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DETERMINING INCOMPRESSIBILITY OF SURFACES
IN ALTERNATING KNOT AND LINK

COMPLEMENTS

WILLIAM MENASCO

In this paper we carry out the next necessary step in the study of
closed incompressible surfaces in alternating link complements — de-
termining when a given punctured surface in an alternating link comple-
ment is incompressible, pairwise incompressible and understanding when
a "peripheral tubing" operation (which will produce a closed surface)
preserves the incompressibility of a surface.

1. Introduction. Let L c R3 c S3 = R3 U {oo} be a non-split
prime link which is alternating with respect to the projection π: R3 -» R2.
In [M] we introduced the notion of a standard position embedding with
respect to π(L) for incompressible, pairwise incompressible surfaces in
S3 - L. From Theorem 3(c) of [M] we can conclude that there are only
finitely many such ^-punctured surfaces for n > 0. However, for a given
surface S c S3 — L in standard position, no method was given in [M] for
determining whether S is incompressible or pairwise incompressible. Fur-
thermore, understanding when a "peripheral tubing" operation preserves
the incompressibility of a standard position surface was not discussed in
[M].

In this paper we give a method for determining when a surface in
standard position is incompressible and pairwise incompressible. Using
results on branched surfaces in [F-O], we adapt our new method to
understanding when a "peripheral tubing" operation preserves the incom-
pressibility. Throughout this paper we use the same notation and
terminology as in [M].

In §2 we amplify on the notion of standard position.
In §3 we develop the notion of a compressing disk or pairwise

compressing disk in standard position with respect to a standard posi-
tioned surface. From an analysis of a disk in standard position we
produce our sought after method. In particular, the following sufficient
condition for incompressibility becomes evident.

THEOREM 1. Let L be a non-split prime alternating link and suppose
S c S3 — L is a surface in standard position. For S to be incompressible,
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pairwise incompressible it is sufficient that both of the following situations not

occur:

(a) There exists a loop a c S Π S\ such that a intersects a component

of(S2 Π S2

±) — L more than once.

(b) There exist loops a c S Π S2

+, β c S Π S2. and arcs a,c c a Π

((S2 Π Si) - L), 6, c c β Π ((S2 Π S2) - L) w///ι c c an β such that a,
b, c are contained in components of (S2 Π S+) - L adjacent to a common

bubble. (See Figure lb.)

"Common Bubble"

FIGURE 1

This sufficient condition will force some standard position loop

patterns of S Π S2

± to be incompressible, pairwise incompressible inde-

pendent of π(L). In particular, we have the following results in §3. (We

use the notation PT. to mean point.)

THEOREM 2. Let L be a non-split prime alternating link and suppose

S c S3 — L is an S2 in standard position having 4 or 6 punctures. Then:

(a) // S = S2 - 4 PT's is a PSPS loop pattern then S is incompressi-

ble, pairwise incompressible.
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(b) If S = S2 - 6 PT.'s with {cλ, c2,c3} = S Π S2

+, where ω+(cλ) =

ω + (c 2 ) = PS PS and ω+(c 3) = PS1 PS1, i = 1 or 2, then S is incompressible,

paίrwise incompressible.

(c) If S Π Si is a P4 or P6 loop patterns, or if {cvc2} = S Π S2

+,

ω+(c x) = P3SPS and ω+(c 2) = PSPS then there is one simple isotopy that

will determine whether S is incompressible, pairwise incompressible.

Finally, in §4 we exploit Theorem 2 of [F-O] to determine which

"peripheral tubings" produce closed incompressible surfaces. A strong

familiarity with branched surfaces and their development in [F-O] and [O]
is assumed.

2. Amplifying standard position. Let S c S3 - L be an incom-

pressible and pairwise incompressible surface satisfying the following

conditions:

(i) No word ω ± (c) associated to S is empty.

(*) (ii) No loop of S Π S2

+ meets a bubble in more than one arc.

(iii) Each loop of S Π S2

± bounds a disc in B\.

Conditions (i) and (iii) are the result of the incompressibility of S and

are independent of the alternatingness of L. Condition (ii) is the result of

the pairwise incompressibility of S and is dependent on the alternating

properties of ττ(L). For further details see [M],

LEMMA 3. Let S be as above. S can be isotopedso that, in addition to the

preceding conditions, S satisfies the following:

(a) No loop S Γ) S2

± meets both a bubble and an arc of L Π S2 having

an endpoint on that bubble.

(b) No loop of S Π S2

± meets a component of L Π S2

± more than once.

(c) There do not exist two loops a c S Π S2

+ and β c S Π S2_, with

arcs a, b c a Π β such that a and b are contained in adjacent components of

(S2 Π S2

±)-L,anddaΠ db = 0 .

Proof. To show (a) we consider a loop, C, of S Π S2

± which meets

both a bubble and an arc of L Π S2 having an endpoint on the bubble.

Figure 2 shows the four possible configurations that can occur. The reader

should convince himself that if Figure 2(a) occurs, then Figure 2(b) must

occur, and if Figure 2(c) occurs, then Figure 2(d) must occur. An isotopy

that will remove the configurations in Figures 2(b) and (d) will thus

remove the configurations in Figures 2(a) and (c).
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(a) (b)

(c) (d)

FIGURE 2

FIGURE 3

FIGURE 4
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Suppose C corresponds to Figure 2(b) and assume C is the innermost
such loop. By sliding the point of C that is transverse to L across and
under the bubble, and dragging S along, we produce a new loop that has
two arcs on the same bubble. (See Figure 3.) This adds a saddle to S, but
we are now in the situation of Figure 5(b) of [M], where two saddles can
be eliminated.

Suppose C corresponds to Figure 2(d) and assume C is the innermost
such loop. By sliding the point of C that is transverse to L across and over
the bubble, we produce a new loop that has two arcs on the same bubble.
(See Figure 4.) In a similar fashion to the isotopy depicted in Figure 3,
this adds a saddle to S, but we are again in the situation of Figure 5(b) or
[M], where two saddles can be eliminated.

Condition (b) follows from the incompressibility of S. Suppose C is a
loop of S Π S2

± and a is an arc of L Π S2

± such that pv p2 Q C Π α,
where pλ and p2 are two successive points on α. Let ΰ c S b e the disc in
B3

± whose boundary is C Then there is an arc a' c D with da' = {pv p2}
and a' isotopic to α, as illustrated in Figure 5. This means S is 9-incom-
pressible and since S is not an annulus, S is compressible.

Finally, Condition (c) follows from the pairwise incompressibility of
S. Suppose a c S Π S2

+ and β c S Π Si with a, b c a Π β arcs con-
tained in adjacent components of (S2 Π S2

±) - L, da Π db = 0,as shown
in Figure 6. We can take points px ^ a and/7x e b, and arcs, R+ and i?_,
such that {pl9 p2} = dR± and i ? ± c S Π B2

±. Since px and p2 are in
adjacent components of(S2C\S])-L,R+UR_is isotopic to a meridian
of L. Assume a and β are innermost such loops R+U i?_ bounds a
punctured disc along which S can be pairwise compressed. D
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We refine the notion of standard position to mean that a surface S

satisfies the conditions of (*) and Lemma 3. Notice that the alternating

hypothesis for L has not been used in the proof that surfaces can be

isotoped into standard position.

FIGURE 6

3. Compressing discs in standard position. Let S c S3 — L be a

surface in standard position. From §2 we know that every incompressible,

pairwise incompressible surface can be isotoped into standard position.

We do not know that every surface in standard position is incompressible.

In fact, there are many easily constructed examples to the contrary.

Suppose D c S3 — L is an embedding of either a disc (D2) or a disc

minus a point (D2 - PT.) with dD c S. (If D = D2 - PT. then D is a

disc that is punctured once by a component of L.)

As in [M] we can isotope D to meet each ball bounded by a bubble in

saddle-shaped discs. (See Figure 4 of [M].) We may suppose that the

meridian boundary of D = D2 - PT. does not intersect the bubbles and

that D meets S+9 S
2: and S transversely.

Each component of D Π S2

± is either a loop or an arc whose end-

points are on dD c S.

For each arc aλ c D Π S\ there are additional arcs α2 α ^ c f l n

S\ and arcs β 1 ?... 9βk c dD n £3

± such that α, Π ΘD = (α, n β ) U (α,

Π jβJ_1) = 3α7 (where the index is mod A:). We refer to the loop aλ U βx

U α 2 U β2 U •• U ^ U ] 8 i - c β 3

± a s

LEMMA 4. Lei S* c S3 - L be a surface in standard position, and

suppose D c S3 — L is either a compressing disc or a pairwise compressing
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disc. Then D can be replaced by a similar disc, D\ such that:

(a) No component of Df Π S\ that is contained in a single component of

(S2 Π S2

+) — L is either a loop or an arc which together with an arc on

S Π S2

± bounds a disc in (S2 Π S2

±) - L.

(b) No loop of Df Π S\ or loop of arcs of D' intersects a bubble in more

than one arc.

(c) Each loop of Ό' Π S\ or loop of arcs in B\ bounds a disc,

D" c ΰ ' n B\.

(d) No loops of arcs of Df intersects a bubble and a component of

S Π S2

± which intersect each other.

Proof. Let C be an innermost loop of D Π S\ in S+9 or a loop of arcs

of D in B\. Let C be a nearby isotopic circle on D Π B3

+. C bounds a

disc do B\- S with d Π D = ddx = C", since S Π S2

± satisfies (iii) of

(*). Surgering D along d we produce a new compressing disc that we still

call D, and we then perform the same procedure on a loop of (D Π S+) -

C which is innermost among loops of (D Π 5+) — C or another loop of

arcs of D; and so on. When all loops of S Π S2

+ have been considered, we

operate in the same way on loops of S Π S2: and loops of arcs of D in B3_.

After this has been done the conditions on loops in (a) and condition (c)

automatically hold.

For the condition on arcs in (a), let a c D Π S\ be an arc, α ' c ΰ n

B\ be an isotopic arc, β c S Π B\ be an arc, and J c β3

+ be a disc such

that a' Π β = dd and d Γ\ S = d Π D = 0 . Surgering D along the half-

disc d produces two new discs, one of which must be a compressing or

pairwise compressing disc; once again, call this new disc D. D still satisfies

(a) for loops and (c). Performing this operation on all such α in D Π S\

and then in D Π S2: will finish off condition (a).

For (b), suppose C is some loop of D Π S2

+ or loop of arcs of D in B\

{D Π S2__ and D in B3_ are treated similarly) which meets the upper

hemisphere H of a bubble in two or more arcs. Let ^ c S + U f S Π 5+) be

a disc bounded by C, chosen so that dλ Π H contains a rectangle 7? whose

boundary consists of two arcs of C and two arcs of dH. Replacing C if

necessary by another loop of D Π S\ or loop of arcs of D in B\, we may

assume Z) Π int(i?) = 0 . We now have two possibilities, according to

whether R meets L or not; see Figure 7. C bounds a disc rf2 c D Π i?+.

Let J? c ίί2 be a band joining the two arcs of C Π i?; if (7? Π L) ¥= 0

(Figure 7a), the two arcs belong to the same saddle σ, so B U σ contains a

circle isotopic in S3 - L to a meridian of L. For D = D2, this is

impossible. When D = D2 — PT., we meridionally surger D along the core
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circle of B U σ into an annulus and a new D2 — PT., which must be

pairwise compressing with fewer saddles.

If R Π L = 0 , let d3 c B\ be a disc with 3 J 3 consisting of an arc of

B and an arc of R; we may assume d3 Π D a dd3. Then we may use d3 to

isotope D so as to eliminate the two saddles of D containing the two arcs

of R Π B.

For (d), let Cλ be a component oί S Cλ S\ which meets the upper

hemisphere H of a bubble. Suppose C2 is a loop of arcs of D in B3

+ that

meets both C\ and H. Let ^ be the disc C\ bounds in S Π B3

+. Let

rf2 c ( 5 Π 5+) U 5+ be the disc that C2 bounds such that (dτ U H) Π d2

contains a hexagon R whose boundary consists of two arcs in C1? two arcs

in dH\ and two arcs in C2.

We have two possibilities, either R Π L = 0 (Figure 8a) or i? Π L Φ

0 (Figure 8b). In Figure 8b the loop cf arcs is labeled as C3. Since

another loop of arcs must be attached to C3 via the saddle in the bubble

we must also see C2 of Figure 8a occurring. So we can assume D Π R = 0 .

L
L

R

(a)

FIGURE 7

Suppose Cλ and C2 correspond to Figure 8a. By sliding the arc dι Π c2

that is on dR across dx and through the bubble, and dragging D along, we

produce a new loop of arcs (or possibly a loop of D Π S+) that has two

arcs on the same bubble. (See Figure 9). This adds a saddle to Z), but we

are now in the situation of Figure 7b, where two saddles can be elimi-

nated. D

If D c S3 — L is a compressing or pairwise compressing disc of a

standard position surface such that D satisfies the conditions of Lemma 4

then we say D is in standard position with respect to S. Notice that we

have not used the hypothesis that L is alternating.
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LEMMA 5. Ifπ{L) is alternting and S c S3 - Lis a surface in standard
position and D c S3 — L is a compressing or pairwise compressing disc of S
in standard position w.r.t. S then each component of D Π S\ is an arc.

Proof. The reader should convince himself that if S is surgered along
D to produce a new surface, S", (possible not connected) the new surface
will satisfy (*). In particular, 5" will be in "standard position" in the sense
of [M]. If C c D Π S\ is a loop then there is a loop C c Sf C\ S\
parallel to C. Using notation from [M], ω ± (C) = P'S 7', where 0 < / < 1
and j > 0. By Lemma 2 of [M] this is impossible. D

TWO SADDLE TO ELIMINATE

FIGURE 9
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From Lemma 5, it is easy to see that D Γ\ S2

±a D has at least one of

the following two alternating properties:

(i) There exists a component of D - (D Π S 2

±) whose boundary

is an arc in D Π S\ and an arc in dD (Figure 10a).

(**) (ii) There exist two adjacent components of D —(D Π S2

±), Rλ

and R2, such that dRt = at U βi9 where α, c ΰ n S2

± and

Bt c dD are arcs. Furthermore, aλ and a2 each intersect one

single bubble and aλ Π a2 Φ 0 . (See Figure 10b.)

Proof of Theorem 1. It should be clear that if (i) of (**) occurs then

either situation (a) of the theorem occurs or condition (a) of Lemma 4

does not hold. Since we can assume any compressing disc satisfies Lemma

4 then only situation (a) of the theorem occurs.

If (ii) of (**) occur then Figure l i b (prior to the isotopy) shows how

region Rλ and R2 would be situated. This forces a portion of S to look like

Figure 1. Thus, situation (b) of the theorem occurs. D

(INTERIOR OF
1
 SMALL CIRCLES
ARE SADDLES IN
BUBBLES)

COMPONENT IN D - (D Π S2

±)

(a)
(b)

FIGURE 10

Isotopy

CompoJntof D C<™pon«tof ( S ! n - L

FIGURE l l a
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ψ Isotopy

FIGURE l ib

Our method for determining incompressibility, pairwise incompressi-
bility is quite evident now. Suppose for some standard position surface
S c S3 — L, S Π S2

± satisfies situation (a) or (b) of Theorem 1. We then
isotope S along the corresponding components of a possibly existing D.
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The resulting S Π S2

± will not necessarily be standard, but D Π S\ will
still satisfy (**). In particular, Figure l la shows the isotopy when (a) of
Theorem 1 occurs and Figure l ib shows the isotopy when (b) of Theorem
1 occurs. Since D Π S2

± still satisfies (**) then S Π S2

± satisfies situation
(a) or (b) of Theorem 1. We continue in this fashion until either (a) and
(b) no longer hold, or S Π S2

± violates (iii) of (*) or Lemma 3(b), (c). In
the former case S is incompressible, pairwise incompressible. In the latter
case S is not.

Proof of Theorem 2. We start by establishing the following claim.

Claim. If a c S Π S2

± and ω±(α) = PSPS then a satisfies the suffi-
cient conditions in Theorem 1.

To prove the claim we assume first that a intersects a component of
(S2 Γ) S2

±) - L more than once. This would mean that a did not satisfy
Lemma 3a and, thus, S was not in standard position. (See Figure 12.)
Second, we assume there are arcs a, b, c c a Π ((S2 Π S2

±) — L) as in
situation (b) of Theorem 1. (We must have b cz a Π ((S2 Π S2

±) - L)
since a PSPS loop in always innermost.) But as Figure 13 illustrates
S Π Sψ will then violate (ii) of (*). Thus the claim is established.

violates (a) of Lemma 3

Component of (S2 Π S2

±) - L

FIGURE 12

The proof of the claim essentially proves part (a). For part (b), the
reader can easily construct a similar argument for PS2PS2 and PSPSPS
loops.

For part (c), we notice if a P 4 , P 6 , or P3SPS loop satisfies (a) of the
theorem then it must violate (b) of Lemma 3. (See figure 14.)

If a P 4 , P 6 , or P3SPS loop satisfies (b) of Theorem 1, then there is a
component of the loop intersecting (S 2 Π S2

+) - L that can be isotopied
rel 3 into a bubble (in fact the "common bubble"). Figure 15 illustrates



INCOMPRESSIBILITY OF SURFACES

b

365

FIGURE 13

Component

oί{S2ΠS2

±)-L

FIGURE 14
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this configuration and the possible isotopy of sliding the loop past the
"common bubble". This isotopy is the result of first applying the isotopy
in Figure l ib once and then applying isotopies that were used for part (a)
of Lemma 3. •

Common Bubble

Isotopy

FIGURE 15

4. Peripheral tubing. From [M] we know that all closed imcom-
pressible surfaces in alternating link complements are the result of periph-
eral tubing together meridian boundary components of incompressible,

pairwise incompressible surfaces. However, not all peripheral tubing pre-
serve incompressibility. In determining when incompressibility is pre-
served we use some recent results on branched surfaces, [F-O]. For the
purposes of this paper we need only concern ourselves with the branched
surfaces that are described in §3 of [10] and the result pertaining to them,
namely Theorem 3.2 of [10]. (We use the same terminology as used in
[F-O] and [O].)

From [F-O] we know if S is a closed incompressible surface it is
carried by a branched surface, B. In particular, if S is obtained by
peripheral tubing on a pairwise incompressible surface S' then B -
(branching set) must be a union of meridial annuli and a component that
is isotopic to int(S") (See [O].) Near the branching set B resembles one of
the configurations in Figure 16. To determine which types of branching
set can occur on B such that B carries only incompressible surfaces, we
apply Theorem 3.2 of [O], i.e. B must satisfy the following conditions:

(1) There are no monogons in (S3 — L) — B.
(2) dhN is incompressible.

Here, dhN is the portion of the boundary of a fibered neighborhood, TV, of
B that is transverse to fibers. If B satisfies the above we then must check
that no negative weights can be assigned to B to produce a surface.
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— OR

Branching Set

(b)

FIGURE 16

To determine when dhN is incompressible we first need to develop a
notion of a closed surface in standard position and a compressing disc in
standard position.

We say a closed surface, S, is in standard position if S Π S2

± satisfies
the following:

(i) No word ω + (c) associated to S is empty,

(ii) No loop of S Π 5 | meets a bubble in a non-meridian fashion

(***) (Figure 7b). (Thus no loop meets a bubble more than twice, as

illustrated in Figure 7a.)

(iii) Each loop of S Π S2

+ bounds a disc in B
±

The argument that a closed incompressible surface is isotopic to a
surface satisfying (i) and (iii) of (***) is the same as for a surface with
boundary since it is dependent only on incompressibility. The argument
that any surface can be isotoped such that no loop of S Π S2

+ meets a
bubble in a non-meridian fashion is the same as previous arguments which
are independent of incompressibility and alternatingness. Thus every
closed incompressible surface is isotopic to a surface in standard position.

We use the same definition for a compressing disc in standard
position with respect to a standard position surface as was developed in
§3. Lemma 4d is a vacuous condition for closed surfaces. The rest of the
proof of Lemma 4 was independent of boundary. Thus a compressing disc
can always be replaced by a standardized disc.

When π(L) is alternating Lemma 5 still applies to a compressing disc
in standard position. Thus Theorem 1 and the isotopies of Figure 11 still
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hold. So the same method of determining incompressibilities can be used
on closed surfaces.

Let S" be an incompressible, pairwise incompressible surface in stan-
dard position and let S be a surface in standard position that is the result
of peripheral tubing of 5' with annuli that lie on peripheral tori in
standard position. (If T is a peripheral torus in standard position then
Γ Π S2

± is made up of loops that encircle components of L Π S2

± as
shown in Figure 17.)

loop in T Π S2

±

FIGURE 17

Branching Set

0) FIGURE 18 (b)

If B is a branched surface that carries S then away from the branching set
B Π S2

± looks like either T Π S2

± or S' Π S2

±. Near the branching set
(which is near where Sf Π S2

+ intersects L) B Π S2

+ resembles Figure 18.
Figure 18a(b) corresponds to a branching set of the type shown in Figure
16a(b).

To determine whether there exists a B associated with 5" satisfying
the conditions of Theorem 3.2 of [O] we first assume that all branching
sets are of the type shown in Figure 16a. The only resulting components
of dhN that must be checked for incompressibility are components that
correspond to interior and exterior peripheral tubing of 5". If both of
these components are incompressible then the corresponding B carries
only incompressible surfaces. If either component is compressible we
locate all standard discs and replace appropriate branching sets of type
Figure 16a with the type in Figure 16b, ensuring along the way that no
monogons are added. Finally we check to see if the resulting branched
surface carries a surface.
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(a)

(b)

FIGURE 19

FIGURE 20

At this point an example may be useful. Figure 19a shows the
borromean rings with an incompressible, pairwise incompressible 4-punc-
tured sphere in a PSPS, PSPS pattern. The associated branched surface,
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where all of the branching set are of the type in Figure 16a, is shown in
Figure 19b.

Figure 20 shows the two components of dhN that correspond to
interior and exterior peripheral tubing. The reader should notice that these
components violate (iii) of (***) i.e. the two sets of curves in Figure 20
bound annuli in B3

+. This eliminates any possible choice for changing
branching sets.
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