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THE ^-PRIMES OF A COMMUTATIVE RING

K. G. VALENTE

The ^-primes of a commutative ring and their associated comple-
tions are introduced. We prove that these completions are unique up to
isomorphism and give several examples.

Introduction. The theory of finite and infinite primes is well-known
to be a fundamental tool in understanding algebraic number fields. A key
feature of these primes is that they admit unique completions, and a great
amount of information pertaining to the structure and arithmetic of a
number field can be obtained by studying the completions at all primes of
the field. This paper is dedicated to the introduction of the ^-primes of a
commutative ring, which were developed to serve as an analogue to the
aforementioned classical primes.

One of the most important aspects of /^-primes (where p = 0 or a
rational prime), and the main theorem contained in this paper, is that each
/7-prime possesses a completion which is unique up to isomorphism.
Involved in this result are three important theories: the Artin-Schreier
theory of formally real fields, the work on formally /?-adic fields and
Kaplansky's contributions to the theory of maximally complete fields.

Throughout this discussion, all rings are assumed to be commutative.
We will also adopt the usual conventions on unity: all rings have an
identity, S a, subring of R implies that they identity of S coincides with
that of R and ring homomorphisms send identity to identity. Lastly, if A
and B are sets, we write A - B for [α e A\α £ B).

0. In this opening section we wish to introduce some precursory
definitions and propositions to which we will freely refer in later portions
of this paper. The first such definition, which originally appeared in [4],
concerns valuations of a commutative ring.

DEFINITION 0.1. Let R be a commutative ring. By a valuation pair of
R we mean a pair (A91>), where A is a subring of R and p is a prime ideal
of A, such that for each r e R — A there exists x e p with rx e A — p.

Throughout the remainder of this section let R and (A, p) be such.
We may at times suppress the word "pair" and simply refer to (A, p) as a
valuation of R. The domain A/p will be called the residue class domain,
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and we write U(A,p) for A — p. Also, for convenience, we let Val(i?)
denote the set of all valuation pairs of R and note that, for m in Sρec(Λ),
we allow for a trivial valuation: (R,m).

PROPOSITION 0.2. With the notation as above, we have
(Ϊ)A = {r^R\rpQp},

(ii) R — p is closed under multiplication,
(in)/(£):= [r e R\rR c p) is a prime ideal of R and
(iv) r <E R - I(p) => 3s e R - I(p) with rs e U(A, p).

Proof. See [4]).

If we consider the special case in which R = F is a field, then (A,p)
is a classical (non-archimedean) valuation of F. Hence A/p is a field, the
residue class field, which we will denote by k(A). Also, we have that the
multiplicative group of units of A, U(A)9 coincides with U(A9 p). The
group F/U(A) will be referred to as the value group of (A, p) and will be
denoted by G(A). To repeat: this terminology and notation will only be in
effect when we are dealing with valuations of fields.

Letting

η:R->R/I(p)

denote the natural homomorphism, one can easily verify that

A = η(A)ηiUiAίP)) (the localization of η(A) at η(U(A, p)))

is a valuation subring of qf(R/I(p)). We call A the valuation ring
associated to (A,p)

PROPOSITION 0.3. Let the notation be as above with

π: A -> A/p

the canonical projection. Let (B,pB) be a valuation pair of A with p c pB.
Then (π(B),π(pB)) is a valuation pair of the residue class domain A/p.
Further, in this manner,

VzA(A,p) =:{(B,pB)\(B,pB) is a valuation of A with p c pB)

corresponds bijectively with the set Vdl(A/)p).

Proof. Let (B, pB) e Val(^, p) and (C, pc) e Vaί(A/)p). It is an
easy matter to verify that



THE ^-PRIMES OF A COMMUTATIVE RING 387

gives rise to a well-defined map from Val(^4, p) to Val(A/p) and that

determines a map from Val(^4/£) to Val(^4, p). Also, it is clear that

To conclude the proof, one observes that

π-1(π(B))npB = π-ι(π(pB)).

Thus, appealing to Proposition 1.10 of [4], we have

and the maps we have constructed are bijections.

PROPOSITION 0.4. LetR = F be a field. Then

Proof. Let (B, pB) e Val(Λ, p). By 0.3 (π(B), π(pB)) is in
Let a G F - B. If a e A, then π(a) e A:(̂ 4) - ττ(£) and TΓC^
If a & A, then α"1 e )̂. In either case we have a~ι e B and (J5, pB)

Now choose (C, t>c) e Valίi7, ^) and let c G C. If we assume c ί i ,
then c"1 G |) c {)o and we have a contradiction ( p c is a prime ideal of
C). Thus C c Λί and (C, p c ) is in Val(Λ, p).

We close this discussion by introducing a relation on the set U(A,p)
which will be of importance in the following section. Let T be a subset of
R such that l ί T and 4̂ - T is closed under multiplication. Set

and, for any prime number q,

Rel(Γ,#) = {(a,b) e= t/(^,t)) X U(A,p)\ there exists

ul9 u2 G I(A9 T) - T and ϋx, ι;2 e C/(̂ 4, t>)

with aυ\ux - to|w2 e I(p)}.

PROPOSITION 0.5. With the notation as above, Rel(Γ, q) is as equiva-
lence relation on U(A, p).

Proof. It is clear that Re\(T,q) is reflexive and symmetric. It is
transitive since I(A,T) and A - T are multiplicatively closed and I(p)is
an ideal of R.
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For α e U(A, p) we set

T(a)q= {be U(A,p)\(a,b)

and

1. We are now ready to introduce the objects to which this paper is
dedicated.

DEFINITION 1.1. Let it be a commutative ring, A = (A, p) in Val(i?)
and P c A. We say (A, P) is a prime pair of i? if the following conditions
are satisfied:

(i) dmr(A/p) = 0,
(ii) P + P c P,

(in) PP c P,
(iv) 0 G P , - l ί P ,
(v) a,b e A with α6 e -P => α e -Por 6 G -P,

(vi) t) = {α G ,41α̂ l c P} and
(vii)α e l/(i4,t>) => 36 e t/(^t)) such that a£> e / ( ^ , P ) - ( - P )

where I(A, P):= [a <= A\aP Q P}.
We employ the notation (R, A, P) to denote iϊ is a ring and (̂ 4, P) is

a prime pair of R. Let (i?, >4, P) be such with 4̂ = (A9 p). I(p) e Spec(i?)
will be referred to as the core of the prime pair.

DEFINITION 1.2. We say (̂ 4, P) is a Q-prime of iϊ if
( i ) ? n - P c p and

(ii)^2:= {a2\a<EA} Q P.

DEFINITION 1.3. Let p be a rational prime. We say (>4, P) is a
P'prime of iϊ if the following conditions are met:

(i) P = -Λ
(ii) Λ e ^ - / ( ^ , P) => 3JC G P with ΛX G /(Λ, P) - P,

(iii)/iGP, ^ ^
(iv) dim(//p/) < oo (as a Z/pZ vector space) where / = I(A, P) and
(v) |REL(P, q)\ = q for every prime number q.
We point out that if (A, P) satisfies conditions (i) and (ii) of 1.3, then

(I(A,P),P) is a valuation pair of A. Hence (iv) makes sense. Also,
P Q A meets the criteria necessary to construct the equivalence relation
Rel(P, q) as introduced in the previous section. For p Φ 0, the dimension
of ϊ/pϊ is called the rank of (A,P). We will use the terminology
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"/?-prime" for either case (p = 0 or a rational prime) when no confusion
can result. We write Pp(R) for the set of all p-primes of R, and Pp(R,J)
for the set of all /7-primes having core /.

In the discussion which follows, we use the definition of an ordering
of a commutative ring as provided by [2]. For an ordering O of a ring, we
say that O is full if O Π - 0 = {0}. Set

SRY(R) = {{A,O)\A = (^ , t ) )eVal ( i? )andOisa

full ordering of A/p).

THEOREM 1.4. Lei R be a commutative ring, (A, P) e P0(R) with
A = (A, p) and π: A -» J4/|3 ί/ie natural projection. Then (A,π(P)) is in
SRV(JR). Further, the mapping

provides a bijective correspondence between P0(R) and SRV(ϋ).

Proof. The proof is a straight-forward check with

(A,O)^{A,ir-1(O))

the inverse map.

We now wish to provide an alternate characterization of p-pήmes
(p Φ 0) in a field-theoretic setting. To complete this task we will make use
of the concept of formally /?-adic fields as defined in [5]. For a field K (of
characteristic 0) and (B,pB) a /^-valuation of K, we say (B, pB) is strong
if G( B) is a Z-group and, in such a case, refer to K as a strongly p-adic
field.

Let F be a field with valuation pairs (A, pA) and (J5, £ 5 ) such that
pAQpB. Further, we assume char(fc(^4)) = 0 and let TΓ. A -> k(A) be
the natural map. Via 0.4, (B, pB) can be considered to be a valuation pair
of A. One can check that, with this perspective, I(pB) (= {a e A\aA c
ί>5}) coincides with pA. Thus, τr(5) = 2? is the valuation ring associated
with (B, pB) (as a valuation of A).

PROPOSITION 1.5. Let q be a prime number and the notation be as
above. Then

Proof. First one checks, for a, b e U(A),

(a,b) e Rd(pB,q) <=» aU(A)qU(B) = bU{A)qU{B).
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Therefore, we may think of REL( p β , q) as the group

U(A)/(U(A)'U(B)).

Now, we have a surjective group homomorphism

Γ: U(A) -> G(B)

defined as

T(a) = π(a)U(B)

for all a e t/(4). One easily checks that ker(Γ) = U(B). Hence, Γ
induces a group isomoφhism

f: U(A)/U(B) -* G(B).

To complete the proof, we make use of the natural isomoφhism

θ: U{A)/{U{A)"U{B)) - {U{A)/U{B))/{U{A)/U{B)Y.

For a field i7 and p a prime number, set

SV(F9p) = { ( ^ , 5 ) μ = (^,t)jGVal(F)with

char(fc(^)) = 0 and B = (5, $B) a

strong /?-valuation of k{A)}.

THEOREM 1.6. For Fa field and p a rational prime, the set Pp(F) is in
bijectiυe correspondence with the set SV(F,p). This correspondence is
achieved by a mapping

where m\ A -> k(A) is the natural projection and

P) = (I(A9P)9P).

Proof. For (A, P) e Pp(F) we know that (I(A, P), P) is a valuation
pair of A with p Q P. Hence, by the remarks above

gives a well-defined map from Pp{F) to SV( JF, p).
Now choose {A, B) e SV(JP, p) with ^ = (̂ 4, pA) and 5 = (5, $B).

We write 5 for ir'\B) and t)^ for TΓ-^^I^). By 0.3 and 0.4 B = (5, t>B)
is a valuation pair of A as well SLS F, pA Q pB and /(^4, t>5) = B. Lastly,
using 1.5, (A9pB)ePp(F) and

gives a well-defined map from SV(F, p) to Pp{F).
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Finally, it is a simple task to show that these maps are, in fact,
bijections.

2. Throughout this section we let (i?, A, P) be a ring with prime pair
where A = (A, p). We write F(R, A) for the quotient field of R/I(p) and
U(P) for I(A, P) - (-P). We have

U(P) c

The following proposition gives a convenient way of describing the
elements of F(R9 A).

PROPOSITION 2.1. With the notation as above

F(R,A) = {r/u\r^Randu^ U(P)}

where r = r 4- /(p) e Λ//(t)) /or all r <Ξ R.

Proof. Consider r/s in F(R,A). Since 5 ί /(ΐ>), there exists / e
i? — /(t)) such that st ^ A — p, and we may write

r/s = rt/st.

Further, st ^ A — p implies the existence of u e A — p with stu e ί/(P).
Thus,

r/ί =rtu/stu.

To complete the proof, it suffices to observe that U(P) and £ are disjoint
sets.

With the notation as in 2.1, we show that

A = [a/ΰ\a <ΞA and u e ί7(P)},

p = [x/ΰ\x G t) and w G l/(P)}, and

^ = {p/ΰ\p G P and w G ί/(P)}.

THEOREM 2.2. L ί̂ (R,A,P) be a commutative ring with prime pair
where A = (v4, £). ΓΛew (F(R, A), A, P) is a field with prime pair where

Proof. We first note that, by definition, U(P) is closed under multi-
plication. With this, A is clearly a subring of F(R, A) and p is a proper
ideal of A.
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Claim. (A, p) is a valuation pair of F(R, A).

Subproof. Let ax/ύλ, a2/ϊι2 ^ A with {β1/ΰ^){a1/ΐiΊ) in p. Hence
B c G p and i; G ί/(P) with

{a1a2)/(u1u2) = 5c/ϋ.

So

and, as such,

a1a2v G £.

Since ϋ G £/(P), we have

a x G £ o r a 2 ^ p .

Therefore

and p is a prime ideal of A.
Let r/δ e F(i?, A) - A. Then r £ 1̂ and 3^ G t> with

Consider j / ϊ G p. Just suppose AJ/W G p. Then ry/w = z/w for some
z G p and w G ί/(P). Hence ryw G J) + /(£) c t>. Thus ry e t>, which is
a contradiction. So

and we see (A, p) is a valuation pair of F(iϊ, ̂ 4).

Claim 2. α, )8 G A, aβ G - P =» α G - P or jS G -P.

Subproof. Choose a,b ^ A and w,ϋ G J7(P) with a = α/i/ and β =
ft/ϋ. We have

αβ = —jc/ϊv

for some x G P and w G ί7(P). Hence

ύfivv = -xwt; + i

for some / G /(t)). Thus

+(-/)) G - ( P + P) c - P

(recall uυ G t/(P)). Hence αZ> G -P, and either a & -P or Z? G -P.
Therefore α G - P or β G -P.
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We leave it to the reader to check that the conditions (i)-(iv) of 1.1
are met. The above claim gives (v), and the remaining requirements easily
follow given that (A, p) is a valuation pair of the field F(R,A), /(P) is
an ideal of A and "φ Q P.

THEOREM 2.3. // (A, P) is ap-prirne of R, then (A, P) is ap-prime of
F(R,A).

Proof.

Case 1. p = 0. This case is a very straight-forward check.

Case 2. p Φ 0. First, recall that (I(A, P), P) is a valuation of A and

U(P) = I(A, P) ~(-P) = I(A9 P) - P.

Clearly P = - P .

Claim l . α e j - I(A, P) => 3π G P with απ e I(A, P) - P.

Subproof. Write α = δ/w. Since a £ I(A, P), 3JC G P with αx e
,P) - P. Let 7r = jc/ϊ G P. We now have

Just suppose «7r G P. Then

axv & P = -P

for some t> e ί/(P). Hence ax e -P = P, which contradicts our choice
of x. Therefore

aπ G/(i" ,P) - P .

With 2.2, we have that (/(A, P), P) is a valuation of Zwith p c P,
and, hence, is also a valuation of F(i?, A). Further, p e P.

2. α + ^ -> (β/ΐ) + p induces an isomorphism

Moreover, φ(ϊ) = (/), where 7 = /(A, P).

Subproof. The proof of Claim 1 of 2.2 shows that a + )p »-> (α/ϊ) + p
is indeed injective. Hence, we have a well-defined homomorphism
φ: qf(A/p) -* Z/p where

It is easy to see that φ is a ring isomorphism.
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We leave the remainder of the claim to the reader with the remark
that, for a e A and u e ί/(P), a/ΰ e I(A, P) if and only if a e 7(^4, P).
Clearly, with the above, we have condition (iv) of 1.3.

We now use P Q A to define the equivalence relation Rel(P, q) (for
every prime number q) on the set U(A).

Claim 3. For every rational prime q, |REL(P, q)\ = q.

Subproof. One easily checks that, for a, b e A - £, (α, 6) e Rel(P, #)
implies (α, 6) e Rel(P, #), and, with this, we have a well-defined map

with

p(q)(P(a)q) = P(a)q

for all β e U(A,ρ).
Let α = δ/δ be in U(A). Now, α = (δ/ϊ)(ϊ/δ) and ϊ / δ e C/(P).

Hence

(α,δ)eRel(P,ί) and p(^)(α) = P(a)q.

Thus ρ(ήf) is a surjection.
Suppose P(a)q = P(£)# for some α, Z? e ί/(>4, t)). Then 3μ1? μ2 e

ί/(i) and ^ , v2 e [/(P) with

Choose al9 a2 e £7(̂ 4, t>) and 6X, 62, M1? M2, VV V2 e ί/(P) with

Then

and we see (a,b) e Rel(P, 9). Hence p(#) is injective, and the proof is
complete.

DEFINITION 2.4. Given (R,A,P) a commutative ring with /?-prime,
we call (F(R, A), A, P) the associated field withp-prime.

3. By the previous section, we have a natural way to associate a field
with / -prime to a commutative ring with /?-prime. In light of this, we will,
for the present, restrict our attention to fields with /^-primes. The main
theorem of this section asserts that to each such object there exists a
unique "completion".



THE /7-PRIMES OF A COMMUTATIVE RING 395

DEFINITION 3.1. Fix p = 0 or a rational prime, and let (F, A, P) and

(F', Af, P') be fields with /?-prime. We say that (F\ Ar, P') is a semi-im-

mediate extension oί(F,A,P)if

(i) Ff is a field extension of F,

(ii) ̂  = Λ' n F,

(ϋi) P = P' CλF,

(iv) &(̂ 4') is an algebraic extension of k(A),

(v)[G(A'):G(A)] = land

(vi) for p Φ 0, rank(,4, P) = rank(,4', P').

As notation, we will write (F,A,P)<(F',A\P') to indicate

(F\ A\ P') is a semi-immediate extension of (i7, ̂ 4, P).

PROPOSITION 3.2. For (F, ^ , P) < (F r, ^ r , PO, / = /(^, P) and Γ

= I{A\P') we have

(!)/ = / ' O F ,

(ii) / = / ' Π fc(^) ατiέ/

(iii) P = P' Γ) k(A)

where Λ denotes the associated valuation.

Proof. One checks.

DEFINITION 3.3. Let (F, ̂ 4, P) be a field with /7-ρrime. Now, (F, 4, P)

is said to be maximal as a p-primed field, or simply maximal, if it admits

no proper, semi-immediate, /̂ -primed extension.

THEOREM 3.4. Fix p = 0 or a rational prime, and let (F, A, P) be a

field with p prime. Then, there exists a field F with p-prime (A,P) such

that

(ΐ)(F,A,P)<(F,A,P)and

(ii) (F, A,P) is maximal.

Proof. The proof is a long, though straight-forward, check using

Zorn's lemma.

PROPOSITION 3.5. Let (F, A, P) be a maximal as a p-primed field with

A = (A, P)' Then F is maximally complete with respect to the valuation A-

Proof. Just suppose not. Then we are assured a proper field extension

F' of F with valuation A' = (A', p') such that

(i) A=A'C\F,

(ii) [k(A'):k(A)]= land



396 K. G. VALENTE

Let

i:k(A)-*k(A')

be the natural inclusion (in this case, isomorphism) and

where π and it' are the projections to residue class fields. We see (using
1.4 or 1.6) that (F, A, P) is a proper, semi-immediate, primed extension of
(E>A>E)- This contradicts our choice of (F,A,P)9 and F must be
maximally complete with respect to A,

PROPOSITION 3.6. Fix p = 0 (respectively a rational prime) and
(F9A9P) a field with p-prime. Let (F,A,P) be a maximal semi-immediate
extension of (F,A,P). Then k(A) is real (p-adically) closed. Further,
k(A) is the real (p-adic) closure ofk(A).

Proof. We verify the above for p Φ 0 remarking that the case in which
p = 0 is proved by a similar argument. Recall that P provides a strong
p-valuation on k(A).

Just suppose that k(A) is not /?-adically closed. Then the /?-adic
closure, k, is a proper, separable, algebraic extension of k(A), and k
possesses a (unique) strong /^-valuation (having the same /?-rank) which
extends the valuation determined by P. Now, there exists a proper field
extension, F\ of F with valuation (A\ $') such that

(i) A=A'ΠF,
(ii) k(A') = k and

By construction, there exists a (necessarily unique) subset, P\ of Af with
(£', d',P') a ^-primed field, and (F, A,P) < (F\ A\P'). We now have
a contradiction to the maximality of (F, A9P). Hence k(A) is ^-adically
closed.

To conclude the proof we need only remark that k(A) is an algebraic
extension of k(A).

THEOREM 3.7. Fix p = 0 or a rational prime, and let (F, A, P) be a
p-primed field. If {FVAVP^) and (F2,A2,P2)

 are maximal semi-im-
mediate extensions of (F9 A, P), then there exists an isomorphism
θ- £\ -* Ei such that

(ϊ)θ(a) = a for all a e F,
(ii) Θ{AX) = A2 and

(iii) θ{Pλ) = P2.
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Proof. As above, we will restrict our attention to the case p Φ 0. We
know Fλ and F2 are maximally complete with respect to the valuations
di = (Ai9pi) a n d Ai = (A29P2)' Also, k(Ai) a n d k(A2) are p-adic
closures of k(A). Hence, there exists an isomorphism θ: Fτ -* F2 with
HAι) = An 0(ί>i) = Pi and which fixes F (see [1], Theorem 7). Thus θ
induces an isomorphism

Since these residue class fields are /?-adically closed,

and (v2(l(A2,P2)),ir2(P2))

are (respectively) the unique ^-valuations on k(Aλ) and k(A2) (respec-
tively, where mx and π2 are the natural projections). Thus

and, with this, one can show 0(Pχ) = P2

DEFINITION 3.8. Let ( ϋ , 4, P) be a commutative ring with /?-prime.
By 3.7, (.F(iϊ,v4), ̂ 4, P) has a unique (up to isomorphism) maximal
semi-immediate extension (F9 ^ , P), which we call the completion of R at
the/?-prime(yί,P).

4. In this final section we give some examples of ^-primes and their
completions.

EXAMPLE 4.1. F an algebraic number field. In this situation, if (A, P)
is a p-pήme of F, then 4̂ must be the trivial valuation (since chax(k(A))
= 0). With this we have that Pp(F)9 p Φ 0, corresponds to the set of
valuations of / which extend the /?-adic valuation of Q (the so-called
finite primes of F). On the other hand, P0(F) is simply the set of all
orderings of F. The completions in this first example are either the
standard valuation-theoretic completions (p Φ 0) or R.

In particular, if F = Q, then the ^-primes correspond bijectively to
the rational primes together with the unique ordering of Q.

EXAMPLE 4.2. R = Q[X]. Fix {0} Φ I G Spec(i?) and p a rational
prime. Now, R/I is a number field. For any valuation (B,pB) of R/I
which extends the /?-adic valuation of Q, one can verify that ττΐι{pB)
together with the trivial valuation (R,I) is a p-pήmt of R, where
τr7: R -> Λ// is the canonical projection. We now wish to prove that
every /?-prime arises in this fashion.
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LEMMA. Let S be a PID and (A, p) be a valuation pair of S. Then
(Ap, pAp) is a valuation pair ofF = qf(S). Further Ap Π S = A.

Proof. Consider s/t G F. Write

s = i r V and t = TΓ V ,

where TΓ generates the (prime) ideal I(p) in S. We now must examine
cases.

Case 1. m < n. Then s/t = ̂ /(ir""'"/')-

Subcase 1. ί ' e t ) - J(t>). Then 3x G S - A with '̂Λ: e ί7(̂ 4, t)).
Thus ί/j - (wπ"lfIί/x)/,s/x e ^ .

Subcase 2. s' e [/(^, *)). Then ί/s e ^ r

Subcase 3. s ' e S - i Then a ^ e j ) such that s'y e ί7(̂ 4, t>). So

2. n < m. Examining the three subcases above, with s' replaced
by t\ it follows that s/t e Ap.

Case. 3. m = n. Here s/t = j ' / ί ' .

Subcase 1. ί' e j> - /(t>). Then 3 i G S - ^ such that ί'jc e C/(̂ 4, p).
If Λ 'JC G yl, we have s/t e ^ . Else s'x ΐ 4̂, and 3y ^ p with .s'jcy e

, t>). This gives ί/,s e ^ .

Subcase 2. /' e t/(^l, t)). If j ' G A, then 5// G ̂ . Otherwise, 3x
with s'x G ί/(̂ 4, t)), and //s G 4̂̂ .

Subcase 3. /' ί 4̂. Again (as in Subcase 1 immediately above) one can
check that either s/t or t/s is in Ap.

In any event, we have shown that (Ap,$Ap) is a valuation pair of i7.
To conclude the proof of the lemma, we note that s e Ap n S implies
su = a for some a e A and w G U(A,\>). It now follows that s is also in

COROLLARY. Let (A, P) beap-prime ofR = Q[X] with A = (A, )ρ).
Then A is trivial {i.e. A = R and p G Sρec(i?)).
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Proof, Let A = (A, p) be as above. Since chax(A/p) — 0, we have
that Q c U(A9 p), and, hence, Q c Ap. By the lemma, Ap is then either
Q[Z] m where m is the ideal generated by some irreducible polynomial or

^oo •= if/g e Q(X) \(f,g) = 1 anddeg(g) > deg(/)}.

If A^ is of the former type, then A = Q[X]m Π Q[X] = Q[X].
We conclude the proof by showing that Ap could not be the latter

subring. Indeed, if it were, then A = Ap Π Q[X] = Q is a valuation
subring of Q[X]; that is, (Q,{0}) is a valuation pair of Q[X]. This
contradiction establishes the corollary.

With this, one checks that our initial construction accounts for all of
the /7-ρrimes (p Φ 0) of R having core I Φ {0}.

In a similar manner, our corollary allows us to determine all of the
0-primes of R. For / e Spec(iί), P0(R,I) is found by "pulling back"
orderings of R/L

We now claim that P0(R, {0}) is empty for p Φ 0. If this were not the
case, then there would exist a strong ^-valuation of Q(X) necessarily
extending the p-adic valuation of Q. But any such extension produces
either a value group which is not a Z-group or a residue class field having
transcendence degree 1 over Z/pZ (see [3] and [5]).

Lastly from the construction, we already know the field with /?-prime
associated to each />-prime of R. Hence, with 4.1, the completions to the
/^-primes of R have been determined.

EXAMPLE 4.3. F = Q(X). A s above, if (A, P) is a p-pήme of i7, then
Q c l Further, for any such (non-trivial) valuation, k(A) is a number
field. Thus all /j-primes of F axe found by choosing a suitable valuation,
(A, p), of F (see 4.2) and pulling back the />-primes of k(A) (see 4.1).
Note that by the remark at the end of the previous example, there are no
/7-primes (p Φ 0) corresponding to the trivial valuation, while the 0-primes
in this situation are exactly the orderings of F.

EXAMPLE 4.4. Let K be a formally real (respectively strongly />-adic)
field. Using 1.4 (respectively 1.6), the formal power series field, K((X))>
can be given a 0-prime (/?-prime) with the natural valuation,

AN := f Σ "iX* K e # for all /} and

-:= It βjXj\βjeKfoτa\lj)

(see [6]), and the pull back of an ordering (the maximal ideal of some
strong p'valuation) of K (= AN/ρN) to AN.
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Appealing to 3.5, 3.6 and [1] Theorem 6, it can be shown that, in most
cases (up to appropriate embedding), the completion to a /?-ρrime of
Q( X) can be realized as a formal power series field as above. Let (A,P)
be a /?-prime of Q( AT).

Case 1. p = 0.
(ΐ)A = Q(X) (i.e. P is an ordering of Q(^)). Then, F is the real

closure of Q( X) with respect to P, A = F and P is the unique ordering
of F extending P.

(n)A = A^. Here F = Q((X)) where Q is the real closure of Q with
respect to Q + . The 0-prime of F is as described above.

(iiϊ) A = Q[X]m. The completion, F, is given by /c(m, P)((AΓ)) where
~k( m, P) is the real closure of k = Q[-ϊ]/m at the ordering induced by P.

2. pΦO.
(i) ̂ 4 = yl^. In this case, F = Qp((X)) where Qp denotes the field of

/>-adic numbers.
(ii) A = Q[X]m. Here we have F = k(m, P)((X)) where fc(m, P) is

the valuation-theoretic completion of k = Q[^Π/m with the respect to
the strong /^-valuation induced by (I(A, P), P).
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