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Dedicated to Earl A. Coddington on the occasion of his 65 th birthday.

The main result of this paper is the description of certain linear
manifolds Γ(λ), associated with a symmetric operator, in terms of
certain boundary values of the characteristic function of a unitary
colligation.

1. Introduction. Let φ be a Hubert space and let φ be a ττrsρace,
i.e., a Pontryagin space with K negative squares, such that φ contains φ
and the indefinite inner product on φ restricted to φ coincides with the
Hubert inner product on φ; we denote this situation by $ c s § . Let A be
a selfadjoint subspace in |>2 with nonempty resolvent set p(A). With A we
associate as in [8] a family { Γ ( / ) | / G C U {OO}} of linear manifolds
Γ ( / ) c φ 2 defined by

Here P denotes the orthogonal projection from |> onto φ. We note that
A Π φ 2 is a symmetric subspace in φ 2 , with adjoint (P ( 2l4) c, i.e., the
closure in φ 2 of the set

= {{Pf,Pg}\{f,g}<EA}.

The following inclusions are obvious:

A Π § 2 c T(l) c P<2>Λ, l e C u f o o } ,

and also

Γ ( / ) c Γ ( / ) * , / e C u { o o } ,

with equality when / e p(^4).
Now let S be a symmetric subspace in φ 2 . We consider the selfadjoint

extensions^ c |>2 of S, with nonempty resolvent set ρ(A), where § C 5 § .
The corresponding families { Γ ( / ) | / G C U {oo}}, form the class of Straus
extensions of S and T(l) for / e C \ R was characterized in [8], to which

347



348 A. DIJKSMA, H. LANGER AND H. S. V. DE SNOO

we refer for notations and definitions. An important tool in this note is

the characteristic function of a unitary colligation of the form

(l>, S, @; U), where the inner space § is a 77^-space, the outer spaces are

fixed and given by g = v(S* - μ) and ® = v(S* - μ), the correspond-

ing defect spaces of S, and where U is the restriction of Cμ(A)9 the Cayley

transform of A, where μ e p(A) \ R . The main result of this paper is the

description of T(λ) for real λ, i.e., λ e R U {oo}, in terms of certain

boundary values of this characteristic function. Straus [19], [21], [22]

investigated the case where fc = 0 and the manifolds involved are single-

valued, i.e., (graphs of) linear operators. His method we could not easily

extend to the case where K > 0 and the manifolds are multivalued.

However, by generalizing the theory of unitary colligations from the case

where the inner space is a Hubert space (see Brodskii [4]) to the case

where it is a πκ-space, we obtain a method which is simpler than the one

used by Straus (for instance, the two cases λ e R and λ = 00 need not be

treated separately) and, at the same time, works just as well in the more

general situation.

We outline the contents of this paper. In §2 we consider unitary

colligations and their characteristic functions and state results to be used

in the rest of this paper. The proofs will appear in [9]. Such characteristic

functions associated with 7rκ-spaces were also considered by Krein and

Langer [12], [13], [14]. The new ingredient in our treatment is the sys-

tematic use of unitary colligations. Closely related results are announced

by Arov and Grossman [2], Azizov [3] and Filimonov [10]. In §3 we give

the above mentioned characterization of Γ(λ), λ e R U {00}. We give a

sufficient condition for Γ(λ), λ e R u {00} to be selfadjoint. This in-

cludes a result of Stenger [17]. Also we will characterize the symmetric

linear manifold A Π φ 2 as the intersection of a finite number of mani-

folds Γ(/), thereby sharpening and generalizing a result of Brown [5]. In

[20] Straus presented a characterization of the subspaces {{/, g} ^ S*\g

= λ / } , λ e R, for the case of a densely defined symmetric operator. In

order to apply his previous theorems from [19], [21], he had to introduce

special Straus extensions in an auxiliary Hubert space. In §4 we show that

such results when S is a symmetric subspace follow directly by making use

of the theory of unitary colligations.

We dedicate this paper to Earl A. Coddington, whose work in the

theory of subspaces and its applications to ordinary differential equations

has been very stimulating for us. The first and last author wish to express

their gratitude to Prof. Coddington for many inspiring ideas and many

years of cooperation.
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2. Unitary colligations. In this section we will collect some state-
ments about unitary colligations in τrκ-spaces, which will be proved in [9].
Let g and @ be arbitrary Hubert spaces and let § be a τrκ-space. We shall
use [ , ] as the notation for the scalar or inner product for these and other
spaces; it should be clear from the context to which space it refers. By
Sκ(%> ®) w e denote the class of all functions Θ with the following two
properties:

(a) Θ is defined and meromorphic o n D = { z e C | | z | < l ) , with
0 e © θ , the domain of holomorphy of Θ in D, and has values in [g, ©].

(b) The kernel

has K negative squares, i.e., for arbitrary choices of n G N, z,- e ® θ and
f. E g , i = l,,,,,«, the n X n hermitian matrix

has at most K and for at least one such choice exactly K negative
eigenvalues.

Let Δ be a unitary colligation, i.e., a quadruple of the form Δ =
( $ , S , ® ; t f ) , where

is unitary, i.e., isometric and surjective. Here ( | ) (( | )) is the orthogonal
direct sum of $ and g (©, respectively), T e [|>, |>], F e [g, §], G G
[ § , ®] and ffe[g, ©]. According to M. G. Krein the characteristic
function Θ = ΘΔ of Δ is defined by

(2.2) Θ(z) = H + zG(l - zTyλF, z"1 e p(Γ),

see Brodskii [4]. As U is unitary, it is easy to see that T is a contraction
and hence the spectrum σ(Γ) of T consists of points from Dc, the closure
of D in C, and of at most K points from C \ D C , which are normal
eigenvalues of T, cf. [11]. Thus Θ(z) is defined for z e D, with the
exception of at most K points.

The unitary colligation Δ is called closely connected if the linear span
of all elements of the form Γ T / or (T*)nG*g with m, n e N U {0},/e g
and g e ©, is dense in $, or, equivalently, if there exists no nontrivial
subspace S c | with Γ(®) = β and Γ| f t is isometric. In particular, if Δ is
closely connected, Γhas no eigenvalues on the unit circle 3D. Finally, two



350 A. DIJKSMA, H. LANGER AND H. S. V. DE SNOO

unitary colligations Δ = (φ, g, © U) and Δ' = ( $ ' , g, © W) are called
unitarily equivalent if there exists a unitary operator Z e [ § , §'] such
that

THEOREM 2.1. (i) Le/ Δ = (§,g,@;t/)&efl unitary colligation where
I? w α πκ-space. Then ΘΔ e S ^ g , ©) /or some κf with 0 < κr < K. If Δ is
closely connected then κf = /c.

(ii) // Θ e 5κ(2ί5 ©) Λ̂̂ « /Λ r̂̂  ejcύ/j a unitary colligation Δ =
(|>, gf, © £/), wΛer̂  φ w β πκ-space, such that Θ = ΘΔ. ΓΛe colligation Δ
αz« Z>e chosen such that it is closely connected also, in which case it is
uniquely determined up to unitary equivalence, and 2)Θ = { z e C | z ~ 1 £

It follows from the construction, that if the colligation Δ is closely
connected, the dimension of the inner space |> is equal to the sum of the
numbers of negative and positive squares of the kernel SΘΔ.

The next theorem deals with the behaviour of Θ e S^g, ©) on the
boundary 3D of D. By lim z^ ? we denote the nontangentiallimit a s z G D
tends to ξ e 3D.

THEOREM 2.2. Let Θ <Ξ S^g, ©), ξ e 3D, ψ e g. Then the following
statements are equivalent:

(i) there exists an element φ e ©, such that \\φ\\ = ||ψ|| <

lim -—
1 -

(ϋ)

lim
1-1*1

(iii) there exists a sequence (zn) in © θ with zn

sup < 00.

//" one o/ ίΛese statements is valid, then φ in (i) w uniquely determined and
ψ = l im z J H θ(z)ψ.

If Θ = ΘΔ wAere Δ is β closely connected unitary colligation, then
equivalent to (i), (ii) or (iii) is

(iv)
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and then (iv) implies

Let Θ e Sκ(g, @) and let Θ = ΘΔ where Δ is as in Theorem 2.2. As
ζ ^ 3D is not an eigenvalue of T we may extend the definition of Θ to ζ
by putting

In general, 2)0(Θ(£)) need not be closed, but, of course, if we also have
that £-1 G p(Γ), then © 0 ( Θ (f)) = S and the definition of θ(f) coincides
with the one in (2.2). Theorem 2.2 shows that this extension of Θ to D c

can be described without making use of the fact that it is a characteristic
function of a colligation: for f G 3D we have

®o(β(£)) = {ψ ^ g | lim m

 1 i ^ ^ 1 1 existsj

and

(z)ψ, strongly, ψ e δ o ( θ ( f ) ) .

We note that for f G 3D, Θ(f) is an isometry on ©0(Θ(£)). W e remark
that ®o(®(£)) i s i n general contained in the set

< ψ G g I lim Θ(z)ψ exists strongly!,

cf. [19]. Also we note that if ξ G 3D and 1/? G p(Γ), then Θ(f) is a
unitary mapping from g onto ©. In particular, this happens when
dim $ < oo, for then 3D c p(Γ).

THEOREM 2.3 (maximumprinciple). Letθ e 5K(g, ©), ψ G g, φ G ©
αwJ assume that the relation φ = Θ(z)ψ holds for more than K points
z G Φ θ . ΓΛen we Λαt e ίΛe inequality | |φ | | < ||ψ||. //"we have | |φ | | = ||ψ||, ίΛeπ

φ = Θ(z)ψforallz G Φ θ .

If Δ = (|>, g, © U) is a unitary colligation, where U is of the form
(2.1), then it is clear that H maps the nullspace v(F) isometrically onto
the nullspace v(G*) with inverse H*. In terms of the characteristic
function Θ = ΘΔ, we have that
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and hence with ψ e v{F) and φ = #ψ, that

(2.3) φ = θ(z)ψ, ||Φ|| = JIΨH, z e ® Θ .

Conversely, if we have (2.3) and Δ is closely connected if /c > 0, then

ψ e ι>(,F), φ ε *>(<?*) and φ = i/ψ.

3. Straus extensions. Let § be a Hubert space and let S c $ 2 be a
symmetric subspace. It is well-known that S* can be written as

S* = S + M, + M;, direct sum in § 2 ,

where / e C \ R and Mι = {{/, g} e 5* | g = //}, is the defect subspace
of 5 at / G C. We fix μ e C \ R and consider a selfadjoint extension
4̂ c φ2 of S with μ e p(A) where § is a Pontryagin space with K negative

squares such that φ D5 φ. The condition μ G ρ ( i ) is a restriction only if
K: > 0. For, if /c = 0 φ is a Hubert space and then C \ R c p(A). But if
K: > 0 then either p(A) = 0 or C \ R c ρ(A) with the exception of at
most 2κ points, which are normal eigenvalues of A, and one of these could
coincide with μ. We denote the Cayley transform and its inverse at
/ e C \ R by Cι and Fι respectively. Then

Cμ(A) = Cμ(S) + U, C-μ(A) = C-μ(S) + ί/*, direct sums in § 2 ,

and

(3.1) A = S 4- FM(l/) = 5 + Fp(ί/*), direct sums in | 2 ,

where ί/ is (the graph of) a unitary operator with a matrix representation
of the form (2.1) in which | = § θ φ is a Pontryagin space with K
negative squares,

g = Φ(M~) = *>(£*- μ) and © = ©(ΛfJ = i>(S* - μ).

Writing the equalities in (3.1) in full detail, we obtain:

(3.2) φ —(T*(p 4- G*φ) \ I μφ — μ(T*φ + C/*φ)

φ ~ ( F * φ + H*φ)J\μφ - μ(F*φ + H*φ)

direct sums in φ 2 .

A direct consequence of these formulas is a description of A Π φ 2 :

A Π ίp == *S-l-ί{ψ — /f ψ, μ ψ — μi/ψ } |ψ ^ ϊ'(i^))

= 5 4- {{<p - H*φ,μφ - μi7*φ} | φ G *>(G*)}, direct sums in $ 2 .
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Using definition (1.1) we obtain from (3.2)

S +{{ψ -(Gψ

(3.3)

= S + { { φ -(F*φ + ff*φ), μ<p - μ{F*ψ + H*φ)} \

φ e © , φ <Ξ § , (/ - μ) φ = (/ - μ)(Γ*φ + G*<p) } ,

direct sums in § 2 ,

Γ(oo) = S +{{ψ -(Gψ + tfψ),μψ - μ(Gψ +

/ e C,

+ H*φ)} |

φ e G , φ e § , φ = F*φ + G*φ}, direct sums in φ 2 .

Let CM = { / € C I Im /Im μ > 0}, let z: Cμ-+Ό be the fractional linear
transformation z(l) = (/ — μ)/(/ — μ) and put z(oo) = 1. Then (3.3) im-
plies that the Straus extension of S associated with A via formula (1.1) can
be written in the following way: for all / e Cμ with z{l) e ® θ

(3.4) T(l) = S + {{ψ - Θ(z)ψ, μψ - μΘ(z)ψ} | ψ e v{S* - ji)},

and

(3.5) = S +{{φ - Θ(z)*φ, juφ - φ

direct sums in § 2 , where Θ = ΘΔ is the characteristic function of the
unitary colligation Δ = ( $ , g, © t/) and belongs to class S^g, ©) for
some ic' with 0 < κf < K. We note that Δ is closely connected if and only
if A is closely connected, i.e., the linear span of all elements of the form
(A — iγιhy A e $ , / G p(^4), together with the elements of § is dense in
| ) . It follows from Theorem 2.1 that iiA is closely connected, then K' = K.
Theorem 2.1 and (3.3) imply the following result

THEOREM 3.1. Let S be a symmetricsubspace in φ 2 andfieC\R.
(i) Let { Γ ( / ) | / G C U {OO}} be a Straus extension of S associated

with a self adjoint extension A of S in | ) 2 with μ e p(A), where § ^>s& is a
πκ-space. Then there exist uniquely a κf with 0 < κf < K and a function
Θ e Sκ.(v(S* ~ μ), v(S* - μ)) such that, for all I e Cμ with z(l) e ©Θ,
T(l) is given by (3.4). Furthermore, for these values of 1(3.5) is valid. If A is
closely connected then K' = K.

(ϋ) If for some Θ e Sκ(v(S* - μ), ^(S* - μ)) and all I e Cμ

z(/) e 35θ, Γ(/) c $ 2 ώ gwe/i ί
/ G C U ( O O ) SWCA ίΛαί {Γ(/) | /

(3.4), /Λ «̂ Γ(/) cα« Z?̂  extended to all

C U {OO}} is a Straus extension of S
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associated with a self adjoint extension A of S in | ) 2 with μ ^ p(A), where
φ D 5 § is a πκ-space and then T(ϊ)9 z(l) e ©Θ, w gwe/i by (3.5). Λ α«d $
can be chosen such that A is closely connected, in which case they are
uniquely determined up to isomorphisms which, when restricted to φ, are
equal to the identity on φ.

This theorem is actually another formulation of Theorem 5.1 of [8]
and shows that the description of Straus extensions given there is one in
terms of characteristic functions of unitary colligations. In [18] Straus
identified the mapping Θ in (3.4), restricted to the operator case with
K = 0, with a characteristic function (in his sense) of some operator in $.
It can be shown that this notion is equivalent to that of a characteristic
function of a colligation associated with this operator.

For λ E R U { o o } w e reformulate (3.3) as follows

(3.6) Γ(λ) = S + {{ψ -(if + ζG(I -

ψ e g, Fψ €= 3t(/ - fΓ)}, direct sum in § 2 ,

where f = (λ - μ)/(λ - μ) if λ e R and f = 1 if λ = oo. Theorem 2.2
now implies that T(λ) for these values of λ can be characterized as a
boundary value of Γ(/), / e Cμ.

THEOREM 3.2. Let S be a symmetric subspace / n § 2 , μ e C \ R and let
T(l) c φ 2 te gjircn ty (3.4), / e Cμ, z(/) e ®θ, wterβ θ e 5,(^(5* - μ),

= (λ -
we have

T(λ) = S + {{ψ - θ(f )ψ, μψ - μθ(f )Ψ} I Ψ

= lim θ(z)ψ, ψ e ϊ

Theorem 3.1 restricted to the operator case with K = 0 coincides with
the main results of Straus in [19], [21] and [22].
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As Γ(/)* = T(ϊ)9 1 e p(A\ T(l) is a subspace for / e p(Λ). How-
ever, for those λ e R u { o o ) which do not belong to ρ(A) T(λ) need not
be closed in general. Sufficient conditions for T(λ) to be closed for all
λ e R u {00} are that dim v(S* - μ) < 00 and dim v(S* - μ) < 00.
Another sufficient condition is that dim φ < 00, as follows from the
following theorem.

THEOREM 3.3. Let A be a selfadjoint subspace in |>2 with ρ(A) Φ 0,
where φ is a πκ-space, and let φ c ^ be a Hubert space such that
dim | θ φ < oo. Let P be the orthogonal projection from φ onto φ. Then

T(λ)={{Pf,Pg)\{f,g}eA,g-\feξ>}, λ e R,

and

Γ(oo) = {{/, Pg) I {/, g } e Λ / e i } = PA\9,

are selfadjoint in φ 2.

f. Let μ e p(A) n (C\R) and let Δ = (φ, φ, φ; ί/) where § =
§ θ φ and U = Cμ(Λl). Then Δ is a unitary colligation and without loss of
generality we may assume that it is closely connected. Write

T F

and let Θ = ΘΔ. Then, as dim φ < oo, for all ξ e 3D we have that
l/ζ e ρ(T) and therefore

is unitary for all ξ G 3D. Formula (3.6) with S = {{0,0}} c φ 2 and
S = φ now implies that Γ(λ) is selfadjoint for all λ e R U { oo}.

The statement in Theorem 3.3 about Γ(oo) coincides with a result of
Stenger [17] in case fc = 0 and A is a selfadjoint operator. The theorem is
still valid when φ is a 77̂ -subspace of φ, 0 < /c' < /c.

THEOREM 3.4. Lei § be a Hubert space and ^ be a mκ-space with
φ C5 φ. Lei A be a selfadjoint subspace in φ 2 w/iΛ p(̂ 4) # 0, wΛ/cΛ w
closely connectedifκ>0. We assume μ e p(^4)\R, 5̂  iΛαi /Ae correspond-
ing Straus family is represented for all I e Cμ w/YΛ z(/) e ΦΘ Ay

Γ(/) = {{ψ - θ(z(/))ψ,μψ - |»θ(z(/))ψ} |ψ e $}
/or 5ome Θ e Sκ(φ, φ). // SΊ c φ 2 is α symmetric subspace in φ 2,
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for more than Kpoints I e Cμ with z(l) e φ θ , then we have

Proof. We assume S1 c Γ(/), for / = ll9... ,/ κ + 1 in Cμ w i t h z ^ ) G © Θ ,

i = 1,... ,κ + 1. Let (α, /?} G Sv then

for some ψ e φ , The symmetry of SΊ implies \\β - μa\\ = \\β - μα||, so

that we have

for more than K points /z such that z(lt) e © Θ . Using Theorem 2.3 and the

formula following (3.2) with S = {{0,0}}, we obtain the desired result.

This result, stated in a slightly different way, can be found in [8]. The

present proof is similar to the one given by McKelvey [16] who showed

this result for the case of a Hubert space |> and operators S and A. A

direct consequence of Theorem 3.4 is

() < K + l ,
/κ + 1 \

A n £ 2 = Π HIM n r(/, ), l <

where /,., i = 1,... ,/c + 1, are distinct points in Cμ with z(/z) e ® θ . This

can be seen by checking that the set on the right-hand side is symmetric.
A more general result is contained in the following corollary.

COROLLARY. Let $ be a Hubert space and |> be a πκ-space with

§ c s | , Let A be a self adjoint subspace in | ) 2 with p(A) Φ 0 , which is

closely connected if K > 0. We assume μ ^ ρ(^4)\R, so that the correspond-

ing Straus family is represented by Θ e Sκ(φ9 § ) . Let ll9... Jκ+1 e C^ be

K + 1 distinct points such that z(lt) e ® θ , i = l , . , . ,κ + l, and let

mv.. .,mκ+ι G Cμ be K + 1 distinct points such that z{mt) ^ Φ θ , i =

l,...,fc + 1. Then

κ + 1

( ( / ) n r(m,)).

Proof. It is sufficient to show that the manifold on the right-hand is

symmetric, because then we may apply Theorem 3.4. So we assume

Π
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which implies by (3.4) and (3.5) that

{β - μα, jβ - μa) = {ψ,θ(z(/,))ψ} = {Θ(z(mz))*φ, φ}?

for ψ , φ e § , i = l,...,/c + 1. This representation yields ||ψ|| = ||φ||, see
Theorem 2.3, or, equivalently, Im(α, β) = 0, and the proof is complete.

This corollary contains a result of Brown [5]. He considered a densely
defined symmetric operator S in φ, and assumed that A is a self adjoint
operator extension of S in the Hubert space φ. In that case he proved

/eC\R

or, strictly speaking, the equivalent result

ίeC\R

4. A special extension of a symmetric subspace. Let φ be a Hubert
space and let S c § 2 be a symmetric subspace. We define the linear
manifolds S(l), I e C U {oo}, by

fs(/) S + ̂ , /eC,

In this section we will study the boundary behaviour of S(l) as / tends to
λ ^ R U {oo}, analogous to the results in Theorem 3.2. First we note
some obvious consequences of the definition. We have S c S(/) c S*,
/ G C U {oo}; S(/) is maximal dissipative for I G C + , S(l) is maximal
dissipative for / e C", S(/)* = S(ϊ) for / G C \ R and S(λ) is a (not
necessarily closed) symmetric linear manifold for λ G R U {OO}. Note
that for λ e R S(λ) is selfadjoint if and only if

dl(S - λ) = 9i(S* - λ) n($l(S - λ)) c ,

while (see [7]) S^oo) is selfadjoint if and only if

The manifold *S(oo) plays a role in determining whether an extension of S
is an operator or not, cf. [6] and [22].

THEOREM 4.1. Let S be a symmetric subspace in φ 2 and let μ e C \ R,

C .̂ Then we have
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where Θ e S0(v(S* — μ),v(S* — μ)) is the characteristic function of the

unitary operator colligation

,(s*-\

where Pμ denotes the orthogonal projection from φ onto v(S* — μ).

. For a fixed μ e C \ R we have for / e C^

φ = 9ΐ(5 - /) + P(S* - μ), direct sum.

This decomposition defines a projection of φ onto y(S* - μ), parallel to
9l(S - /), which we denote by P / μ . Completely analogous to Straus [20]
we obtain

ϊ+-£*;*>(* Hi-fi)(s(μ)-1)'1),

where Pμ denotes the orthogonal projection from § onto v(S* - μ).
Using the identity

we obtain

Note that the identity

CjtiSiμ)) = aμ(S)\m(S_-μ)® 0\v(S*_μ),

shows that CμiSiμ)) is a partial isometry on φ. We have for all ψ e
^(S* - μ) that Cμ(S(/))ψ e ^(S* - μ) and

(/ - μ)ψ - ( / - μ)Cμ(5(/))ψ e SR(S - /).

Using the notion of parallel projection we obtain the desired result.

Applying Schwarz' lemma to this characteristic function Θ, note
Θ(0) = 0, we obtain the following corollary.

COROLLARY. For μ G C \ R and I e C^ we have

l-μ
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If for some ψ e v(S* — μ) and some I e C^

I I Ψ I I ,
l-μ

l-μ

then ψ G v(S*) Π Sf*(0) *md, consequently,

I — μ μ

Let λ G R U {oo}, then it is not difficult to show that Cμ(S(λ))\HS*-μ)
is the boundary value of Cμ(S(l))\v(S^_]i) as / -> λ, / e C .̂ In order to
apply Theorem 2.2 we remark that the symmetric subspace S c § 2 can be
written as an orthogonal sum Sx Θ if, where Sτ is a simple closed
symmetric operator in φj, if is a selfadjoint subspace in §\ and φ y ,
y = 1,2, are subspaces of φ with φ = φ x Θ φ 2 , cf. [15]. This shows that
f o r / G C U {oo}

where

{ } e 5f| g = //}, / e C,

In terms of the colligation the above splitting implies

i.e., a splitting in a unitary operator and a partial isometry, which does not
have a non-trivial unitary part. Hence without loss of generality we
assume S to be simple, which is equivalent to the corresponding unitary
colligation being closely connected.

THEOREM 4.2. Let S be a simple symmetric closed operator in § 2 and let
S{\\ λ e R U {00}, be given by (4.1). Let μ e C \ R am/ let Θ e
^(^(S 1 * - μ), KS* - M)) 6* as g ^ « w Theorem 4.1. ΓΛew w/YΛ f =
(λ — /x)/(λ - μ) //λ e R α«Jf = 1 ifλ = 00 we

S(λ) = S

®o(Θ(n)= ψ e r(S - p) I lim Ji^L^viivαi ^ l
I -̂̂ f x ~ lzl

Θ(z)ψ, ψ e S
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Straus [19], [21] obtained this result by extending the operator to a
self adjoint operator in a larger Hubert space and then used his previous
results about Straus extensions [18]. We prove this result by directly
relying on Theorem 2.2. In [20] Straus gives necessary and sufficient
conditions for the operator S in Theorem 4.2 to be densely defined. A
more general version is given in the following theorem.

THEOREM 4.3. Let g and © be Hilbert spaces and let Θ <Ξ SΌ(g, @)
with Θ(0) = 0. Then there exists a Hilbert space ίρ, a simple symmetric
closed operator S c § 2 , μ G C \ R , α n isometry F from g onto v(S* — μ)
and an isometry Gfrom v(S* — μ) onto ©, such that

The operator S is densely defined if and only if for α,

ti?} 1 _ ι - f = °°'
z->l 1 |Z|

or, equivalently, if for allψ e g and for all φ e © wzϊλ ||ψ|| = | |φ| |

lim
1 - z

= 0 0 .

Proof. According to Theorem 2.1 there exists a closely connected
unitary colligation Δ = ( § , g, © [/), where § is a Hilbert space and U
has the form

IT

\G oj \%! ' \%r
where T is a completely non-unitary partial isometry. If we denote the
isometric part of Γby F, we have

and we have

Θ(z) = G[zP*iV),(I- z Γ ) " 1 / ^ ^ ] ^ z e D,

where i 7 and G are isometries from g onto 9i(Y)± , and from S)(V) x onto '
© respectively. For μ e C \ R w e define S = /^(K), so that S is a simple
symmetric closed operator in φ. Note that
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so that

Φ(F) X = p(S* - μ), ?H(V)±=v(S*-μ).

Hence we obtain

T

pμ

Cn(S(μ))

P , 0

and hence

Next we observe that S is densely defined if and only if S*(0) = {0}. If
S*(0) = {0}, then 5(oo) = S, which by Theorem 4.2 implies that
©O(Θ(1)) = {0}. Conversely, if <£)0(θ(l)) = {0}, then we have by Theo-
rem 4.2 that ^(oo) = S, which implies S*(0) = {0}. The final statement in
our theorem follows from Theorem 2.2.

If we have © = g> then we may write G = F*W, where if is a
unitary extension of V in $, see [12]. Our result resembles a similar
statement in [15]. The special case g = @ = C goes back to Livsic, and
can be found in [1].
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