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BIJECTIVE PROOFS OF
BASIC HYPERGEOMETRIC SERIES IDENTITIES

J. T, JOICHI AND DENNIS STANTON

Bijections are given which prove the following theorems: the -̂bi-
nomial theorem, Heine's 2Φχ transformation, the g-analogues of Gauss',
Rummer's, and Saalschϋtz's theorems, the very well poised 4Φ3 and 6Φ 5

evaluations, and Watson's transformation of an 8Φ 7 to a 4Φ3. The proofs
hold for all values of the parameters. Bijective proofs of the terminating
cases follow from the general case. A bijective version of limiting cases
of these series is also given. The technique is to mimic the classical
proofs, based upon a bijective proof of the ^-binomial theorem and
sign-reversing involutions which cancel infinite products.

1. Introduction. In 1969 George Andrews [1] began to develop a
calculus for partition functions. His stated goal was to " . . . translate a
sizable portion of the techniques of the elementary theory of basic
hypergeometric series into arithmetic terms". Ideally, he wanted to prove
any theorem in basic hypergeometric series by a bijection. In this paper
we show (under certain requirements) that this can be accomplished.

Andrews' main object was to give bijective proofs of partition theo-
rems (such as the Rogers-Ramanujan identities). It was well-known that
these theorems were closely related to basic hypergeometric series. If a
bijective proof of a partition theorem were desired, could one possibly
give a bijective proof of a related basic hypergeometric series? If each step
in the manipulation of a basic hypergeometric series could be inteφreted
bijectively, the result would be a bijective proof of the partition theorem.

Andrews gave a bijective proof of the ^-binomial theorem, which is
the cornerstone of basic hypergeometric series. He also showed how to
combinatorially interpret cancellations of infinite products, a manipula-
tion of basic hypergeometric series which occurs frequently. However, he
used the principle of inclusion-exclusion which, strictly speaking, is not
bijective because it cancels objects in clumps. From the recent work of
Gessel-Viennot [13] and Garsia-Milne [11] the appropriate bijective re-
placement for the principle of inclusion-exclusion is a sign-reversing
involution. So this part of the theory of basic hypergeometric series can
now be done bijectively, which is the main purpose of this paper.
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Initially, we adopt the following convention for a bijective proof of a
series identity. To show that F(q) = G(q), we must find two sets, A and
B, with weights Wt(^ί) and Wt(5), such that

(1.1) ί ' ( ί ) = Σ Wt(fl) and G ( ί ) = J ] W t ( i ) ,

and a bijection φ: A -> B which preserves the weight, Wt(φ(#)) = Wt(#).
The sets A and B can be infinite. In this case we assume that A and B are
countable unions of finite subsets and that φ is a bijection between these
finite sets. Thus, the identity F(q) = G(q) takes place in the appropriate
power series ring. A modification of this convention will be given in §3.

In order for the bijective proofs to be sufficiently general, our
bijections must satisfy certain requirements; we list these requirements
here.

Rx If an identity contains parameters besides q, the bijection should
hold for all values of these parameters. No analytic continuation will
be allowed.

R 2 Any series manipulation should correspond to a manipulation with
bijections.

R 3 Any cancellation of infinite products should be bijective.
R 4 The analytic process of taking limits should correspond to a restric-

tion of a bijection and therefore, also be bijective.
R 5 The combinatorial meaning of a specialization of a parameter should

be apparent.

For R1? note that there has been much previous work on bijections and
generating functions, e.g., [10], [15] or [19]. For basic hypergeometric
series there are bijective proofs for special choices of the parameters [9],
[10], [14] or [20] which then use analytic continuation. Requirement R 2 is
precisely the program of Garsia-Milne [12] for the Rogers-Ramanuj an
identities. They used R3 also. Partition theorems ([5], [16]) naturally
follow by taking limits of basic hypergeometric series, so we need R4. It is
clear that R 5 is desirable.

The rest of the paper is organized in the following way. Some
notation and terminology are in §2. In §3 we discuss involutions and the
Involution Principle. Our two basic bijections Φ and Ψ are proven in §4.
We use our bijection Φ to prove various forms of the ^-binomial theorem
in §5 and our bijection Ψ is used in §6 to prove various 2Φλ results. In §5
and later, theorems are stated simply as identities; it will be understood
that what is intended is that there exists a weight preserving signed
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bijection (defined in §3) between two sets whose weights are given by the
expressions in the identity. Also, as indicated above, any unrestricted
parameters appearing in the expressions may be thought of as inde-
terminates and that the identity is valid in the appropriate power series
ring. We sketch bijective proofs of transformations of higher basic hyper-
geometric series in §7 and conclude with some remarks in §8.

2. Some notation and terminology. For a partition λ of an integer
n, let |λ| = number of parts and ||λ|| = n = sum of parts of λ. Although
partitions are usually restricted to positive parts, we not only allow 0 but
also, on occasions, negative parts. We define the weight of a partition λ
by Wt(λ) = qm and for a parameter JC, Wt(λ; x) = qmx^. We let 0
denote the empty partition, i.e., the partition with no parts; its weight will
always be Wt(0) = 1. If S denotes a set of partitions, then we define
Wt(S) = Σ λ e sWt(λ) and Ψt(S(x)) = Σ λ e S Wt(λ; x)j We shall often
refer to the "set" S(x). For sets S(x) and T(y), Wt(S(x) X T(y)) =
Wt(*S(.x)) Wt(Γ(>>)); similarly for more than two sets. A mapping
φ from S(x) to T(x) will be called a weight-preserving (WP) bijection
if (i) φ is a bijection from S onto Γ, and (ii) for each λ e S ,
Wt(φ(λ); x) = Wt(λ; x). A WP-bijection between products of sets of
partitions is defined similarly.

The sets of all partitions, partitions into even parts, partitions into
odd parts and partitions into distinct parts will be denoted by P, PE, PO
and PD, respectively. Also, combinations of these symbols will be used;
e.g., PED = partitions into even distinct parts. If S is a set of partitions,
/ is an interval of integers and k is a non-negative integer, then Si
denotes the subset of S consisting of those partitions with exactly k parts
and each part in the interval /. The absence of a subscript indicates that
the number of parts is unrestricted. With these conventions, we have

(2.1) (a)n = (a; q)n = (1 - β)(l - aq) • • • (l - aq"'1)

note that the part of size 0 corresponds to the term — a in the first factor.

(2.2) («)„, = (1 - a)(\ - aq){\ - aq1)

(2.3) ί

(2.4)

Also, we shall use the standard notation for basic hypergeometric series as
in [5] or [16].
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Let S = U£ β o^ > ί M 1 a n d l e t 5 * denote the set of conjugates of the

partitions in S; that is, S* = U/Uo^*1'00*- F o r e a c h λ * G ^ l e t λ ' b e λ *

with enough parts of size 0 adjoined to make a total of n parts and let

S" = {λ' |λ* e S*} = PΠ

[0>00). Since there exists a bijection between the

sets S and S" and l/(?)« = Wt(S), it follows that

(2.5) ^

3. Involutions and the involution principle. In this section, we con-

sider some sign-reversing weight-preserving (SRWP) involutions and other

related matters which appear in later sections. These involutions were first

given by Garsia-Milne [11]. The SRWP-involutions correspond to cancel-

lations of products; e.g.,

1 j

(3.2) * °° = (xq")00 and

°—=(x)» and

To prove the first cancellation in (3.2), we need to produce a SRWP-

involution θ in P D ^ 0 0 ^ - J C ) X P [ α / I" 1 ](jc) with fixed point set

P7)[n'°°>(-jc) X { 0 } ; i.e., for any (λ, μ) ΪΞ PD[0>°°\-x) X P[0>n~ι](x),

either (i) (λ, μ) is a fixed point of 0, or (ii) if (λ', μ/) = 0(λ, μ) Φ (λ, μ),

then Wt(λr; - J C ) Wt(μ'; JC) = - Wt(λ; -x) Wt(μ; JC). It will follow

that

&f- = Wt(PZ)[0'°°>(-x) X
X)

We define 0 as follows,

(i) if the smallest part of λ is greater than or equal to n and μ = 0 ,

then 0(λ, μ) = (λ, μ), and otherwise

(ii) let a be the largest part of λ or μ which is less than n\ if a is a part

of λ, then delete it from λ and adjoin it to μ, if a is not a part of λ,

then delete it from μ (once) and adjoin it to λ.

It is clear that θ has the desired properties and that we can find

SRWP-involutions for the other cancellations in a similar manner, includ-

ing the cases where we replace x by xqk.



BIJECTIVE PROOFS 107

In later sections we shall also need the following identities.

(3.4) (-* ; q)n(a; q)n = (α 2; q2)n 0 < n < oo

(3.5) 7 —rτΛ- = 7 τ V 0<n<oo
( * ; ? ) ( * ; ί) (a2; #2L

(3.6)

For (3.4), let

A = P D ^ - ^ ί α ) X P D ^ ' ^ - a ) and 5 = P£Z) [ 0 ' 2 "- 2 ] (-a 2 ) .

We define a SRWP-involution 0 in A by: for (λ, /x) e Λ,
(i) if λ = μ, then 0(λ, μ) = (λ, μ), and

(ii) if λ Φ μ, let α be the smallest part which belongs to one of but
not both λ and μ; if a is a part of λ, delete it and adjoin it to μ;
if a is a part of μ, delete it and adjoin it to λ.

For (λ, λ) e A, λ = (λ 1 ? . . . , \k\ let φ(λ, λ) = (2λ l 5 . . ., 2λk); then φ is
a WP-bijection of the fixed point set of θ onto B.

A SWRP-involution is a special case of a WP-signed bijection. A
WP-signed bijection (θ, ψ; φ) between sets 4̂ and 5 consists of

/ (i) SRWP-involutions θ and ψ in ,4 and £,

(3.7) < with fixed point sets A' and B\ and

((ii) a WP-bijection φ from A' to # ' .

In the case (3.2) discussed above, if we let A = P 2 ) [ 0 O O ) ( - J C ) X
P [ 0 '"- 1 ](x), Λ' = PD[noo\-x) X {0}, B = B' = PD[nco\-x\ and let
ψ be the identity, then we have a special case of a WP-signed bijection.
We use the following notation to describe this case,

θ

(3.8) A i B (the bijection φ is suppressed).

The case θ is the identity is denoted,

(3.9) A\B,

It is clear that a composition of WP-bijections is a WP-bijection. The
composition of two WP-signed bijections is again a WP-signed bijection;
this is guaranteed by the Involution Principle of Garsia-Milne [11]. In this
paper, the finiteness condition for the Involution Principle will always be
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satisfied. This follows since all of our bijections and involutions preserve

weights, and the number of objects with a given weight is finite. Thus, all

bijections and involutions can be restricted to finite sets.

In later sections we will be concerned with when we need to invoke

the Involution Principle. The two following special cases of compositions

of WP-signed bijections will occur frequently. The first case is (0, ψ; φ)

with 0 the identity followed by (0', ψ'; φ') with ψ' the identity. Here, the

Involution Principle is usually used. However, in some cases, 0' maps the

image of A

(3.10) AϊBlC

in B onto itself and we have a WP-injection of its fixed point set onto C

The second case is ψ and 0' the identity. It is clear that the Involution

Principle is not used since the fixed points of 0 can be identified with

those of ψ' by φ' ° φ,

θ ψ'

(3.11) AlBϊC.

4. The bijections Φ and Ψ. In this section we give the bijections

which will prove the ^-binomial theorem (Φ) and Heine's transformation

(*)•

LEMMA 4.1. There exists a WV-bijection Φ from the set

00

U

onto the set

In particular, for each n > 0 and 0 < k < n,

-1]{-a) X P^(x)) = PD[^\-ax) X

Proof. S u p p o s e λ = ( λ 1 ? λ 2 , . . . , λ * ) e P D f n ~ ι \ - a ) w h e r e n - \

> λλ > λ 2 > > λ^ > 0 and μ = (μl9 μ2,..., μn) e P^\x) where

μλ > μ2 > - >μn>0. Then (λ',μ') = Φ(λ,μ) e PD^°°\-ax) X

^^) i s obtained by the following algorithm.
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ALGORITHM Φ

1. Let λ* be the conjugate of λ where O's have been adjoined to

make n parts.

2. Let v be the partition obtained by adding corresponding parts of

λ* and μ.

3. λ' is obtained from v by selecting the (λ^ + l)th, (\k_λ + l)th,

. . . , (λ x + l)th parts.

4. μ' consists of what remains of v.

Clearly, Φ is one-to-one and weight-preserving. To show that it is

onto, we give an algorithm for Φ 1 . Suppose λ ' = (λΊ, . . . ,λ ' Λ ) e

PDP">X-ax) and μ' = (μ[9..., μ'n_k) e P^f(x). Then (λ, μ) =
Φ \ λ', μ') is obtained by the following algorithm.

ALGORITHM Φ " 1

1. Let v = (vv..., vn) be the partition obtained by interlacing the

parts of λ' and μ'; if λ'z = μ̂  then λ'z is placed before μ .̂

2. Suppose vh = λ^,..., vik = λ'k.

3. λ = ( / , - l , . . . , z 1 ~ l ) .

4. μ = ( μ l 5 . . . , μ n ) where,

for y = 1, . . . , ix - 1, μ, = Vj - k,

for 7 = il9..., ι2 - 1, μy = v},- (k - 1 ) , . . . ,

for y = ik,...,n, V>j=vj- D

EXAMPLE 4.2. Let n = 6, fc = 4, λ = (5, 3, 2, 0) and μ = (3, 3, 2, 2, 2,

0). Then λ* = (3, 3, 2, 1, 1, 0) and by left justifying the juxtaposition of

λ* and μ we get v = (6, 6, 4, 3, 3, 0). The parts of λ mark the distinct

parts for X; λ 4 + 1 = 1, λ 3 4- 1 = 3, λ 2 + 1 = 4 and λx + 1 = 6 so X

consists of the 1st, 3rd, 4th and 6th parts of v and μ' consists of what

remains; X = (6, 4, 3, 0) and μ' = (6, 3).

3
3
2
1
1
0

λ*

λ

2 3 5

6
6
4
3
3
0

= parts of v for λ1
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For Φ" 1 , form v from λ' and μ\ For each cell c of J>, count the
number of markers m below c and move c to the left m units; the cells
which move past the original left edge become cells in λ (or λ*) and what
remains gives μ. A marker in the first row of v corresponds to a 0 part of
λ. D

Zeilberger's Algorithm Z [9, p. 226] with k = oo is a WP-bijection.

(4.3) P}°^(x) X P}°'s-r](a) $ P}W(x) X P}°'«»(ax).

If we attach parts of size 0,1,..., r — 1 to each partition in Pr9 then Z is a
WP-bijection

(4.4) Ps

[0^(x) X PDlo-*-ι](a) ^ P}^(x) X

However, Z does not coincide with Φ. As we shall see in the next section,
this implies that there are two different bijections which proves the
^-binomial theorem.

The WP-bijection Ψ given below proves Heine's transformation. It is

constructed from two applications of Φ, copying the analytic proof in [5,

P 19].

LEMMA 4.5. There exists a WF-bijection Ψ from the set

U PD[0>»-1](-a) X Pi°9θθ)(x) X PD[n^(-c) X P[n

n = 0

onto the set

U PD[m^(-ax) X P[W'°°>(JC) X PD[0-m-1]l- | ) X P
m = 0

In particular, for each « > 0, 0 < k < n, m > 0 and 0 <j < m, we have
= R, where

L = PDJ?>"-1](-a) X P^ix) X PD}n^(-c) X P^f

and

R = PD[m^\-ax) X P^f\x) X PD}°>m-1]l- | ) X

Proof. For (λ, μ, v, ξ) e L, (V, μ', / , Γ) = *(λ , μ, v, ζ) is defined by
the following algorithm.
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ALGORITHM Ψ

1. Let (v", £") be obtained from (y, ξ) by reducing each part by n.
2. Let (λ", μ") = Φ(λ, μ) and (*>', {') = Φ ' V ' , Γ )
3. Let (λ', μ') be obtained from (λ", μ") by increasing each part by

m. D

5. The -̂binomial theorem and related identities. In this section we
give proofs, using WP-bijections and signed bijections, of several forms of
the ^-binomial theorem and some related identities.

THEOREM 5.1 {The q-Binomial Theorem).

y (a){ax)

Proof. The identity follows from the existence of our WP-bijection Φ
since

ί
n = 0 \1)n

and

»x« = wtί U PDί0'"-1](-a) X

-ax) X p[° »)(x)). D

By first reducing part sizes appropriately, applying Φ, and then
increasing part sizes, we could have proven the ^-binomial theorem in the
form:

For any integers M and N9 N > 0,

(axaM+N)
(5-2)

)

that is, there exists a WP-bijection from the set

U P Z > W + " - 1 l ( - a ) X

onto the set

THEOREM 5.3 {The q1-Binomial Theorem).
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Proof. For λ e Un

k==0PED[^2n~2\ replace each part of λ by two parts
half as large. Then

where the subscript 2k, 2 indicates that of the 2k parts, each distinct part
size occurs exactly twice.

The set of conjugates of the partitions in \Jf=0PEl2>2n] is the set
UJUO-PJMP where the subscript E indicates that each distinct part size
occurs an even number of times. Let each pair of equal parts be replaced
by one part twice as large and adjoin enough O's to make n parts. It
follows that

Σ h q2l"x" = w t f U L)
For (λ,μ) e Pft^if^ά) X PE}?-°°>(JC), let (λ',μ') be determined

by Algorithm Φ modified so that each pair of equal parts of λ determines
one part of λ'; say (λ', μ') = Φ2(λ, μ). Then Φ2 is a WP-bijection onto the
set PED^°°\ - ax) X PE[0^\x) as desired. D

As before, by a modification of the above, we could have proven the
identity in the form:

For any integers Λf9 N and B where N > 0 and B > 0,

0 0 (aaM- aB) (axaM+N aB)

Andrews [1] gave a bijective proof of this identity in the special case where
1 < M < N = B. However, his bijection is not defined for B = 1 or for
the argument c (instead of xqB) of the 1Φ 0. These cases are used
throughout the theory of basic hypergeometric series. Our bijection will do
all of these cases, and reduces to Andrews' for 1 < M < N = B.

Two special cases of the g-binomial theorem were considered by
Euler; (i) a = 0, and (ii) replace x by x/a and take the limit as a -> oo.
These have well-known bijective proofs; for a = 0, it is clear that our
proof is the same. The limiting case

(5.5) Σ 1 ^

should satisfy requirement R4.
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Proof of (5.5). Let τn be the partition τn = (n - 1, n - 2,..., 1,0) <Ξ
PDί0-n~ι]. Then (5.5) follows by restricting our WP-bijection Φ to the
subset (τw}(~l) X P^°°\x) of PD[^n'1](-l) X P f ' ^ x ) followed by
the obvious WP-bijection from PD[0^\-x) X { 0} onto PZ)^ o o )(-x). D

There are two cases in which the infinite products in the ^-binomial
theorem cancel; a = q~M or a = qM for integer M > 0. In order to meet
requirement R5, bijective proofs of these cases should follow from Theo-
rem 5.1.

The case a = q~M is

M (a-M\

(5.6) L ^ (

Proof of (5.6). If we set a = q ~M in (5.1), we get

Now, for each n > M, we have a WPSR-involution in the set

(adjoin or delete a part of size 0 in λ e p/)[-^-^+«-i}) w i th no fixed
points; this involution corresponds to the identity {q~M)n/{q)n = 0 for
n > M.

Let θx be the SRWP-involution in the set

with fixed point set

M

v^ ' v / n ' v "^ /

and let θ2 be the WPSR-involution corresponding to the cancellation

±1 ΪI21 = / Λ - M V \
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We then have

(5.7) U U PD}ΓM>-M+»-V(-ϊ) X P i 0 o o ) ( x )

T U (j

U
n = 0 k = 0

θ2 M

i \JPD[-M-^(-x). D

By looking at (5.7), it appears that the Involution Principle is being

used. However, if we let τ~M = (— M + n — 1, — M 4- n - 2, . . . , - M -f

1, — M) then it can be seen that there is a WP-bijection

M M

(5.8) U {T-"}(-1) XP^-KX) - U

where

ΰ
Λ/ «

U U

Moreover, ^2 (that is, Φ ~ l o ί 2 ° Φ ) maps this latter set onto itself.

Note that (5.8) establishes the identity

(5.9) Σ (-1)V""^- 1 " 2 ^f *" = (i-wx)w
« = 0

where, for non-negative integers H and K,

is the ^-binomial coefficient or Gaussian polynomial.

We next consider the case a = qM+1 (M > 0) from which we will

arrive at the alternate definition of the ^-binomial coefficient

(5.10) \H + K
(q)H(q)κ'



BIJECTIVE PROOFS 115

Since

the case for a — qM+1 can be written

(^ 1
(5.11) Σ ( ] () x

Also, since

(5.12) y-y = Wt(P[0'M](*)) = Wtί U Pl°'M](ϊ) ' xn

= y \n + M]χn

(5.10) follows from (5.11) by considering those partitions whose x-weight

is xn.

Proof of (5.11). If we set a = qM+1 in (5.1), we get

Σ-
« = 0

Let θγ be the involution in the set PD[0>M+n]( -1) X P^M\l) correspond-

ing to the cancellation ( ( # ) Λ / + « / ( # ) M ) ^ ( # M + 1 ) « a n d let ^2 be the

involution in the set P D I M + 1 O O ) ( - J C ) X P [ 0 o o ) (x) corresponding to the

cancellation ((qM+ιx)O0/(x)00) = 1/(Λ:)M + I
 W e then have

ί fU f U PD[M+ι>M+n\-l)

U

ϊ ΰ

This bijective version of (5.10) can also be derived from an involution

of Franklin [18, p. 269]. He had a SRWP-involution on Pn

[ 0 o o )(l) X

PD[M+1 M+k](-l), k<n, whose fixed point set was A X 0 , i = { λ e

): λ = ( λ ^ . . λ , , ) , λ 1 - λ k + 1 < M). F o τ k = n , A = i>j°'



116 J. T. JOICHI AND DENNIS STANTON

so if Franklin's involution is combined with θl9 (5.10) results. We also see
that applying an involution following Zeilberger's bijection Z (4.3) for
k = oo would give another proof of (5.10).

6. Heine's transformation and its corollaries. The fundamental
transformation for a 2ΦX is Heine's transformation [5]

(*)oo(a*)oo ^ I c/b x
ax

(6.1) 2 * 1

Andrews [2] gave a combinatorial proof of an identity ((6.2)) equivalent to
(6.1). Strictly speaking, his proof was not bijective because his WP-map φ
was defined on disjoint subsets of the appropriate sets A and B and not
individual elements. His proof did not correspond to any analytic proof.
Also, Andrews did not use his bijective proof of the ̂ -binomial theorem
[1] to prove any theorems on 2Φi's.

The bijection Ψ clearly shows

{ 6 2 )
( 6 2 )

(c/b)m(axqm)c

The SRWP-involutions corresponding to the cancellations of the infinite
products imply

{c)°°-,φJa b a:x\=^h,φJc/b x

ax
(6.3) q; x =

(*)

Finally, the SRWP-involutions for (c)0 0/(c)0 0 = (6)^/(6)^ = 1 give
(6.1). Note that the Involution Principle has not been used, t is a
WP-bijection, so the map for (6.3) is a WP-signed bijection. The fixed
points of the left side have been taken.

The first corollary is the g-analogue of Gauss' theorem and uses
requirement R5

(6.4) 2 * 1
c

~άb (c)Jc/ab)c

The analytic proof uses the specialization x = c/ab in Heine's transfor-
mation and evaluates the resulting λΦ0 by the ^-binomial theorem. The
bijective version of this is to cancel the term (c/b)n/(c/b)n in the right
side sum by an involution, and then use Φ to bijectively do the ^-binomial
theorem. The result is

(6.5) 2 * 1

(c/b)Jb)Jc/a)c
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Another involution does the final cancellation to derive (6.4). Here, since
we have taken the fixed points of the right side, the Involution Principle
has been used. Had we started with (6.3) instead of (6.1), we would not
have used the Involution Principle to obtain

(6.6) »

Some remarks are in order about the formal power series ring for
(6.4), (6.5) and (6.6). The bijection Ψ implied that the coefficient of
qnxNambkcλ on both sides of (6.2) is identical for all «, N, m, k, I > 0. So
(6.2) and (6.1) could take place in any appropriate power series ring.
The specialization x = c/ab in (6.1) puts the left side of (6.1) in the
ring Z[l/a9 l/b][[c]][[q]] and the right in the ring Z(b)[l/a][[c]][[q]] D
Z[l/a, l/b][[c]][[q]]. The signed bijection shows that the right side is in
Z[l/α, l/6][[c]][[#]], so equality takes place in this formal power series
ring. Equivalently, we could scale c to cab and consider formal power
series in q, a, b and c.

Andrews [3] has given several other applications of Heine's transfor-
mation. The ̂ -analogue of Kummer's theorem is

i b

qb/a

Put c = bq/a and x = — q/a in (6.1) and the right side becomes a 1Φ0 on
base q2. The involutions of §3 do this bijectively. The version of Φ for the
#2-binomial Theorem (5.3) does the evaluation. Again, the Involution
Principle has been used because we have taken the fixed points of an
involution of the right side. The two terminating forms (a = q~n and
b = q~n) of Kummer's theorem also follow, by applying involutions as in
the proof of (5.6) and (5.11).

In the same way, the ̂ -analogues of Bailey's theorem [3, Eq (1.9)] and
Gauss' second theorem [3, Eq (1.8)] can be given bijective proofs.

Another consequence of Heine's transformation is the transformation
for a terminating Saalschϋtzian (1-balanced) 4Φ3. An analytic proof is to
first iterate (6.1) three times to obtain the ̂ -analogue of Euler's transfor-
mation

(6.8) 2<I

(Note that (6.8) requires 6 applications of Φ and 23 cancelling involu-
tions.) Next, multiply (6.8) by itself (with parameters a, b, c; x replaced
by d, e, f; abx/c, and c/= adbe), and equate coefficients of xn on both
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sides. The bijective version of equating coefficients of x" is restricting a
bijection to all partitions whose c-weight is x". So we have a bijective
proof of

(c/a)k(c/b)k(f/d)n-Λf/e)n-kίab

This transformation includes a ^-analogue of Sheppard's transformation
for a 3Φ2 and Saalschϋtz's theorem. Bijective proofs for special choices of
the parameters for these two theorems have been given in [9], [14] and
[20]. Cancelling involutions allow (6.9) to be written as a 4Φ 3 transforma-
tion.

It is also well-known that 3Φ2 transformations follow from Heine's
transformation (or the ^-analogue of Gauss' theorem) by series manipula-
tions. So these theorems also have bijective proofs.

7. Higher transformations. Bijective proofs for higher transforma-
tions of basic hypergeometric series can also be given. An analytic way to
prove these transformations is to use the Bailey transform (see [7] or [17]),
which is a rearrangement of series, on the lower evaluations. The bijective
version of the Bailey transform is just rearrangement of unions. This
means that we can build successively more complicated bijections to give
a bijective proof of Watson's transformation of a 8 Φ 7 to a 4Φ 3. A short
summary of this process is given in the diagram on the following page.

The Rogers-Ramanujan identities follow from a limiting case of
Watson's transformation and the Jacobi triple product identity. The
limiting case involves limb_^O0(ab)n/(b)n = an which corresponds to a
restriction of a bijection, as in §5. Since the Jacobi triple product identity
also has a bijective proof [8, p. 4] or [15, p. 91], we have, in theory, a
bijective proof of the Rogers-Ramanujan identities. It would be quite a
task to explicitly give this bijection because the bijective proof of Watson's
transformation involves hundreds of involutions and applications of Φ. In
fact, the Garsia-Milne proof [12] can be thought of as exactly this process.
They began with Schur's analytic proof.

We have not shown that any theorem in basic hypergeometric series
has a bijective proof. The theorem in question must have a proof which is
a manipulation in an appropriate power series ring. Two examples which
do not are Ramanujan's ιΨι [17] and the three term relations for 3Φ2's
[17].
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WatSOn's 8 Φ 7 — * 4 Φ 3 • Rogers-Ramanujan

ί
very well poised 6Φ5

q-Dixon ( 4Φ 3 or 3Φ2)

4Φ3 1-balanced transformation • q-saaischutz

β q-Gauss

Heme f S 2Φj transformation ^-^q-Kummer (and relatives)

A > *
T ^ 3 Φ 2 transformations

XΦO q-binomial theorem

8. Remarks. While this paper has shown how to find a bijective
proof of a basic hypergeometric identity, it is obviously not the final word
on the subject. The emphasis should now be placed on combinatorially
important proofs, rather than a proof. There will be several bijective
proofs of a given identity because different bijections can be used for the
^-binomial theorem. Also, different specializations (say a = qn or a = q~n)
of an identity could have interesting yet completely different combina-
torial interpretations. Finally, it would be interesting if our bijective
proofs of the higher transformations could be explicitly identified.

It is ironic that the two ingredients of [1] which were explicitly
missing—involutions and the Involution Principle—appeared implicitly.
Instead of involutions, Andrews used inclusion-exclusion which he inter-
preted as an involution on "clumps" of elements. He also gave two such
"involutions" and the match that would have resulted "in clumps" from
the Involution Principle.

In [4] Andrews gave a bijective proof of the most difficult part of the
Rogers-Ramanujan identities, the limiting case of the 8 Φ 7 evaluation. The
only other theorems which he used were the Jacobi triple product identity
and a limiting case of the ^-analogue of Gauss's theorem. These two
theorems have bijective proof without the Involution Principle. His only
non-bijective step was dividing by products then cancelling them.
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