = A ,u except on
the |v|"(¢;) wherea, < A, |u,| < b, or A 'a, < |u,| < A, 'b;.
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We now have two cases: either (21) fails (K # 0) and u > A}! is
affine, or (21) holds. In the first case since A ;' = 3(A,' + A, ') we have

INJa, + 30 e = NTa, < Y| + 3 luy| =lul < AL'D

w j

on |v|” 1(c ) and thus from the assumed extremity of the values of |u| on
that set we must have |u;| = A, 'a; and |u,| = A q, where lul = A 'a
(and similarly for the b)), whlch says Ay lwl=A |u| A, lu,| ae. on all
X. But now A, =1 +f<I>(}\ l_|u|)dp‘—- 1+ [®(A,|u)dp=A, and we
conclude u; = u, so u is extreme, as desired.

In the second case, where by (21) [,y pywdp=1 and also
p(|v|"Y(D)) = 1, we necessarily have v = VX oi-1(py SO [ ¥([0X 1)) dp
= 1. Since |v] = @(A|u]) on |v|~'(c,) except when (a, is a discontinuity of
¢ and)

(23) p(lul (A1) > o,

when (23) fails for all j we obtain [ ¥(¢@(A ,|u])) dp = 1. Thus by (iii) (23)
holds for some .
On the other hand when p(|v|~}(D)) = 1 we cannot have A |u| < nb;
for all j, with n < 1, since then A = n~*A_ has the property that a < Ay
< b, on |v|7'(c,), whence @(Alu) = ¢(a, +)=c¢;, all j, so
f\If(q)(MuD) dp = f\If((p(}\u|u| +))dp =1 by (22), which contradicts
the definition of A,. Consequently for ¢ > 0 we have A |u| > (1 — €)b, on
a set of positive measure for some j, and thus

A - e)bj <lu| = 3luy| + Fluy| < %}‘;lbj + %)\Zzlbj
on that set. SOA;'(1 — &) < A" + FA; ' foranye > 0,and A, ' < $A.°
+ AL
By (23) we have the reverse inequality: for
_ 17y
NJla, + 3N a; < S| + Suy| =lul =Aj'a;  onlu| (}\ulaj).

Now we conclude as in the first case that A, = A, and thus u; = u, so u is
extreme.

Conversely suppose u € By*,. Then ||ully = 1 of course and if, for
some j, (ii) fails then for some ¢ > 0 we have

u(lul‘ll)\glaj +e,A;'h, — e]) > 0.
Exactly as in Theorem 3 we now partition

= |u|“1[}\;1aj +e, A, 'b, — e]
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into disjoint subsets F; and F, of equal measure; because @ is linear on
la;, b)), for |t| < &, u, = u + t(X5 — X ) sgn u will have

Johgud du= [@(AJu) du
so that
(/)1 + [ OO Jud du| = 1.

whence ||u,||, < 1 by the final assertion of Lemma 2. So (ii) must hold.

Finally suppose (iii) fails, so p(Ju|"'(U[A}'a I A;lbj])) =1,
J ¥ (@A, Ju)) du=1 and p(Ju|""(A;'a;)) = 0 for all j. Because of the
first and last of these, and (ii), we have the range of |u| in the sequence
{A\,'b;}, and for v = @(X Jul) sgn u = @(b;) sgnu on |u|"'[A;'a;, A;'b)],
the second condition says [ ¥(|v]) dp = 1. Of course [uvdu =1 since
(19) holds.

Now by hypothesis b, = A |u| = na; on |v]~*(¢;) for all j, with 5 > 1,
so that if 5 > m, > 1 we can assert that for A = 7, 'A, we have b, > Alu|
> n;'na; > a; on |v]7'(c;). Thus [ ¥(@(Alu))dp =1 still, as
X \I'(cj)p,(lvrl(cj)). Indeed for some set F C |v|‘1(cj) of positive mea-
sure and & > 0 small, clearly the same is true with u replaced by u ,= u +
&(Xr, — Xr) sgnu, where again F; U F, = Fand pF|, = pF,, and

fuivdy=1= fuvd,u

since |v| = ¢; on F, and sgn u = sgn v. But now

frusvdp= [O(Nu,[)dp+ [(o)) du=1+ [®(Nu.]) dp,

so 1= fu,vdy= (/A1 + [ ®(Nu]) dp) = flully. Since u =
$(u,+ u_) we have our contradiction, showing (iii) cannot fail and
completing our proof of Theorem 3°.

We can now simply observe that our adaptation of Lindenstrauss’
proof to show p(Bg,) = p(B;,) applies with little change to yield the
assertion of Theorem 1 in the present case (where we assume b,/a; > 6 >
1). Indeed if u, is extreme in the subset of By , mapping onto a given
xo in R”, and not in By, then |lullx = 1 (or choosing ; # 0 in kern p
we have u, + eu; in By ,). Since u, is not extreme, by Theorem 3°
we know that (iii) fails or that there is a j and & > 0 for which
luol"'[A,)a, + & A, 'b, — €] has positive measure. In the second case we
now choose a non-zero u supported by that set with sgn u = sgn u,,
p(u) =0 and (1/A, )1 + [®(A, |ug+ ul) dp) =1, all of which are
possible (with |u| =€ on our set) by Liapounoff’s theorem as before.
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Just as in the preceding paragraph the last condition says [|u, + u||s
< 1, contradicting the extremity of u,in p~'(x,) N By .

Finally in case (iii) fails we have |uo| = A, 'b; on Jug| '[A,'a,, A, 'b)]
for all j and we can proceed as in the final paragraph of the proof of
Theorem 3°, using A = nl‘l)\uo, to replace u, by u = uy + eu; sgnu,,
where |u;] <1 and & is small enough to guarantee [ W(@(A|u) dp =
Z\If(cj)p.(lvl‘l(cj)) =1 as before, while [u,vdp =0 and [u,ydp=
p(u,) = 0, u; # 0, is guaranteed by Liapounoff’s theorem. Thus (iii) fails
only if u is not extreme, and our proof of Theorem 1 is complete.

In order to prove Theorem 2 for By , we first note that by Lemma 2°
for xo = p(x zu) € 9K (E) and 0 supporting there (A, |u(?)], |6 - y(2)])
lies on the extended graph of ¢ a.e., where Ay , =1 + [®(A, Ju) dp > 1,
so one has |u| < ||y|| = M with a bound independent of x,. Again one has
K (E) = K (E), so the former is closed as before.

Once more we obtain our minimal E with x, € dp(x zBg ,)- Now
exactly as in the proof of the first assertion of Theorem 2 we can take
(31X E>- - - »YuX g) iIndependent, and thus for some ¢ > 0

(24) p{t€E:|0-y(t)]>e}>e forallf e S" "

As a consequence, in Ly(pg) [|0 - y|| has a positive lower bound indepen-
dent of 8: for if we choose k > 0 so that ¥ (k) > 1/ then by (24)

Jo(%10-3) du = ¥(k) e >1
so (k/€)||0 - y|| = 1, and m = ¢/k is our lower bound. Thus

6 -y(t)
10 - il

Let M, be the larger of m~'M and ¢ (m~'M).

If we now alter ¢ on (2M,, c0) to obtain a ¢, yielding a dual pair @,,
¥, of Young’s functions both satisfying the A,-condition, as earlier, then
we know x, € 9p(xgBg,) = dp(xBg ,) and we can now appeal to
Theorem 1 to obtain u € B¢, with p(x zu) = X,, and |u| < M as above.
Moreover for some 8 € "%, x 0 - y maximizes over B ., at u, and with
v the normalized element of Ly (ug) 6 - y/110 - y|| (so [ ¥, (|v)) dpg = 1)
we know by Lemma 2° that (N, |ul, |v]) lies a.e. on the extended graph of
@,, (hence of @ since N'|u| < ¢(m~'M) < M,) where

<m y|<m M.

(24) A = sup{}\ > 0: f‘I’l((pl(}\luD) dp < 1}.
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Further (still in terms of Ly, (1 £))

1=llull, = (1/)\1,,)(1 +/<I>1()\1u|u|) dug),

and so [ uv dp = 1 (essentially since (19) obtains):

f}‘lu“v dpg = fq)l(}\lulul) dug + f‘I'l(M) dpg

= ./q)l(xlulun d”‘E +1= >\1u'

But 1= fuwdpy= [¥,(|v]) dpy implies [ ¥(|v]) du, =1, whence
llv]l = 1 in Lg(pg), and consequently that u has its functional norm 1 in
Lg(p ). Finally we claim N, in (24) coincides with

A, = sup{}\ > 0: f‘I’((p()\Iul)) du, < 1}.
Indeed

1 1
1= '}\T(l + /(bl(}\lulul) dl"E) = }\_1(1 + f@(Alu|u|) dl"‘E)

since N, |u| < ¢(m™'M) < M,, and thus X', provides

.1
min (1 + [@(Nul) diy | = ul, = 1.

But from our remark following Lemma 2 our minimum is provided only
on an interval [A, — & A ] (so X', < X,), and then for A in that interval
Alu| has its range entirely in our maximal intervals of constancy:

(25) uE(|u|"(U[>\-1aj, )vlb,])) =1,

and [ ¥(@(A|ul)) du = 1 (because the derivative in our remark is zero on
[\, — & A,)). Thus from the converse portion of Theorem 3°(iii) for
A = X, we know |u| = (X,)"'a, on a set of positive measure for some j, so
that (25) cannot hold for all A in (N, A, + §), 8§ > 0. Consequently
N, < A, is impossible, and X', = A, as asserted.

But now u € Bg¢, has its consequences from Theorem 3° precisely
the conditions sufficient to insure u € By}, by the same result. If ¢ has no
initial interval of constancy we can simply extend u to be 0 on X\ E
obtaining the desired element of Bg?, (by Theorem 3° again) mapping
onto x,. But if we have an initial interval of constancy [0, b] we can
choose an element u; of the b ball of L®(p y\ z) With p(X x\ g#;) = 0 and
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|u| = b by Liapounoff’s theorem, so u + u, is evidently the desired ele-
ment of Bg*,. Our proof of Theorem 2 is finally complete.

Lastly we note that complex versions of these results only require

appropriate attention to conjugation and absolute values at various points
in the proofs.
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