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A THEOREM ON HOLOMORPHIC EXTENSION OF
CR-FUNCTIONS

Guipo LuprAaccioLu

We prove the holomorphic extendabilty on a domain D € C”,
n > 2, of the continuous CR-functions on a relatively open connected
subset of 9D, provided the complementary subset of 3D is ¢(D)-con-
vex.

Introduction. Let D be a relatively compact open domain in C”,
n > 2, with boundary D, and K a compact subset of 0D. We require D
and K to be such that 9D\ K is a real hypersurface of class C! in
C"\ K.

The purpose of this paper is to give a sufficient condition on D and
K guaranteeing the holomorphic extendability on all of D of the CR-func-
tions on 9D \ K. Our theorem, which states the condition, improves and
generalizes previous results in this direction obtained in Lupacciolu-
Tomassini [6] and in Tomassini [10]."

Let @(D) be the algebra of complex-valued functions on D each of
which is holomorphic on an open neighborhood of D, and IA(T, the
O(D)-hull of K. i.e.,

Kp= N {zeD;lp(z)|< max|gl}.
¢€0(D)

Our main result is the following theorem on holomorphic extension of
CR-functions.

THEOREM 1. Assume that K is 0(5)-convex, ie., KB = K, and
0D \ K is connected. Then every continuous CR-function f on 9D \ K has a
unique extension F continuous on D \ K and holomorphic on D.

A seemingly more general theorem is the following one.

THEOREM 2. Assume that 3D \ Ky, is a connected real hypersurface of
class C' in C"\ K. Then every continuous CR-function f on 3D \ K3 has
a unique extension F continuous on D \ K3 and holomorphic on D \ K.

'4dded in proof. Recently Edgar Lee Stout kindly informed me of his paper [12], where the
same condition is already recognized to be sufficient, when D is a domain of holomorphy,
for a parallel extendability’s property in the setting of holomorphic functions.
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However, if we set D’ = D\ K; and K’ = D’ N Ky, it is an easy
matter to see that Theorem 2 is equivalent to Theorem 1 with D’ and K’
in place of D and K.

Before going into the proof of Theorem 1, let us discuss a nontrivial
situation where it applies.

Observe that, since plainly

Kp = ﬂ_ Ky,
U>D

where U ranges over the open neighbourhoods of D, it suffices, in order
that K = K, that, for some U, K, D =K, i.e. K, does not meet
D\ K. Suppose, then, that the following holds: there is an upper semicon-
tinuous plurisubharmonic function p on a Stein open neighbourhood U of D,
so that K ¢ {p = 0} and D\ K € {p > 0}. Since K, coincides with K},
the hull of K with respect to the plurisubharmonic functions on U (cf.
Hormander [5], p. 91), it follows that K v 1s contained in {p < 0}, and
hence K v N D = K. In the case p is pluriharmonic, U may be required to
be simply connected, instead that Stein; for p has then a unique pluri-
harmonic extension p to the envelope of holomorphy U of U, and hence
K,cKy;=KEc{p=<0).

1. Preliminary facts. (a) We denote by w({) the Martinelli form
relative to a point { = (§,...,§,) € C”, thatis

dz, N\ --- ANd
w(t) = ¢, 5
|z - ¢

AY (DY z=8)de A ---a - Ad,
a=1

(where C, = (-1)""~b2(n — ! /Q2mi)").
Given a holomorphic function ¢ on an open set U C C” and a point
§ € U, we denote by L.(g) the level set of ¢ through ¢, that is
Li(e) = {z € Usp(2) = 9(5)).
It is known that for any ¢ € O(U) there exist holomorphic maps # =
(hyy...,h,) € O"(U X U) such that, for each (z,{) € U X U,

(*) 9(2) = 9(§) = X hal2,8)(z4 = )
a=1

(cf. Harvey [3], Lemma 2.3). Then we set:

(1.1) 0;(UX U)={he€ 0"(UXU)j;(x)holds}.

Any h € 0 (U X U) allows one to define canonically, for { € U, a

o-primitive of w({) on U\ Li(¢), that is (n,n — 2)-form @,({) on
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U\ L (o) such that
w(§) = 5q’h(§) =do,({).

As a matter of fact, consider, for every a = 1,...,n, the following
(n,n — 2)-formon C"\ {z, = {,} = C"\ L¢(z,):

(-1)"* dzy A -+ ANdz,
Qa(g') = - C” n—
N A P

a—1
AT (D5 =G)da A podee A,
B=1

+ Z (-1)°~ 1( s“,g)dz1 Avenor B ndz

B=a+1
One verifies that, on C"\ L;(z ), w({) = 9Q,(¢).2 Then set

(1.2) ¢h(§)=m Zh(z §)(zo = £)9a(8).

It is plain that ®,({) is indeed a real analytic 9-primitive of w({) on
U\ L;(‘P)_-

Such 9-primitives of the Martinelli form will play a fundamental role
in the proof of our extension theorem. Now we derive the properties of
them that will be needed.

Let there be given open sets U,U’ € C” such that UN U’ #
&, functions ¢ € O(U), ¢’ € O(U’) and maps h € O(U X U), h’' €
O (U" X U’), and let { be a point in UN U’. Suppose first that

n > 3, and consider, for every a, 8 = 1,...,n with a # 8, the (n,n — 3)-
form A, 4(§) on C"\ (L(z,) U L¢(z2p)) defined as follows: for a < B
(_1)”“‘*” dzy N -+ Ndz,

Aa‘p(f) = (n _ 1)(n —9) Cn(za _ ga)(zﬁ — {B)lz - f]zn—4

Z(l)( )d21 A-oodeeid- B Adz,

- Ndz

n

-~
oty

+ i )"z, -8,)dm A a

Y=a+1

Y ()z —E) A a e By A

y=8+1

2The forms Q,(¢) were considered first by Martinelli [7], to give a proof of Hartogs’
theorem.
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and for a > B A, 4(§) = ~Ag (§). One can verify that € ,($) — 25(8) =
A, p($). Then, consider the following (n,n — 3)-form on (U \ L(¢)) N

(U'\ L(9)):
X, n(§) = 1
h.h (p(2) —(E)(@'(2) — @'($))

Y (hahp = hghl)(zo = $)(25 = $6) Au s(8).

l<a<fB<n
It is easily seen that, on (U\ L¢(¢)) N (U'\ L(¢),
(1-3) (Dh(g) - q’h'(f) = éxh,h'(f)-

In case n = 2 we simply have:

Q,(8) —2,(8) = - 1 dz, A dz,

@mi)? (2= )22 = &)
and hence we find, on (U\ L,(9)) N (U \ L (9")):

1 (hhYy = hyhY) dzy A dz,
(27i)* (e(2) —o(O)(¢'(2) — ¢'(§))

Next, we observe that all the above differential forms depend in a real
analytic fashion also on the point {, so that we may perform any
derivative of these with respect to the parameters Re{,, Im{,,a =1,...,n
(by taking the derivative of each coefficient). In particular we may
consider the forms dw/d¢,, aﬂﬂ/afa, etc., obtained by applying the
Wirtinger operator d - /d¢,. We first note that, for every a = 1,..., n, the
(n,n — 2)-form 9 /E)sC satisfies

z, - ¢
e (¢) = (n— 1) 2 £ Q.(%),
M |z —¢]

and hence is defined (and real analytic) on C”\ {, instead that only on
C"\ L¢(z,) as Q,($). It follows that, on C"\ ¢,

dw _
a—fa(K)— [ag (i)} (a=1,...,n).

Similarly, if n > 3, for every a,8 = 1,...,n with a # B8, the (n,n — 3)-
form dA , ,/9, satisfies

0A 2 - ¢
22 (0) = (n = 2) 2222 A, 4(§),
e |z - ¢If

(1.4) @,(8) - 2,(8) = -

(1.5)
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and hence is defined on C"\ L,(z), instead that only on C"\ (L(z,) U
L(zp)) as A, (). It follows that, on C" \ L(zp),

o, ‘[““"*m]

IO
— - = = 3 -
298 (©) (98 ©) s

If n = 2 we simply have, for a = 1,2:

08, 02,

—_— _— = (.

2 6 -
Now, let there be given an open set U C C”, a function ¢ € O(U) and a

map h € O;(U X U), and let { be a point in U. In case n > 3 consider,
for every a = 1,..., n, the following (n, n — 3)-form on U\ L (¢):

) e L)
) = S e ) T )

Then we find, on U\ L(9):

9Py 0y 0% o age _
(1.6) T, () P (§)-0¥x(¢)  (a=1,...,n).
On the other hand, if n = 2, we have:
90, o _ 98, -
(1.7) T (£) 7 ¢)  (a=1,2).

(b) It is well known that, given an oriented real hypersurface 3 of
class C! in C" (without boundary, not necessarily closed) and a complex-
valued function f in L (Z), one may say that f is a CR-function on =
in case it satisfies the tangential Cauchy-Riemann equation in the weak
form, that is

(1.8) fzféx ~0,

for every (n,n — 2)-form A of class C* on an open neighbourhood of =,
such that 2 N Supp(A) is compact. However we need for our purposes a
sharper characterization of continuous CR-functions on = than (1.8) is.
This is provided by the following proposition.

PROPOSITION 1.9. Let f be a complex-valued continuous function on Z.
Then f is a CR-function if and only if it satisfies

(1.10) [ fw=[ fu,

Cn+q aCn+q
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for every singular (n + q)-chain c,,, , of 2 of class C' and every (n,q — 1)-
form p of class C' on an open neighbourhood of = (1 < g <n — 1).3

Proof. This proposition asserts that (1.8) and (1.10) are equivalent for
a continuous f (which would be quite immediate if f were of class C').
We shall prove only that (1.8) implies (1.10), the converse being trivial.

For every differential form p of class C! on an open neighbourhood
V of 2, we denote by u|s the restriction of p to = (i.e. the pull-back of u
by the inclusion map 2 = V). Then p| is a continuous regular form on
=4

Consider the continuous n-form on =

u=f(dzy A -+ Ndz,)|s.

We claim that (1.10) is equivalent to the following assertion:
(*) u is regular on = and du = 0.

As a matter of fact, taking in particular ¢ = 1 and p =dz; A --- ANdz,,
(1.10) gives:

0 facmfdzl A Ndz, ‘/E;c,,H u,
for every singular (n + 1)-chain ¢, , of = of class C*; and this is just as
to say that () holds. Conversely, assume that (x) holds. Any (n,q — 1)-
form p as in the statement can be written as p = dz; A --- Adz, A i,
where i is a (0, g — 1)-form of class C! on an open neighbourhood of =.
Then u A ji|s is a continuous regular (n + q — 1)-form on £ and, since
du =0, d(fi|s) = (dji)|s, we have:

d(unfls)=(-1)"un (dip)ls = f (dp)ls = f ()]s

It follows that
f f5u=f. uAﬁlz=fac fi,

C,,+q a‘n+q ntq

that is, (1.1) holds. Next, we claim that (*) is equivalent to:

(%) u is weakly closed on 2, that is f uNdv=0
b

for every (n — 2)-form v on = of class C' and with compact support.

3The same result is proved in Lupacciolu-Tomassini [6] under the additional assumption
that f is locally Lipschitz, but the argument used there does not work without that
assumption.

“For the definition and basic properties of continuous regular forms we refer to Whitney
[11] pp. 103-108. We denote, as usual, by d the differential acting on such forms (defined
by means of Stokes’ formula), as the ordinary exterior differential.
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This latter equivalence is a straightforward consequence of the follow-
ing general facts about continuous differential forms on a manifold of
class C':

(1) The differential acting on continuous regular forms may be
understood in the strong sense. This means that, if 7,8 are continuous
forms, then 7,8 are regular and dn = @ in the sense of regular forms if
and only if there exists a sequence {n,}%_, of forms of class C! such that
n, > n and dn, — @ as s — oo, both uniformly on compact sets (cf.
Whitney [11]);

(ii) The differential in the strong sense coincides with the differential
in the weak sense. This means that, if 5,8 are continuous forms, then
dn = @ in the strong sense if and only if [ 7 A df = (-1)%e"*1[ 9 A ¢,
for every form £ of class C! and with compact support (cf. Friedrichs [2],
or Fichera [1]).°

Now we show that (1.8) implies (**), which will conclude the proof.
We shall use the following fact: there exists an open neighbourhood W of
S in C" and a retraction r: W — 3 of class C' (which means that
r(z) = z for each z € Z). This is a special case of a standard theorem in
Differential Topology (cf. Munkres [8], p. 51, or Whitney [11], p. 121).6 If
v is any (n — 2)-form on = of class C' and with compact support,
consider its pull-back r*v to W. r*v is a continuous regular (n — 2)-form
on W, and hence we can find a sequence {7,}32, of (n — 2)-forms of class
C! on W such that

lim 9, = r*v, lim dn, = r*dv,
§—> 00 §— 00

both uniformly on compact subsets of W. Moreover, since = N
Supp(r*v) = Supp(v) is compact, we can arrange that so too is = N
Supp(n,), for every s. It follows that

fu/\du= im [ uA(dn,)ls
s s> /3

= lim | fdz; A -+ Adz, A dn,
b

= (-1)" lim ffz')(avz1 A-e- Adz, A ),
s—=00 vy

and hence (1.8) implies [y u A dv = 0.

3 Clearly, the interest of this fact is in the “if”, the “only if” being trivial.
6If 3 were of class C2 we could use the more elementary “tubular neighbourhood
theorem”.
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2. Proof of Theorem 1. Let V' be an open neighbourhood of K in
C" and o: C" - R a C* function such that 0 < o(z) <1 for all z,
o(z)=1 for z € K, Supp(o) is compact and contained in V. For a
generic small e > 0,set D,=DN{l-0>¢}, [=0DN{1 -0 =>¢)}
and K, = D N {1 — ¢ =¢}. Then D, is a subdomain of D, 3D, = T, U
K., T. and K, are compact real hypersurfaces with boundary, of class C*,
such that I, N K, =9I, = dK,, and I, is connected. Clearly, D is
exhaustible by an increasing sequence of subdomains of this sort, { D} ;,
say, so that

oD, =T, UK, (s=1,2,...),
with obvious meaning of T, K, and
D= D, oD\ K= UT..
s=1 s=1

We assume that the sequence { D, }{2, has been chosen once for all.
Now, let U be an open neighbourhood of D and let ¢ € O(U). For
every positive integer s we set:

() = {§ € Uslo()|> max]gl.

Then U,(g) is an open subset of U\ D \ D, such that, if { € U(¢), the
level set L () of ¢ through { is all contained in U,(¢). Moreover we set:

Ule) = {¢ € Us |p(§) | > max|gl}.

Since {D \ D,}%, is a decreasing sequence of compact neighbourhoods of

K in D such that K =N, D\ D, it follows that U,(¢) C Uy(¢) -- -,
and

(2.1) U(g) = Qm).

Moreover, since IET, =N U:T)K v (where U ranges over the open
neighbourhoods of D), the assumption of Theorem 1 implies:

(22) D\Kc U U Ul(e).

U>D 9€0U)

Next, for every U, @, s as above and h € O5(U X U) (cf. (1.1)), consider
the complex-valued function F; on U,(¢) \ 0D given by

(2.3) Fi(¢) = /r fo(§) - /a 12,(),
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where ®,({) is the d-primitive (1.2) of the Martinelli form «(¢{), T, is
oriented as a part of dD and 9T, as the boundary of T,.” Since, for
{ € U(p) and z € 3T, |@($)| > |(2)| (because 0T, € D\ D,), the sin-
gular set L.(¢) of ®,({) does not meet I, so that F;] is indeed defined,
and real analytic, on U, (¢)\ I, = U(¢)\ 3D.

PROPOSITION 2.4. Suppose there exists at least a function F as in the
statement of Theorem 1. Then, for every U, @, h, s as above,

F=F onDn U(g).

As a consequence, on account of (2.1) and (2.2), if such a F actually exists,
it is necessarily unique.

Proof. Clearly D N U(¢) C D,, and, by assumption, F € C%(D,) N
O(D,) and F = f on I. Therefore, since, by the Martinelli formula, for
{ € D,, we have:

F(©) = [ fo(©)+ [ Fo(2),
we are required to show that, for { € D N U,(gp), we also have:
(+) J Fo®) =[50,

Since F is continuous on D \ K and holomorphic on D, the forms Fw({),
F®,(¢) are both continuous on (D\ K)\ L.(¢p), real analytic on
D\ L(¢), and on D\ L.(¢) satisf;i Fw({) = d(F®,({)). Moreover,
since { € U/(p), it follows that K, C (D \ K)\ L;(¢). Then consider the
restrictions (Fw($)) | ¢, (F®4({)) | x; these are continuous on K, regular
on K \0K, and on K \9K; satisfy (Fu({))|g = d[(F®,({))]|k]
Hence Stokes’ theorem for regular forms on a manifold with boundary (cf.
Whitney [11], p. 109) implies:

fK Fo(g) =faK Fo,(%).

Finally, since dK, = —dI', (= dI, with the opposite orientation), (*)
follows.

The above proposition disposes of the uniqueness’ assertion in Theo-
rem 1 and, further, implies that the proof of the existence of a holomor-

"In this paper we take as the canonical orientation of C" and of D the one given by the
volume-form (i/2)" dz; A dz; A --- Adz, A dz,,.
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phic continuation of f on D shall be a matter of showing that the F;’s do
in fact define a holomorphic function F on D such that, for each
z° € D\ K, F(¢) — f(z°) as ¢ — z% in D. In the first place we have:

PROPOSITION 2.5. The functions F;'s are each other coherent and
holomorphic. Hence there is a unique holomorphic function F on

U U U(e)|\oD

U>D 9€0(U)
such that, for every U, @, h, s,
F=F onU(p)\0D.

Proof. We first prove the coherence. This means that, for every
U,p,h,s and U, ¢’, h’, s’, we have:

(%) F; = Fy. onU(¢) N U/(¢)\dD.
We may assume that s > s’. Then (x) will be a consequence of the
following two equalities:

(i) Fy = FY on U(¢)\D;

(i) F¢ = F; on U(9) N U/(¢')\ 3D
(recall that U.(¢) C U(e) and U/(¢") C U/(¢")). To prove (i) (in case
s > s'), consider the (2n — 1)-chain of 3D\ X, of class C', ¢,,_; =T, —
T,.. If { is any point in U/'(¢") \ 0D, it is plain that

Fp(8) — F(§) = [c fl¥) - /a f,();

Con

moreover, since Supp(¢,,_;) € D\ D, € D\ D, and L (¢") C U/ (¢)
c U'\ D\ D,, it follows that Supp(c,,_,) is contained in U’ \ L(¢’),
where w({), ®,.({) are both defined and satisfy w({) = 9®,,.({). Then, if
we take a (n, n — 2)-form p of class C* on all of C” and equal to ®,.(¢)
on an open neighbourhood of Supp(c,,_;), we may replace w({), @,.(£),
in the right side of the above equality, respectively by du, u. Hence
Proposition 1.9 gives at once that F(§) = F5/($).

Next we prove (ii). On account of (1.3), (1.4), we have, for each
¢ € Ul(g) N U/(¢)\3D:

Fp(§) — Fp(§)

“f féXh,h'(f) ‘ ifn>3,
ar,

if n=2.

1 f ) (hhly — hyhy) dzy A dz,
2ai)* o, (9(2) — () (¢'(2) — ¢'(£))
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In case n > 3, we may replace X, ,.({), in the integral on the right side,
by any (n, n — 3)-form X of class C* on all of C” and equal to X, (8
on an open neighbourhood of oI',. Hence Proposition 1.9 (for g = n — 1,
=T, and p = 0X) implies that F({) = F(¢).
In case n = 2, we have to argue differently. Since { € U,(p) N U/(¢’)
and 9T, € D\ D, it follows that, for each z € 3T}, |({)] > maxz g ||
> |p(z)l, and hence |p(z)/p($)| < 1. Similarly, |¢/(z)/@(¢)] < 1.
Therefore we may write, for z € 9I';:
1

(e(2) — @(O)(¢'(2) — ¢'(£))
1 1
()9 Q) (1-o(2)/9())(1 - ¢(2)/9(%))

Z ( ¢(2) ) (qo’(Z) )B
P(§ )<P ) (£) ©€))
with the double series absolutely unlformly convergent on 0I'. It follows
that

n+q

(hhYy — hyh}) dzy A dz,
L O ) =N ) =90

0,00 1

T (e T @ (6)" fa‘"sf“a’ﬁ’

where
Pop = (hlhlz - hzh{)(tp(Z))m((p'(z))ﬁdz1 A dz,
(0,8=0,1,2,...).

Now, since every p,p is a holomorphic 2-form on U N U’, so that
dp, p = 0, Proposition 1.9 implies:

f fhap=0 (6,=0,1,2,...).
aT,

Therefore also for n = 2 we have: F;({) = F;({).
It remains to show that every F; is holomorphic, i.e. that, for each

§ € U(p)\0D,
AF;

3%,

() = (a=1,...,n).

Clearly, we have:
o0F,;

o,

00,
(5) = ff—(s“ farsfﬁ(”
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further, on account of (1.5), (1.6), (1.7), we may rewrite the right side of
this equality as:

~[oQ, aQ,
(*) frfa[ T m] - fanfafa ($)+1,

s

where

o fanfaxp,g(g) if n >3,
0 if n=2.

Since [3Q,/3¢,](¢) is defined on all of C"\ ¢, Proposition 1.9 implies that
the difference of integrals in (%) is zero. Moreover, by Proposition 1.9
again, I is zero also in case n > 3, since ¥, ({) may be replaced by any
(n,n — 3)-form ¥¢ of class C* on all of C” and equal to ¥*({) on an
open neighbourhood of 3T.. Hence [9F; /3¢, ](¢) = O.

The proof of Proposition 2.5 is then completed.

Next, we have:

PROPOSITION 2.6. Let V be an open neighbourhood of 0D \ K, con-
tained in Uy 55U c o \U(®), such that VN (OID\K) =V, U V., where
V., V_are connected separated open sets and V.C C"\ D.® Then F = 0 on
V.

Proof. We first point out that, given an open neighbourhood U of D
and a function ¢ € O(U), if { is a point in U such that |p({)| > max3|p|
(which obviously implies that { € U,(¢)\ D), then F({) = 0. As a matter
of fact, if h € O (U X U), we have:

F(§) = FA¢) =fr fo(%) ~/ar f9,(2),

and, since D C U\ L,(¢), on an open neighbourhood of D w({), ®,({)
are both defined and satisfy w({) = 09,({). Hence Proposition 1.9 im-
plies that F({) = 0.

Now, take U and ¢ such that U(p) N D # @; then maxp|gp| >
max x|p|, so that ¢ is not constant on the connected component of U
containing D and, further, any point {® € 9D where |¢| attains the value

8Such a V does exist, because 9D \ K is connected. For example, we may take as V' a
small tubular neighbourhood of D\ K in C"\ K.
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max || must belong to 9D \ K. One can actually find such a point {° by
the well known “maximum principle”. Then {° is a limit point of the
open set W = {{ € U;|p({)| > maxp|p|} (by the maximum principle
again), and, since {°® € 3D \ K, this obviously implies that W N V_# &.
But we already know that F is zero on W N V_; it follows that F is zero
on all of V_, because V_ is connected.

Finally, we are in a position to prove that F is a continuous extension
of f to D\ K, i.e., the following holds:

PROPOSITION 2.7. For every point z° € 3D \ K we have:
glimOF(f) = f(z°),
the limit being evaluated for { € D.

Proof. For every w € 9D \ K, denote by 7(w) the unit vector per-
pendicular to dD \ K at w, inward pointing with respect to D. We first
prove that

(%) lim F(w + 17(w)) = f(w),

t—0*
with the limit uniform on compact subsets of 9D \ K. Given w € dD \ K,
we can find an open neighbourhood U of D, a function ¢ € O(U) and a
positive integer s such that w € U,(¢) N (I, \ 9I). Then, for ¢ > 0 small
enough, we have:

w4+ ti(w)e U(e)nD, w-—1ti(w)e Ul(p)NV,

with V_ as in Proposition 2.6, and hence, if h € O;(U X U), it follows
that

F(w + t5(w)) = Fi(w + t¥(w)),
F(w — t¥(w)) = Fi(w — t¥(w)) = 0.
Therefore we may write:
F(w + t¥(w)) = Fi(w + t#(w)) — Fi(w — t¥(w))
= Il(w’t) - IZ(W,I),

where

I(w,1) = fr flo(w + 15(w)) — w(w — 13(w))],

Liw,0) = [ 7120w+ 5(w)) = @,(w = 17(w))].
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Now, it can be shown that, for any f € C°T,) (not necessarily a CR-
function) and w € T',\ 9T,

li%k L(w,t) = f(w),

with the limit uniform on compact subsets of I',\ 9I',. A similar result
can be found in Harvey-Lawson [4], pp. 251-252, and the proof given
there (based on a suitable estimate for |jw(w + t¥(w)) — w(w — t¥(w))]))
works essentially for the present case as well.” Next, since the function
{ = [or, f®,(§) is defined and real analytic on all of U(e), it is plain
that, for w € U(¢) N (I,\ 3T}),

lim I,(w,t) =0,

—0*
with the limit uniform on compact subsets of U, (¢) N (I, \ 9I,). Hence
() follows.

After that, it is easy to prove Proposition 2.7. Given ¢ > 0, let N,o be
an open neighbourhood of z° in D\ K such that |f(w) — f(z°)| < &/2,
for every w € N,o, and N,o € 9D \ K. Further, let 7, > 0 be such that
|F(w + t¥(w)) — f(w)] < /2, for every t < t, and w € N,. Clearly, if {
is a point of D close enough to z°, there exist exactly a point w € N,o and
a positive number ¢ < ¢, such that { = w + ¥(w). It follows that

[F(§) = f(2°) | <|F(w + 15(w)) = f(w) | +]f(w) = f(2°)] < e,

which proves Proposition 2.7.

Now the proof of Theorem 1 is completed.
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