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INCREASING PATHS ON THE ONE-SKELETON
OF A CONVEX COMPACT SET IN A NORMED SPACE

LEONI DALLA

Let C be a convex compact set in a normed space E and let skel, C
be the subset of C that contains those boundary points of C which are
not centres of 2-dimensional balls in C. When [/ is a continuous func-
tional on E, we say that the path P = g([a, B]) is /-strictly increasing if
1(g(1)) < I(g(t,)) for every t,,t, such that a <1, <1, < B. D. G.
Larman proved the existence of an /-strictly increasing path on the one
skeleton of C with /(g(a)) = min .. /(x) and [(g(B)) =
max, ¢ /(x).

In this paper we prove a theorem concerning the number of /-strictly
increasing paths on the one-skeleton of C, that are mutually disjoint and
along each of which / assumes values in a range arbitrarily close to its
range on C.

1. Theresults. We quote and prove the following theorem

THEOREM 1. Let C be a compact convex set of infinite dimension in a
normed space E and | be a continuous linear functional on E, which is non
constant on C. Let ¢ >0 be given, M = max, ..l(x) and m =
min . ~/(x). Then, for every n = 1,2,3,... there exist n l-strictly increas-
ing paths, P, = g,(la, B]), k = 1,2,...,n on the one-skeleton of C, such
that relint P, N relint P, = & with i # j, I(g,(a)) = m + & and 1(g,(B))
=M-—c¢fork=12,...n.

Proof. Consider the sets K, = {x € C: I(x) = M — ¢} and K, = {x
€ C: I(x) = m — &}. These sets are of infinite dimension and lie on two
parallel hyperplanes. We define

A=Cn{xe€E: l(x)2m+e}N{x€E:I(x)<M—¢}
Then we may select n linearly independent vectors e, e,,...,e, and n
linear functionals /; = /,/,,...,[, on E such that the following properties
hold:

() L(e))=1,1(e;)#*0fori=2,3,...,nand /,(e;) =0fori +j
(i) Let E, = [e;, e,,...,e,] be the n-dimensional subspace of E

spanned by e, e,,...,e, and 7, be the projection map on E,

defined by my(x) = l;(x)e; + --- +1,(x)e,. Then dimmy(K,) =

dim7,(K,)=n— 1.
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From the previous, it follows that C, = my(A) is a convex body in E,,
mo(Ky) ={x€ C,: (x)=M—¢} and 7y (K,)={x€C,: [(x)=
m + g},

Let u € E, be a unit vector perpendicular to e,. Then according to
the results proved in [3] we may choose a unit vector u’ € E, orthogonal
to e,, as close as we please to u and such that there are no line segments
in the direction %’ on the boundary of C, — relint 7y(K,) — relint 7,( K,).
Then the projection o,_, of E, onto the hyperplane E,_; perpendicular
to «’ has an inverse function from bdo,_,(C,) — relinto,_,(7,(K,)) —
relint o,_,(7y(K;)) back to C,.

If {e;,u,,...,u,_;,u} is an orthogonal system in E, then we can
choose, using induction, unit vectors u/,_,, ..., u5 orthogonal to e, and as
close as we please in direction to the projections of the vectors u,,_,,. .., u;
onto the subspaces E, ; C [u']*, E, , C[v,u,_4]1*,..., E;
[w,u,_,,...,uy]* and in such a way the projections 6,: E, = E, _;, k
n — 2,...,3 have unique inverses from

N

bdo,c0, 100 "n—l(Cn) —relintg 00, 0 - ° on—l('”o(Ko))

—relinto o0y, ° -+ 20, (7(K}))

back to o,,,° --- 20, _;(C,). We complete the orthonormal system
u'su,_y,...,u5,u; by taking uj = e, and u} to be the unit vector per-
pendicular to u’,u,,_,,...,u5, u; = e, and closest to u,.

Write now w, = 6,0 --- o0,_; for the projection of E, on the two
dimensional subspace E,. For each ¢ such that m + e <t < M — ¢, we
define by £,(¢) the point on the line segment { x € w,.(C,): I )(x) =t}
whose second coordinate attains its maximum value. On the other hand
we may suppose, by making appropriate transformation of C, that
there exists a cylinder B in the convex body C, of E, such that B =
con(S, U S,), where S, and S, are (n — 1)-dimensional balls of diameter
& with the property S; C relint 7,(K,), i = 0,1 and the axis of B in the
direction of e,.

Let ¢, be such that 0 < ¢, < min{ d(bd m,( K,), S), d(bd m,( K}), S;)}
where d is the usual distance between two sets. The convexity of C,
implies d(bd C, — m(K,) — my(K;), B) > €,. Then there exist a linear
functional /, on E, such that /. (u’) = 0, [(u5) = 1 and /,(§,(2)) > ¢,
+46/2>0.

Now let £5(¢) be the point on the line segment {x € w,(C,):
l;(x) =t} whose second coordinate attains its minimum value, then
1,(§5(2)) < —(go + 6/2) < 0. Because of the choice of u’,u,_,,...,u; the
inverse function w;' is uniquely defined from the curves £,(¢) and £4(¢)
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back to the one-skeleton of C,. Consider now x,(¢) = w;}(£,(#)) and
xp(t) = w(£5(t)) where m + e <t <M — e Then xy(t) and x,(?)
where m + € <t < M — ¢ are paths on the one-skeleton of C,. By
construction /,(x4(2)) = ¢, I;(x4(2)) = ¢,

D L) > e+ 5 Llxi(0) < {0+ 5)

form+e<t<M-—e.
We say then that {x4(z),m + e<t <M — ¢} and {xy(t),m +e <t <

M — &} are paths on the one-skeleton of C, “in the direction near u”.
Following the methods developed in Theorem 1 in [2] we construct two
I-strictly increasing paths zy(z) and z((¢), m +e <t < M — ¢ on the

one-skeleton of A4 such that

(2) L(zo(2)) =1, 1(z5(¢))=1¢ and

lmo(20(2)) = x0(2) || < %, ”770(26(1‘)) - xo()| < _5370

wherem + e <t <M — e.
From relations (1) and (2) it follows that

() Lelm(z®) > Fa+ 3, Llm(z0) < -(3e0 + 3]

m{zo(t): m+e<t<M-e}NB=g,
mo{z5(t):m+e<t<M—-e}NB=0.

As (2) holds we may say that z,(¢), z{(¢) are paths on the one-skeleton of
A in the direction near « and we write z, = z, and z{ = z|.

Let S be the unit ball in E”, lying on the hyperplane /(x) = 0 and
let 6 be a positive number such that 0 < § < (1/2d)(8/2 + ¢,/3) where
d = diamC,. The compactness of S implies the existence of unit vectors
Uy, Uy,...,u, such that for every unit vector u in S, there exists i, €
{1,2,...,m} with |lu — u |l < d. Let Zu'{zu‘(t),m +e<t<M-—¢}and
z, . = {z;,(t), m+e<t<M-—e} where i =1,2,...,m be paths on
the one-skeleton of 4 in the direction near u,. Let j(Z,,Z,,...,Z,) be
the junction set of the paths Z, ,Z, ,...,Z, . Suppose now that
cadd j(Z,,Z,,...,Z,, )< +oandcad (Z,,Z,,...,Z,) = + oo for
some A such that 1 <A < 2m. Renaming, if necessary, the paths
zZ,, Zuz, cees Z,, WE consider the greatest integer k such that1 < k <\ —
1, card IZ,,Z,)< o0 for i=1,2,...,k—1 and card z,,2,)=
+oofori=kk+1,...,A - 1.



202 LEONI DALLA
Let
a= inf{t: t€[m+eM~—¢]and z,(1) cj(z,, Zux)}
and
B= sup{t: te[m+eM~—¢]andz, (1) Ej(Zuk,Zux)}.

As z, and z, are continuous functions, there is a finite number of closed
subintervals [a,;, b}, i = 1,2,...,», of [m + &, M — ¢] with the following
properties:
® z,(a;)= z,(a;), z,(b;) = z,(b))
(i) 2,(1) # 2,(1), @, <1 <b,
(i) max, <,y |2, (2) = 2, (D > /3 fori=12,...,»
Then

z,(m+ea)Vzla,a)V U z,la,b)

i=1
v—1
U U zuk(bi’ai+l)uzuk(by7 b)UzuA(b’M_ 8)
i=1

is an /increasing path, Z} say, on the one-skeleton of C that is different
from Z, on the set
v—1
r = zuk(a’ al) v U Zuk(bi’ ai+1) U Zuk(by’ b)

i=1

By construction the set I is within distance &,/3 from Z, , hence we have

@4 |

Ascard j(Z,,Z7) < +oo for i =1,2,..., k, we can replace Z, by Z}
for every A=1,2,...,2m with card j(Z,,...,Z, )< +oo and
card j(Z,,...,Z,) = +oo. Then card j(Z},..., Z} ) < + oo and using
(3) and (4) we get |l (m(z (1)) > 8/2 + &y/3 where u’ € S, |[u" — u,||
< 8.

Now we can define the graph G with vertex set V' = { K} U {K,} U
HZ},...,ZF ), where an ordered pair of these nodes is said to form a
directed subgraph of G if they are joined by an /-increasing arc from

2m Z, which contains no other node of G. The required result now
follows from Menger-Whitney theorem for the finite graph G, if we are
able to show that the removal of (n — 1) vertices from j(Z},...,Z} )
still allows an /-increasing path running from K, to K;.

z, (1) — zX(1) " <e,/3 foreveryte€ [m+ e, M — ¢
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Let yy, ¥3,..., ¥,_1 be (n — 1) vertices from j(Zj,..., Z}¥ ). For the
points 7,( 1), 7o(¥,)s - - - To( ¥,—1) Of E,,, there exists a linear functional //
on E, such that I'(my(y,)) > 0,i =1,2,...,n — 1,I'(e;) = 0 and I'(v) = 1
for some v € S. Let now u € S be an arbitrary vector such that /'(u) = 0
and /;(u) = 0. For the vector u there exists a vector ¥, € S such that
llu — ull < 8. Let Z} = be the path on the one-skeleton of C in the
direction near u,, with

8 g
(5) Iuk(wo(z:mk(t))) < —(—2- + ?), m+e<t<M-—e
We can also select « in such a way that /’(u) = 0 and /,(u) = 0 for which
the corresponding /, has the property /,(v") =1 for some v" € § with
flo = v <4.
Now, we may suppose that
6) L(m(y,)) =0 fori=1,2,...,p and
( L(m(y)) <0 fori=p+1,...,n-1

Relations (5) and (6) imply that
(7) mo(y,) & WO(Z:m+k) fori=1,2,...,p

We have that I'(v) = 1, [, (v") = 1 with |lv — /|| < 8 and I'(my(y,)) = 0,
1, (7m9(y;)) <Ofori=p+1,...,n — 1 Hence

®)  L(m(y) = —dﬂ—(%+ %) i=p+1,....n—1.

From (5) and (8) we have that 7y(y,) € mo(Z) )fori=p+1,....,n—
1. Hence, from (7) and (8) follows that y, & Z; , i=12,...,n—-1
which completes the proof of the theorem.

From the above theorem one can deduce the following corollaries
whose proofs are omitted as obvious.

COROLLARY 1. Suppose that C and | are defined as in Theorem 1, the
faces

F, = {x € C:l(x)= min z(y)} and F, = {x € C: l(x) = max 1(y)}

are such that the dimension of Fy N F| is infinite, where F; and F) are the
corresponding subspaces translates of F, and F, correspondingly. Then for
every n = 1,2,... there are n I-strictly increasing paths on the one-skeleton
of C mutually disjoint that join F, to F,.
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COROLLARY 2. Suppose that C a compact convex set of infinite dimen-
sion in a normed space E. Then the one-dimensional Hausdorff measure of
the one-skeleton is infinite.

We may remark that the n-dimensional Hausdorff measure of the
n-skeleton of a set C as in Corollary 2 is infinite for every n = 1,2,....
For a direct proof of this result see [1].
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