A THEOREM ON HOLOMORPHIC EXTENSION OF CR-FUNCTIONS

GUIDO LUPACCIOLU

We prove the holomorphic extendabilty on a domain $D \subseteq \mathbb{C}^n$, $n \geq 2$, of the continuous CR-functions on a relatively open connected subset of ∂D , provided the complementary subset of ∂D is $\mathcal{O}(\overline{D})$ -convex.

Introduction. Let D be a relatively compact open domain in \mathbb{C}^n , $n \geq 2$, with boundary ∂D , and K a compact subset of ∂D . We require D and K to be such that $\partial D \setminus K$ is a real hypersurface of class C^1 in $\mathbb{C}^n \setminus K$.

The purpose of this paper is to give a sufficient condition on D and K guaranteeing the holomorphic extendability on all of D of the CR-functions on $\partial D \setminus K$. Our theorem, which states the condition, improves and generalizes previous results in this direction obtained in Lupacciolu-Tomassini [6] and in Tomassini [10].

Let $\mathcal{O}(\overline{D})$ be the algebra of complex-valued functions on \overline{D} each of which is holomorphic on an open neighborhood of \overline{D} , and $\hat{K}_{\overline{D}}$ the $\mathcal{O}(\overline{D})$ -hull of K. i.e.,

$$\hat{K}_{\overline{D}} = \bigcap_{\varphi \in \mathcal{O}(\overline{D})} \Big\{ z \in \overline{D}; |\varphi(z)| \le \max_{K} |\varphi| \Big\}.$$

Our main result is the following theorem on holomorphic extension of CR-functions.

THEOREM 1. Assume that K is $\mathcal{O}(\overline{D})$ -convex, i.e., $\hat{K}_{\overline{D}} = K$, and $\partial D \setminus K$ is connected. Then every continuous CR-function f on $\partial D \setminus K$ has a unique extension F continuous on $\overline{D} \setminus K$ and holomorphic on D.

A seemingly more general theorem is the following one.

THEOREM 2. Assume that $\partial D \setminus \hat{K}_{\overline{D}}$ is a connected real hypersurface of class C^1 in $\mathbb{C}^n \setminus \hat{K}_{\overline{D}}$. Then every continuous CR-function f on $\partial D \setminus \hat{K}_{\overline{D}}$ has a unique extension F continuous on $\overline{D} \setminus \hat{K}_{\overline{D}}$ and holomorphic on $D \setminus \hat{K}_{\overline{D}}$.

 $^{^{1}}$ Added in proof. Recently Edgar Lee Stout kindly informed me of his paper [12], where the same condition is already recognized to be sufficient, when D is a domain of holomorphy, for a parallel extendability's property in the setting of holomorphic functions.

However, if we set $D' = D \setminus \hat{K}_{\overline{D}}$ and $K' = \overline{D}' \cap \hat{K}_{\overline{D}}$, it is an easy matter to see that Theorem 2 is equivalent to Theorem 1 with D' and K' in place of D and K.

Before going into the proof of Theorem 1, let us discuss a nontrivial situation where it applies.

Observe that, since plainly

$$\hat{K}_{\overline{D}} = \bigcap_{U \supset \overline{D}} \hat{K}_U,$$

where U ranges over the open neighbourhoods of \overline{D} , it suffices, in order that $\hat{K}_{\overline{D}} = K$, that, for some U, $\hat{K}_U \cap \overline{D} = K$, i.e. \hat{K}_U does not meet $\overline{D} \setminus K$. Suppose, then, that the following holds: there is an upper semicontinuous plurisubharmonic function ρ on a Stein open neighbourhood U of \overline{D} , so that $K \subset \{\rho = 0\}$ and $\overline{D} \setminus K \subset \{\rho > 0\}$. Since \hat{K}_U coincides with \hat{K}_U^P , the hull of K with respect to the plurisubharmonic functions on U (cf. Hörmander [5], p. 91), it follows that \hat{K}_U is contained in $\{\rho \leq 0\}$, and hence $\hat{K}_U \cap \overline{D} = K$. In the case ρ is pluriharmonic, U may be required to be simply connected, instead that Stein; for ρ has then a unique pluriharmonic extension $\tilde{\rho}$ to the envelope of holomorphy \tilde{U} of U, and hence $\hat{K}_U \subset \hat{K}_{\tilde{U}} = \hat{K}_U^P \subset \{\tilde{\rho} \leq 0\}$.

1. Preliminary facts. (a) We denote by $\omega(\zeta)$ the Martinelli form relative to a point $\zeta = (\zeta_1, \dots, \zeta_n) \in \mathbb{C}^n$, that is

$$\omega(\zeta) = C_n \frac{dz_1 \wedge \cdots \wedge dz_n}{|z - \zeta|^{2n}}$$

$$\wedge \sum_{\alpha=1}^n (-1)^{\alpha-1} (\bar{z}_\alpha - \bar{\zeta}_\alpha) d\bar{z}_1 \wedge \cdots \hat{\alpha} \cdots \wedge d\bar{z}_n$$

(where $C_n = (-1)^{n(n-1)/2} (n-1)!/(2\pi i)^n$).

Given a holomorphic function φ on an open set $U \subset \mathbb{C}^n$ and a point $\zeta \in U$, we denote by $L_{\zeta}(\varphi)$ the level set of φ through ζ , that is

$$L_{\zeta}(\varphi) = \{z \in U; \varphi(z) = \varphi(\zeta)\}.$$

It is known that for any $\varphi \in \mathcal{O}(U)$ there exist holomorphic maps $h = (h_1, \dots, h_n) \in \mathcal{O}^n(U \times U)$ such that, for each $(z, \zeta) \in U \times U$,

$$\varphi(z) - \varphi(\zeta) = \sum_{\alpha=1}^{n} h_{\alpha}(z, \zeta)(z_{\alpha} - \zeta_{\alpha})$$

(cf. Harvey [3], Lemma 2.3). Then we set:

$$(1.1) \mathscr{O}_{\varphi}^{n}(U \times U) = \{ h \in \mathscr{O}^{n}(U \times U); (*) \text{ holds} \}.$$

Any $h \in \mathcal{O}_{\varphi}^{n}(U \times U)$ allows one to define canonically, for $\zeta \in U$, a $\bar{\partial}$ -primitive of $\omega(\zeta)$ on $U \setminus L_{\zeta}(\varphi)$, that is (n, n-2)-form $\Phi_{h}(\zeta)$ on

 $U \setminus L_{\zeta}(\varphi)$ such that

$$\omega(\zeta) = \overline{\partial} \Phi_h(\zeta) = d\Phi_h(\zeta).$$

As a matter of fact, consider, for every $\alpha = 1, ..., n$, the following (n, n-2)-form on $\mathbb{C}^n \setminus \{z_{\alpha} = \zeta_{\alpha}\} = \mathbb{C}^n \setminus L_{\zeta}(z_{\alpha})$:

$$\Omega_{\alpha}(\zeta) = \frac{(-1)^{n+\alpha}}{n-1} C_n \frac{dz_1 \wedge \cdots \wedge dz_n}{(z_{\alpha} - \zeta_{\alpha})|z - \zeta|^{2n-2}}$$

$$\wedge \left[\sum_{\beta=1}^{\alpha-1} (-1)^{\beta} (\bar{z}_{\beta} - \bar{\zeta}_{\beta}) d\bar{z}_1 \wedge \cdots \hat{\beta} \cdots \hat{\alpha} \cdots \wedge d\bar{z}_n \right.$$

$$+ \sum_{\beta=\alpha+1}^{n} (-1)^{\beta-1} (\bar{z}_{\beta} - \bar{\zeta}_{\beta}) d\bar{z}_1 \wedge \cdots \hat{\alpha} \cdots \hat{\beta} \cdots \wedge d\bar{z}_n \right].$$

One verifies that, on $\mathbb{C}^n \setminus L_{\zeta}(z_{\alpha})$, $\omega(\zeta) = \overline{\partial}\Omega_{\alpha}(\zeta)^2$. Then set

(1.2)
$$\Phi_h(\zeta) = \frac{1}{\varphi(z) - \varphi(\zeta)} \sum_{\alpha=1}^n h_\alpha(z, \zeta) (z_\alpha - \zeta_\alpha) \Omega_\alpha(\zeta).$$

It is plain that $\Phi_h(\zeta)$ is indeed a real analytic $\bar{\partial}$ -primitive of $\omega(\zeta)$ on $U \setminus L_{\zeta}(\varphi)$.

Such $\bar{\partial}$ -primitives of the Martinelli form will play a fundamental role in the proof of our extension theorem. Now we derive the properties of them that will be needed.

Let there be given open sets $U, U' \subset \mathbb{C}^n$ such that $U \cap U' \neq \emptyset$, functions $\varphi \in \mathcal{O}(U)$, $\varphi' \in \mathcal{O}(U')$ and maps $h \in \mathcal{O}_{\varphi}^n(U \times U)$, $h' \in \mathcal{O}_{\varphi'}^n(U' \times U')$, and let ζ be a point in $U \cap U'$. Suppose first that $n \geq 3$, and consider, for every $\alpha, \beta = 1, \ldots, n$ with $\alpha \neq \beta$, the (n, n - 3)-form $\Lambda_{\alpha,\beta}(\zeta)$ on $\mathbb{C}^n \setminus (L_{\zeta}(z_{\alpha}) \cup L_{\zeta}(z_{\beta}))$ defined as follows: for $\alpha < \beta$

$$\Lambda_{\alpha,\beta}(\zeta) = \frac{(-1)^{n+\alpha+\beta}}{(n-1)(n-2)} C_n \frac{dz_1 \wedge \cdots \wedge dz_n}{(z_{\alpha} - \zeta_{\alpha})(z_{\beta} - \zeta_{\beta})|z - \zeta|^{2n-4}}
\wedge \left[\sum_{\gamma=1}^{\alpha-1} (-1)^{\gamma} (\bar{z}_{\gamma} - \bar{\zeta}_{\gamma}) d\bar{z}_1 \wedge \cdots \hat{\gamma} \cdots \hat{\alpha} \cdots \hat{\beta} \cdots \wedge d\bar{z}_n \right]
+ \sum_{\gamma=\alpha+1}^{\beta-1} (-1)^{\gamma-1} (\bar{z}_{\gamma} - \bar{\zeta}_{\gamma}) d\bar{z}_1 \wedge \cdots \hat{\alpha} \cdots \hat{\gamma} \cdots \hat{\beta} \cdots \wedge d\bar{z}_n
+ \sum_{\gamma=\beta+1}^{n} (-1)^{\gamma} (\bar{z}_{\gamma} - \bar{\zeta}_{\gamma}) d\bar{z}_1 \wedge \cdots \hat{\alpha} \cdots \hat{\beta} \cdots \hat{\gamma} \cdots \wedge d\bar{z}_n \right],$$

² The forms $\Omega_{\alpha}(\zeta)$ were considered first by Martinelli [7], to give a proof of Hartogs' theorem.

and for $\alpha > \beta \Lambda_{\alpha,\beta}(\zeta) = -\Lambda_{\beta,\alpha}(\zeta)$. One can verify that $\Omega_{\alpha}(\zeta) - \Omega_{\beta}(\zeta) = \overline{\partial} \Lambda_{\alpha,\beta}(\zeta)$. Then, consider the following (n, n-3)-form on $(U \setminus L_{\zeta}(\varphi)) \cap (U' \setminus L_{\zeta}(\varphi'))$:

$$X_{h,h'}(\zeta) = \frac{1}{(\varphi(z) - \varphi(\zeta))(\varphi'(z) - \varphi'(\zeta))} \cdot \sum_{1 < \alpha < \beta < n} (h_{\alpha}h'_{\beta} - h_{\beta}h'_{\alpha})(z_{\alpha} - \zeta_{\alpha})(z_{\beta} - \zeta_{\beta})\Lambda_{\alpha,\beta}(\zeta).$$

It is easily seen that, on $(U \setminus L_{\ell}(\varphi)) \cap (U' \setminus L_{\ell}(\varphi'))$,

(1.3)
$$\Phi_{h}(\zeta) - \Phi_{h'}(\zeta) = \overline{\partial} X_{h,h'}(\zeta).$$

In case n = 2 we simply have:

$$\Omega_1(\zeta) - \Omega_2(\zeta) = -\frac{1}{(2\pi i)^2} \frac{dz_1 \wedge dz_2}{(z_1 - \zeta_1)(z_2 - \zeta_2)},$$

and hence we find, on $(U \setminus L_{\zeta}(\varphi)) \cap (U' \setminus L_{\zeta}(\varphi'))$:

$$(1.4) \quad \Phi_{h}(\zeta) - \Phi_{h'}(\zeta) = -\frac{1}{(2\pi i)^{2}} \frac{\left(h_{1}h'_{2} - h_{2}h'_{1}\right) dz_{1} \wedge dz_{2}}{\left(\varphi(z) - \varphi(\zeta)\right)\left(\varphi'(z) - \varphi'(\zeta)\right)}.$$

Next, we observe that all the above differential forms depend in a real analytic fashion also on the point ζ , so that we may perform any derivative of these with respect to the parameters $\operatorname{Re} \zeta_{\alpha}$, $\operatorname{Im} \zeta_{\alpha}$, $\alpha=1,\ldots,n$ (by taking the derivative of each coefficient). In particular we may consider the forms $\partial \omega/\partial \bar{\zeta}_{\alpha}$, $\partial \Omega_{\beta}/\partial \bar{\zeta}_{\alpha}$, etc., obtained by applying the Wirtinger operator $\partial \cdot/\partial \bar{\zeta}_{\alpha}$. We first note that, for every $\alpha=1,\ldots,n$, the (n,n-2)-form $\partial \Omega_{\alpha}/\partial \bar{\zeta}_{\alpha}$ satisfies

$$\frac{\partial \Omega_{\alpha}}{\partial \bar{\zeta}_{\alpha}}(\zeta) = (n-1) \frac{z_{\alpha} - \zeta_{\alpha}}{|z - \zeta|^{2}} \Omega_{\alpha}(\zeta),$$

and hence is defined (and real analytic) on $\mathbb{C}^n \setminus \zeta$, instead that only on $\mathbb{C}^n \setminus L_{\zeta}(z_{\alpha})$ as $\Omega_{\alpha}(\zeta)$. It follows that, on $\mathbb{C}^n \setminus \zeta$,

(1.5)
$$\frac{\partial \omega}{\partial \bar{\xi}_{\alpha}}(\zeta) = \bar{\partial} \left[\frac{\partial \Omega_{\alpha}}{\partial \bar{\xi}_{\alpha}}(\zeta) \right] \qquad (\alpha = 1, ..., n).$$

Similarly, if $n \ge 3$, for every $\alpha, \beta = 1, ..., n$ with $\alpha \ne \beta$, the (n, n - 3)-form $\partial \Lambda_{\alpha,\beta}/\partial \bar{\zeta}_{\alpha}$ satisfies

$$\frac{\partial \Lambda_{\alpha,\beta}}{\partial \bar{\zeta}_{\alpha}}(\zeta) = (n-2) \frac{z_{\alpha} - \zeta_{\alpha}}{|z - \zeta|^2} \Lambda_{\alpha,\beta}(\zeta),$$

and hence is defined on $\mathbb{C}^n \setminus L_{\zeta}(z_{\beta})$, instead that only on $\mathbb{C}^n \setminus (L_{\zeta}(z_{\alpha}) \cup L_{\zeta}(z_{\beta}))$ as $\Lambda_{\alpha,\beta}(\zeta)$. It follows that, on $\mathbb{C}^n \setminus L_{\zeta}(z_{\beta})$,

$$\frac{\partial \Omega_{\alpha}}{\partial \bar{\xi}_{\alpha}}(\zeta) - \frac{\partial \Omega_{\beta}}{\partial \bar{\xi}_{\alpha}}(\zeta) = \bar{\partial} \left[\frac{\partial \Lambda_{\alpha,\beta}}{\partial \bar{\xi}_{\alpha}}(\zeta) \right].$$

If n = 2 we simply have, for $\alpha = 1, 2$:

$$\frac{\partial \Omega_1}{\partial \bar{\zeta}_{\alpha}}(\zeta) - \frac{\partial \Omega_2}{\partial \bar{\zeta}_{\alpha}}(\zeta) = 0.$$

Now, let there be given an open set $U \subset \mathbb{C}^n$, a function $\varphi \in \mathcal{O}(U)$ and a map $h \in \mathcal{O}_{\varphi}^n(U \times U)$, and let ζ be a point in U. In case $n \geq 3$ consider, for every $\alpha = 1, \ldots, n$, the following (n, n - 3)-form on $U \setminus L_{\zeta}(\varphi)$:

$$\Psi_h^{\alpha}(\zeta) = \frac{1}{\varphi(z) - \varphi(\zeta)} \sum_{\substack{\beta = 1 \\ \beta \neq \alpha}}^n h_{\beta}(z_{\beta} - \zeta_{\beta}) \frac{\partial \Lambda_{\alpha,\beta}}{\partial \bar{\zeta}_{\alpha}}(\zeta).$$

Then we find, on $U \setminus L_{\zeta}(\varphi)$:

(1.6)
$$\frac{\partial \Phi_h}{\partial \bar{\zeta}_{\alpha}}(\zeta) = \frac{\partial \Omega_{\alpha}}{\partial \bar{\zeta}_{\alpha}}(\zeta) - \bar{\partial} \Psi_h^{\alpha}(\zeta) \qquad (\alpha = 1, ..., n).$$

On the other hand, if n = 2, we have:

(1.7)
$$\frac{\partial \Phi_h}{\partial \bar{\zeta}_{\alpha}}(\zeta) = \frac{\partial \Omega_{\alpha}}{\partial \bar{\zeta}_{\alpha}}(\zeta) \qquad (\alpha = 1, 2).$$

(b) It is well known that, given an oriented real hypersurface Σ of class C^1 in \mathbb{C}^n (without boundary, not necessarily closed) and a complex-valued function f in $L^1_{loc}(\Sigma)$, one may say that f is a CR-function on Σ in case it satisfies the tangential Cauchy-Riemann equation in the weak form, that is

for every (n, n-2)-form λ of class C^1 on an open neighbourhood of Σ , such that $\Sigma \cap \operatorname{Supp}(\lambda)$ is compact. However we need for our purposes a sharper characterization of continuous CR-functions on Σ than (1.8) is. This is provided by the following proposition.

PROPOSITION 1.9. Let f be a complex-valued continuous function on Σ . Then f is a CR-function if and only if it satisfies

(1.10)
$$\int_{c_{n+q}} f \,\overline{\partial} \mu = \int_{\partial c_{n+q}} f \mu,$$

for every singular (n+q)-chain c_{n+q} of Σ of class C^1 and every (n,q-1)form μ of class C^1 on an open neighbourhood of Σ $(1 \le q \le n-1)$.

Proof. This proposition asserts that (1.8) and (1.10) are equivalent for a continuous f (which would be quite immediate if f were of class C^1). We shall prove only that (1.8) implies (1.10), the converse being trivial.

For every differential form μ of class C^1 on an open neighbourhood V of Σ , we denote by $\mu|_{\Sigma}$ the restriction of μ to Σ (i.e. the pull-back of μ by the inclusion map $\Sigma \hookrightarrow V$). Then $\mu|_{\Sigma}$ is a continuous regular form on Σ .⁴

Consider the continuous *n*-form on Σ

$$u = f(dz_1 \wedge \cdots \wedge dz_n)|_{\Sigma}.$$

We claim that (1.10) is equivalent to the following assertion:

(*)
$$u$$
 is regular on Σ and $du = 0$.

As a matter of fact, taking in particular q = 1 and $\mu = dz_1 \wedge \cdots \wedge dz_n$, (1.10) gives:

$$0 = \int_{\partial c_{n+1}} f dz_1 \wedge \cdots \wedge dz_n = \int_{\partial c_{n+1}} u,$$

for every singular (n+1)-chain c_{n+1} of Σ of class C^1 ; and this is just as to say that (*) holds. Conversely, assume that (*) holds. Any (n, q-1)-form μ as in the statement can be written as $\mu = dz_1 \wedge \cdots \wedge dz_n \wedge \tilde{\mu}$, where $\tilde{\mu}$ is a (0, q-1)-form of class C^1 on an open neighbourhood of Σ . Then $u \wedge \tilde{\mu}|_{\Sigma}$ is a continuous regular (n+q-1)-form on Σ and, since $du=0, d(\tilde{\mu}|_{\Sigma})=(d\tilde{\mu})|_{\Sigma}$, we have:

$$d(u \wedge \tilde{\mu}|_{\Sigma}) = (-1)^n u \wedge (d\tilde{\mu})|_{\Sigma} = f(d\mu)|_{\Sigma} = f(\overline{\partial}\mu)|_{\Sigma}.$$

It follows that

$$\int_{c_{n+q}} f \, \bar{\partial} \mu = \int_{\partial c_{n+q}} u \wedge \tilde{\mu}|_{\Sigma} = \int_{\partial c_{n+q}} f \mu,$$

that is, (1.1) holds. Next, we claim that (*) is equivalent to:

(**)
$$u$$
 is weakly closed on Σ , that is $\int_{\Sigma} u \wedge dv = 0$

for every (n-2)-form v on Σ of class C^1 and with compact support.

³ The same result is proved in Lupacciolu-Tomassini [6] under the additional assumption that f is locally Lipschitz, but the argument used there does not work without that assumption.

⁴ For the definition and basic properties of continuous regular forms we refer to Whitney [11] pp. 103-108. We denote, as usual, by d the differential acting on such forms (defined by means of Stokes' formula), as the ordinary exterior differential.

This latter equivalence is a straightforward consequence of the following general facts about continuous differential forms on a manifold of class C^1 :

- (i) The differential acting on continuous regular forms may be understood in the strong sense. This means that, if η , θ are continuous forms, then η , θ are regular and $d\eta = \theta$ in the sense of regular forms if and only if there exists a sequence $\{\eta_s\}_{s=1}^{\infty}$ of forms of class C^1 such that $\eta_s \to \eta$ and $d\eta_s \to \theta$ as $s \to \infty$, both uniformly on compact sets (cf. Whitney [11]);
- (ii) The differential in the strong sense coincides with the differential in the weak sense. This means that, if η , θ are continuous forms, then $d\eta = \theta$ in the strong sense if and only if $\int \eta \wedge d\xi = (-1)^{\deg \eta + 1} \int \theta \wedge \xi$, for every form ξ of class C^1 and with compact support (cf. Friedrichs [2], or Fichera [1]).

Now we show that (1.8) implies (**), which will conclude the proof. We shall use the following fact: there exists an open neighbourhood W of Σ in \mathbb{C}^n and a retraction $r: W \to \Sigma$ of class C^1 (which means that r(z) = z for each $z \in \Sigma$). This is a special case of a standard theorem in Differential Topology (cf. Munkres [8], p. 51, or Whitney [11], p. 121).⁶ If v is any (n-2)-form on Σ of class C^1 and with compact support, consider its pull-back r^*v to W. r^*v is a continuous regular (n-2)-form on W, and hence we can find a sequence $\{\eta_s\}_{s=1}^{\infty}$ of (n-2)-forms of class C^1 on W such that

$$\lim_{s\to\infty}\eta_s=r^*v,\qquad \lim_{s\to\infty}d\eta_s=r^*dv,$$

both uniformly on compact subsets of W. Moreover, since $\Sigma \cap \operatorname{Supp}(r^*v) = \operatorname{Supp}(v)$ is compact, we can arrange that so too is $\Sigma \cap \operatorname{Supp}(\eta_s)$, for every s. It follows that

$$\int_{\Sigma} u \wedge dv = \lim_{s \to \infty} \int_{\Sigma} u \wedge (d\eta_{s})|_{\Sigma}$$

$$= \lim_{s \to \infty} \int_{\Sigma} f dz_{1} \wedge \cdots \wedge dz_{n} \wedge d\eta_{s}$$

$$= (-1)^{n} \lim_{s \to \infty} \int_{\Sigma} f \overline{\partial} (dz_{1} \wedge \cdots \wedge dz_{n} \wedge \eta_{s}),$$

and hence (1.8) implies $\int_{\Sigma} u \wedge dv = 0$.

⁵Clearly, the interest of this fact is in the "if", the "only if" being trivial.

⁶ If Σ were of class C^2 , we could use the more elementary "tubular neighbourhood theorem".

2. Proof of Theorem 1. Let V be an open neighbourhood of K in \mathbb{C}^n and $\sigma \colon \mathbb{C}^n \to \mathbb{R}$ a C^∞ function such that $0 \le \sigma(z) \le 1$ for all z, $\sigma(z) = 1$ for $z \in K$, $\operatorname{Supp}(\sigma)$ is compact and contained in V. For a generic small $\varepsilon > 0$, set $D_{\varepsilon} = D \cap \{1 - \sigma > \varepsilon\}$, $\Gamma_{\varepsilon} = \partial D \cap \{1 - \sigma \ge \varepsilon\}$ and $K_{\varepsilon} = \overline{D} \cap \{1 - \sigma = \varepsilon\}$. Then D_{ε} is a subdomain of D, $\partial D_{\varepsilon} = \Gamma_{\varepsilon} \cup K_{\varepsilon}$, Γ_{ε} and K_{ε} are compact real hypersurfaces with boundary, of class C^1 , such that $\Gamma_{\varepsilon} \cap K_{\varepsilon} = \partial \Gamma_{\varepsilon} = \partial K_{\varepsilon}$, and Γ_{ε} is connected. Clearly, D is exhaustible by an increasing sequence of subdomains of this sort, $\{D_s\}_{s=1}^{\infty}$, say, so that

$$\partial D_s = \Gamma_s \cup K_s \qquad (s = 1, 2, \ldots),$$

with obvious meaning of Γ_s , K_s , and

$$D = \bigcup_{s=1}^{\infty} D_s, \qquad \partial D \setminus K = \bigcup_{s=1}^{\infty} \Gamma_s.$$

We assume that the sequence $\{D_s\}_{s=1}^{\infty}$ has been chosen once for all.

Now, let U be an open neighbourhood of \overline{D} and let $\varphi \in \mathcal{O}(U)$. For every positive integer s we set:

$$U_s(\varphi) = \left\{ \zeta \in U; |\varphi(\zeta)| > \max_{\overline{D \setminus D_s}} |\varphi| \right\}.$$

Then $U_s(\varphi)$ is an open subset of $U \setminus \overline{D \setminus D_s}$ such that, if $\zeta \in U_s(\varphi)$, the level set $L_{\zeta}(\varphi)$ of φ through ζ is all contained in $U_s(\varphi)$. Moreover we set:

$$U(\varphi) = \left\{ \zeta \in U; |\varphi(\zeta)| > \max_{\kappa} |\varphi| \right\}.$$

Since $\{\overline{D \setminus D_s}\}_{s=1}^{\infty}$ is a decreasing sequence of compact neighbourhoods of K in \overline{D} such that $K = \bigcap_{s=1}^{\infty} \overline{D \setminus D_s}$, it follows that $U_1(\varphi) \subset U_2(\varphi) \cdots$, and

(2.1)
$$U(\varphi) = \bigcup_{s=1}^{\infty} U_s(\varphi).$$

Moreover, since $\hat{K}_{\overline{D}} = \bigcap_{U \supset \overline{D}} \hat{K}_U$ (where U ranges over the open neighbourhoods of \overline{D}), the assumption of Theorem 1 implies:

(2.2)
$$\overline{D} \setminus K \subset \bigcup_{U \supset \overline{D}} \bigcup_{\varphi \in \mathcal{O}(U)} U(\varphi).$$

Next, for every U, φ, s as above and $h \in \mathcal{O}_{\varphi}^{n}(U \times U)$ (cf. (1.1)), consider the complex-valued function F_{h}^{s} on $U_{s}(\varphi) \setminus \partial D$ given by

(2.3)
$$F_h^s(\zeta) = \int_{\Gamma_s} f\omega(\zeta) - \int_{\partial\Gamma_s} f\Phi_h(\zeta),$$

where $\Phi_h(\zeta)$ is the $\bar{\partial}$ -primitive (1.2) of the Martinelli form $\omega(\zeta)$, Γ_s is oriented as a part of ∂D and $\partial \Gamma_s$ as the boundary of Γ_s . Since, for $\zeta \in U_s(\varphi)$ and $z \in \partial \Gamma_s$, $|\varphi(\zeta)| > |\varphi(z)|$ (because $\partial \Gamma_s \subset \overline{D \setminus D_s}$), the singular set $L_{\zeta}(\varphi)$ of $\Phi_h(\zeta)$ does not meet $\partial \Gamma_s$, so that F_h^s is indeed defined, and real analytic, on $U_s(\varphi) \setminus \Gamma_s = U_s(\varphi) \setminus \partial D$.

PROPOSITION 2.4. Suppose there exists at least a function F as in the statement of Theorem 1. Then, for every U, φ, h, s as above,

$$F = F_h^s$$
 on $D \cap U_s(\varphi)$.

As a consequence, on account of (2.1) and (2.2), if such a F actually exists, it is necessarily unique.

Proof. Clearly $D \cap U_s(\varphi) \subset D_s$, and, by assumption, $F \in C^0(\overline{D}_s) \cap \mathcal{O}(D_s)$ and F = f on Γ_s . Therefore, since, by the Martinelli formula, for $\zeta \in D_s$, we have:

$$F(\zeta) = \int_{\Gamma_{\epsilon}} f\omega(\zeta) + \int_{K_{\epsilon}} F\omega(\zeta),$$

we are required to show that, for $\zeta \in D \cap U_{\epsilon}(\varphi)$, we also have:

(*)
$$\int_{K_{\epsilon}} F\omega(\zeta) = -\int_{\partial \Gamma_{\epsilon}} f\Phi_h(\zeta).$$

Since F is continuous on $\overline{D} \setminus K$ and holomorphic on D, the forms $F\omega(\zeta)$, $F\Phi_h(\zeta)$ are both continuous on $(\overline{D} \setminus K) \setminus L_{\zeta}(\varphi)$, real analytic on $D \setminus L_{\zeta}(\varphi)$, and on $D \setminus L_{\zeta}(\varphi)$ satisfy $F\omega(\zeta) = d(F\Phi_h(\zeta))$. Moreover, since $\zeta \in U_s(\varphi)$, it follows that $K_s \subset (\overline{D} \setminus K) \setminus L_{\zeta}(\varphi)$. Then consider the restrictions $(F\omega(\zeta))|_{K_s}$, $(F\Phi_h(\zeta))|_{K_s}$; these are continuous on K_s , regular on $K_s \setminus \partial K_s$ and on $K_s \setminus \partial K_s$ satisfy $(F\omega(\zeta))|_{K_s} = d[(F\Phi_h(\zeta))|_{K_s}]$. Hence Stokes' theorem for regular forms on a manifold with boundary (cf. Whitney [11], p. 109) implies:

$$\int_{K_s} F\omega(\zeta) = \int_{\partial K_s} F\Phi_n(\zeta).$$

Finally, since $\partial K_s = -\partial \Gamma_s$ (= $\partial \Gamma_s$ with the opposite orientation), (*) follows.

The above proposition disposes of the uniqueness' assertion in Theorem 1 and, further, implies that the proof of the existence of a holomor-

⁷In this paper we take as the canonical orientation of \mathbb{C}^n and of D the one given by the volume-form $(i/2)^n dz_1 \wedge d\bar{z}_1 \wedge \cdots \wedge dz_n \wedge d\bar{z}_n$.

phic continuation of f on D shall be a matter of showing that the F_h^s 's do in fact define a holomorphic function F on D such that, for each $z^0 \in \partial D \setminus K$, $F(\zeta) \to f(z^0)$ as $\zeta \to z^0$ in D. In the first place we have:

PROPOSITION 2.5. The functions $F_h^{s'}s$ are each other coherent and holomorphic. Hence there is a unique holomorphic function F on

$$\left(\bigcup_{U\supset \overline{D}}\bigcup_{\varphi\in\mathscr{O}(U)}U(\varphi)\right)\setminus\partial D$$

such that, for every U, φ, h, s ,

$$F = F_h^s$$
 on $U_s(\varphi) \setminus \partial D$.

Proof. We first prove the coherence. This means that, for every U, φ, h, s and U', φ', h', s' , we have:

$$(*) F_h^s = F_{h'}^{s'} \text{on } U_s(\varphi) \cap U_{s'}(\varphi') \setminus \partial D.$$

We may assume that $s \ge s'$. Then (*) will be a consequence of the following two equalities:

- (i) $F_{h'}^s = F_{h'}^{s'}$ on $U_{s'}(\varphi') \setminus \partial D$;
- (ii) $F_h^s = F_{h'}^s$ on $U_s(\varphi) \cap U_s'(\varphi') \setminus \partial D$

(recall that $U_{s'}(\varphi) \subset U_s(\varphi)$ and $U_{s'}(\varphi') \subset U_s'(\varphi')$). To prove (i) (in case s > s'), consider the (2n-1)-chain of $\partial D \setminus K$, of class C^1 , $c_{2n-1} = \Gamma_s - \Gamma_{s'}$. If ζ is any point in $U_{s'}(\varphi') \setminus \partial D$, it is plain that

$$F_{h'}^{s}(\zeta) - F_{h'}^{s'}(\zeta) = \int_{c_{2n-1}} f\omega(\zeta) - \int_{\partial c_{2n-1}} f\Phi_{h'}(\zeta);$$

moreover, since $\operatorname{Supp}(c_{2n-1}) \subset \overline{D_s \setminus D_{s'}} \subset \overline{D \setminus D_{s'}}$ and $L_{\xi}(\varphi') \subset U_{s'}(\varphi') \subset U_{s'}(\varphi') \subset U' \setminus \overline{D \setminus D_{s'}}$, it follows that $\operatorname{Supp}(c_{2n-1})$ is contained in $U' \setminus L_{\xi}(\varphi')$, where $\omega(\xi)$, $\Phi_{h'}(\xi)$ are both defined and satisfy $\omega(\xi) = \overline{\partial} \Phi_{h'}(\xi)$. Then, if we take a (n, n-2)-form μ of class C^{∞} on all of C^n and equal to $\Phi_{h'}(\xi)$ on an open neighbourhood of $\operatorname{Supp}(c_{2n-1})$, we may replace $\omega(\xi)$, $\Phi_{h'}(\xi)$, in the right side of the above equality, respectively by $\overline{\partial} \mu$, μ . Hence Proposition 1.9 gives at once that $F_{h'}^s(\xi) = F_{h'}^{s'}(\xi)$.

Next we prove (ii). On account of (1.3), (1.4), we have, for each $\zeta \in U_s(\varphi) \cap U_s'(\varphi') \setminus \partial D$:

$$F_h^s(\zeta) - F_{h'}^s(\zeta)$$

$$= \begin{cases} -\int_{\partial \Gamma_s} f \,\overline{\partial} X_{h,h'}(\zeta) & \text{if } n \geq 3, \\ \frac{1}{(2\pi i)^2} \int_{\partial \Gamma_s} f(z) \frac{\left(h_1 h_2' - h_2 h_1'\right) dz_1 \wedge dz_2}{\left(\varphi(z) - \varphi(\zeta)\right) (\varphi'(z) - \varphi'(\zeta))} & \text{if } n = 2. \end{cases}$$

In case $n \ge 3$, we may replace $X_{h,h'}(\zeta)$, in the integral on the right side, by any (n, n-3)-form \tilde{X} of class C^{∞} on all of \mathbb{C}^n and equal to $X_{h,h'}(\zeta)$ on an open neighbourhood of $\partial \Gamma_s$. Hence Proposition 1.9 (for q = n-1, $c_{n+q} = \Gamma_s$ and $\mu = \bar{\partial} \tilde{X}$) implies that $F_h^s(\zeta) = F_{h'}^s(\zeta)$.

In case n=2, we have to argue differently. Since $\zeta \in U_s(\varphi) \cap U_s'(\varphi')$ and $\partial \Gamma_s \subset \overline{D \setminus D_s}$, it follows that, for each $z \in \partial \Gamma_s$, $|\varphi(\zeta)| > \max_{\overline{D \setminus D_s}} |\varphi| \ge |\varphi(z)|$, and hence $|\varphi(z)/\varphi(\zeta)| < 1$. Similarly, $|\varphi'(z)/\varphi'(\zeta)| < 1$. Therefore we may write, for $z \in \partial \Gamma_s$:

$$\frac{1}{(\varphi(z) - \varphi(\zeta))(\varphi'(z) - \varphi'(\zeta))}$$

$$= \frac{1}{\varphi(\zeta)\varphi'(\zeta)} \cdot \frac{1}{(1 - \varphi(z)/\varphi(\zeta))(1 - \varphi'(z)/\varphi'(\zeta))}$$

$$= \frac{1}{\varphi(\zeta)\varphi'(\zeta)} \sum_{\alpha,\beta}^{0,\infty} \left(\frac{\varphi(z)}{\varphi(\zeta)}\right)^{\alpha} \left(\frac{\varphi'(z)}{\varphi'(\zeta)}\right)^{\beta},$$

with the double series absolutely uniformly convergent on $\partial \Gamma_s$. It follows that

$$\int_{\partial \Gamma_{s}} f(z) \frac{\left(h_{1}h'_{2} - h_{2}h'_{1}\right) dz_{1} \wedge dz_{2}}{\left(\varphi(z) - \varphi(\zeta)\right)\left(\varphi'(z) - \varphi'(\zeta)\right)}$$

$$= \sum_{\alpha,\beta}^{0,\infty} \frac{1}{\left(\varphi(\zeta)\right)^{\alpha+1} \left(\varphi'(\zeta)\right)^{\beta+1}} \int_{\partial \Gamma_{s}} f\mu_{\alpha,\beta},$$

where

$$\mu_{\alpha,\beta} = (h_1 h_2' - h_2 h_1') (\varphi(z))^{\alpha} (\varphi'(z))^{\beta} dz_1 \wedge dz_2$$

$$(\alpha, \beta = 0, 1, 2, ...).$$

Now, since every $\mu_{\alpha,\beta}$ is a holomorphic 2-form on $U \cap U'$, so that $\bar{\partial}\mu_{\alpha,\beta} = 0$, Proposition 1.9 implies:

$$\int_{\partial \Gamma_s} f \mu_{\alpha,\beta} = 0 \qquad (\alpha,\beta = 0,1,2,\ldots).$$

Therefore also for n = 2 we have: $F_h^s(\zeta) = F_{h'}^s(\zeta)$.

It remains to show that every F_h^s is holomorphic, i.e. that, for each $\zeta \in U_s(\varphi) \setminus \partial D$,

$$\frac{\partial F_h^s}{\partial \bar{\zeta}_\alpha}(\zeta) = 0 \qquad (\alpha = 1, \dots, n).$$

Clearly, we have:

$$\frac{\partial F_h^s}{\partial \bar{\zeta}_\alpha}(\zeta) = \int_{\Gamma_s} f \frac{\partial \omega}{\partial \bar{\zeta}_\alpha}(\zeta) - \int_{\partial \Gamma_s} f \frac{\partial \Phi_h}{\partial \bar{\zeta}_\alpha}(\zeta);$$

further, on account of (1.5), (1.6), (1.7), we may rewrite the right side of this equality as:

$$\int_{\Gamma_s} f \, \overline{\partial} \left[\frac{\partial \Omega_{\alpha}}{\partial \overline{\zeta}_{\alpha}} (\zeta) \right] - \int_{\partial \Gamma_s} f \frac{\partial \Omega_{\alpha}}{\partial \overline{\zeta}_{\alpha}} (\zeta) + I,$$

where

$$I = \begin{cases} \int_{\partial \Gamma_s} f \, \overline{\partial} \Psi_h^{\alpha}(\zeta) & \text{if } n \geq 3, \\ 0 & \text{if } n = 2. \end{cases}$$

Since $[\partial \Omega_{\alpha}/\partial \bar{\zeta}_{\alpha}](\zeta)$ is defined on all of $\mathbb{C}^n \setminus \zeta$, Proposition 1.9 implies that the difference of integrals in (*) is zero. Moreover, by Proposition 1.9 again, I is zero also in case $n \geq 3$, since $\Psi_h^{\alpha}(\zeta)$ may be replaced by any (n, n-3)-form $\tilde{\Psi}^{\alpha}$ of class C^{∞} on all of \mathbb{C}^n and equal to $\Psi_h^{\alpha}(\zeta)$ on an open neighbourhood of $\partial \Gamma_s$. Hence $[\partial F_h^s/\partial \bar{\zeta}_a](\zeta) = 0$.

The proof of Proposition 2.5 is then completed.

Next, we have:

PROPOSITION 2.6. Let V be an open neighbourhood of $\partial D \setminus K$, contained in $\bigcup_{U \supset \overline{D}} \bigcup_{\varphi \in \mathscr{O}(U)} U(\varphi)$, such that $V \setminus (\partial D \setminus K) = V_+ \cup V_-$, where V_+ , V_- are connected separated open sets and $V_- \subset \mathbb{C}^n \setminus \overline{D}$. Then F = 0 on V_- .

Proof. We first point out that, given an open neighbourhood U of \overline{D} and a function $\varphi \in \mathcal{O}(U)$, if ζ is a point in U such that $|\varphi(\zeta)| > \max_{\overline{D}} |\varphi|$ (which obviously implies that $\zeta \in U_1(\varphi) \setminus \overline{D}$), then $F(\zeta) = 0$. As a matter of fact, if $h \in \mathcal{O}_{\varphi}^n(U \times U)$, we have:

$$F(\zeta) = F_h^1(\zeta) = \int_{\Gamma_1} f\omega(\zeta) - \int_{\partial\Gamma_1} f\Phi_h(\zeta),$$

and, since $\overline{D} \subset U \setminus L_{\zeta}(\varphi)$, on an open neighbourhood of \overline{D} $\omega(\zeta)$, $\Phi_h(\zeta)$ are both defined and satisfy $\omega(\zeta) = \overline{\partial} \Phi_h(\zeta)$. Hence Proposition 1.9 implies that $F(\zeta) = 0$.

Now, take U and φ such that $U(\varphi) \cap D \neq \emptyset$; then $\max_{\overline{D}} |\varphi| > \max_K |\varphi|$, so that φ is not constant on the connected component of U containing \overline{D} and, further, any point $\zeta^0 \in \partial D$ where $|\varphi|$ attains the value

⁸Such a V does exist, because $\partial D \setminus K$ is connected. For example, we may take as V a small tubular neighbourhood of $\partial D \setminus K$ in $\mathbb{C}^n \setminus K$.

 $\max_{\overline{D}} |\varphi|$ must belong to $\partial D \setminus K$. One can actually find such a point ζ^0 by the well known "maximum principle". Then ζ^0 is a limit point of the open set $W = \{\zeta \in U; |\varphi(\zeta)| > \max_{\overline{D}} |\varphi|\}$ (by the maximum principle again), and, since $\zeta^0 \in \partial D \setminus K$, this obviously implies that $W \cap V_- \neq \emptyset$. But we already know that F is zero on $W \cap V_-$; it follows that F is zero on all of V_- , because V_- is connected.

Finally, we are in a position to prove that F is a continuous extension of f to $\overline{D} \setminus K$, i.e., the following holds:

PROPOSITION 2.7. For every point $z^0 \in \partial D \setminus K$ we have:

$$\lim_{\zeta \to z^0} F(\zeta) = f(z^0),$$

the limit being evaluated for $\zeta \in D$.

Proof. For every $w \in \partial D \setminus K$, denote by $\vec{v}(w)$ the unit vector perpendicular to $\partial D \setminus K$ at w, inward pointing with respect to D. We first prove that

$$\lim_{t\to 0^+} F(w+t\vec{v}(w)) = f(w),$$

with the limit uniform on compact subsets of $\partial D \setminus K$. Given $w \in \partial D \setminus K$, we can find an open neighbourhood U of \overline{D} , a function $\varphi \in \mathcal{O}(U)$ and a positive integer s such that $w \in U_s(\varphi) \cap (\Gamma_s \setminus \partial \Gamma_s)$. Then, for t > 0 small enough, we have:

$$w + t\vec{v}(w) \in U_s(\varphi) \cap D, \quad w - t\vec{v}(w) \in U_s(\varphi) \cap V_-$$

with V_{-} as in Proposition 2.6, and hence, if $h \in \mathcal{O}_{\varphi}^{n}(U \times U)$, it follows that

$$F(w + t\vec{\nu}(w)) = F_h^s(w + t\vec{\nu}(w)),$$

$$F(w - t\vec{\nu}(w)) = F_h^s(w - t\vec{\nu}(w)) = 0.$$

Therefore we may write:

$$F(w + t\vec{v}(w)) = F_h^s(w + t\vec{v}(w)) - F_h^s(w - t\vec{v}(w))$$

= $I_1(w, t) - I_2(w, t)$,

where

$$\begin{split} I_1(w,t) &= \int_{\Gamma_s} f \big[\omega(w + t\vec{\nu}(w)) - \omega(w - t\vec{\nu}(w)) \big], \\ I_2(w,t) &= \int_{\partial \Gamma_s} f \big[\Phi_h(w + t\vec{\nu}(w)) - \Phi_h(w - t\vec{\nu}(w)) \big]. \end{split}$$

Now, it can be shown that, for any $f \in C^0(\Gamma_s)$ (not necessarily a CR-function) and $w \in \Gamma_s \setminus \partial \Gamma_s$,

$$\lim_{t \to 0^+} I_1(w, t) = f(w),$$

with the limit uniform on compact subsets of $\Gamma_s \setminus \partial \Gamma_s$. A similar result can be found in Harvey-Lawson [4], pp. 251–252, and the proof given there (based on a suitable estimate for $\|\omega(w+t\vec{v}(w)) - \omega(w-t\vec{v}(w))\|$) works essentially for the present case as well. Next, since the function $\zeta \mapsto \int_{\partial \Gamma_s} f \Phi_h(\zeta)$ is defined and real analytic on all of $U_s(\varphi)$, it is plain that, for $w \in U_s(\varphi) \cap (\Gamma_s \setminus \partial \Gamma_s)$,

$$\lim_{t \to 0^+} I_2(w, t) = 0,$$

with the limit uniform on compact subsets of $U_s(\varphi) \cap (\Gamma_s \setminus \partial \Gamma_s)$. Hence (*) follows.

After that, it is easy to prove Proposition 2.7. Given $\varepsilon > 0$, let N_{z^0} be an open neighbourhood of z^0 in $\partial D \setminus K$ such that $|f(w) - f(z^0)| < \varepsilon/2$, for every $w \in N_{z^0}$, and $N_{z^0} \in \partial D \setminus K$. Further, let $t_0 > 0$ be such that $|F(w + t\vec{v}(w)) - f(w)| < \varepsilon/2$, for every $t \le t_0$ and $w \in \overline{N}_{z^0}$. Clearly, if ζ is a point of D close enough to z^0 , there exist exactly a point $w \in N_{z^0}$ and a positive number $t \le t_0$ such that $\zeta = w + t\vec{v}(w)$. It follows that

$$|F(\zeta) - f(z^0)| \le |F(w + t\vec{\nu}(w)) - f(w)| + |f(w) - f(z^0)| < \varepsilon$$
, which proves Proposition 2.7.

Now the proof of Theorem 1 is completed.

REFERENCES

- [1] G. Fichera, *Teoria delle funzioni analitiche di più variabili complesse*, Istituto Matematico "G. Castelnuovo", Univ. di Roma, notes, 1982–83.
- [2] K. O. Friedrichs, *The identity of weak and strong extensions of differential operators*, Trans. Amer. Math. Soc., **55** (1944), 132–151.
- [3] F. R. Harvey, *Integral Formulae Connected by Dolbeault's Isomorphism*, Rice Univ. Studies, **56** (1969), 77–97.
- [4] F. R. Harvey and H. B. Lawson, On boundaries of complex analytic varieties, I, Ann. Math., 102 (1975), 223-290.
- [5] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland Publishing Company, 1973.
- [6] G. Lupacciolu and G. Tomassini, *Un teorema di estensione per le CR-funzioni*, Ann. Mat. pura appl., **137** (1984), 257–263.

⁹The parallel result for n = 1 and $\omega(\zeta) = (1/2\pi i) \cdot dz/(z - \zeta)$ (the Cauchy kernel) goes back to Plemelj (cf. Muskhelishvili [9], pp. 43–45).

- [7] E. Martinelli, Sopra una dimostrazione di R. Fueter per un teorema di Hartogs, Comment. Math. Helv., 15 (1942), 340-349.
- [8] J. R. Munkres, Elementary Differential Topology, Annals of Math. Studies 54, Princeton Univ. Press, Princeton, N. J., 1966.
- [9] N.I. Muskhelishvili, Singular Integral Equations, Wolters-Noordhoff Publishing, Gronigen the Netherlands, 1958.
- [10] G. Tomassini, Extension of CR-functions, to appear in Lecture Notes in Math., Springer-Verlag, New York.
- [11] H. Whitney, Geometric Integration Theory, Princeton Univ. Press, Princeton, N. J., 1957.
- [12] E. L. Stout, Analytic continuation and boundary continuity of functions of several complex variables, Proc. Edinburgh Royal Soc., 89A (1981), 63-74.¹⁰

Received October 22, 1984.

ISTITUTO MATEMATICO "GUIDO CASTELNUOVO" UNIVERSITÀ DI ROMA "LA SAPIENZA" 00185 ROMA

¹⁰Added in proof.