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CONNECTEDNESS RELATED TO ALMOST
PERIODICITY OF COMPOSITIONS
OF FLOW HOMOMORPHISMS

DouG C. MCMAHON, JAAP VAN DER WOUDE AND TA-SUN WU

Consider homomorphisms ¢: X —» Y and ¢: Y — Z, where ¢ is
open and N-to-one, y is almost periodic. In the paper by R. J Sacker
and G. R. Sell, it was shown that, under a certain condition on the phase
group, the composition ¢ o ¢: X — Z is almost periodic (provided that
Z is trivial and X is minimal). In this paper almost periodicity of o ¢ is
studied under connectedness conditions on the fibers of . For instance
it is shown that if | is almost periodic with connected fibers than { - ¢
is almost periodic. If Y is locally almost periodic with locally connected
fibers then ¢ oy is locally almost periodic.

0. Introduction. The results in this paper contribute to a list of
achievements with respect to the question, when is the composition of
almost periodic extensions again almost periodic? In general such a
composition is not almost periodic (viz: the existence of distal non-almost
periodic flows). But under certain connectedness conditions on the maps
involved ([E 69] page 56, [W 75]) and/or under a certain assumption for
the phase group ([SS 74], [MW 76], [B 75 / 79], [R ?]) some compositions
are.

The impetus for this research came from [SS 74], where it was shown
an open N-to-one extension of an almost periodic flow was an almost
periodic flow again as long as the phase group was semicompactly
generated (i.e., there is a compact K C T such that every open V' 2 K
generates 7). In [MW 76] this result was strengthened to the relativized
nonmetric case, while a connection was made with connectedness condi-
tions on the fibers. This resulted in the theorem that, for a semicompactly
generated phase group, minimal distal flows with 0-dimensional phase
space are almost periodic. In [W 75] it was shown, without conditions on
the phase group, that an open N-to-one extension of a connected almost
periodic regular minima flow was almost periodic. Various results along
this line are obtained in [B 75 /79] and [R ?] with respect to manifold
flows and Lie group extensions; but the conditions imposed on the phase
groups and phase spaces are rather strong, mostly due to the perspective
of applications.
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This paper is concerned with replacing the phase group assumption
by a connectedness assumption on the fibers of the basic almost periodic
extension, such that after extending by an open N-to-one extension we
still have an almost periodic extension. Minimality is not always assumed.

In §1 we establish some notions and notations and list some known
results for the convenience of the reader. Section 2 treats the problem
without minimality requirements and the main result are 2.2 (absolute
case for connectedness) and 2.5 (relativized case for locally connectedness).
Under the assumption of minimality we prove the relativized version of
2.2 in §3. Open N-to-one extension of locally almost periodic locally
connected extension are studied in §4. And finally, we give some counter-
examples in §§5 and 6. In addition, §6 contains some results on the
regional proximal relations in a suspension of a flow.

This paper results from joint efforts of the authors during the visit of
the first two authors to Case Western Reserve University in the Spring
Semester of 1984.

1. Preliminaries. Although we assume basic knowledge about topo-
logical dynamics, as can be found for instance in [GH 55] and [E 69], it
seems useful to review some of the basic notions and establish notation.

Throughout the paper we fix a topological group T and we consider
(left) actions of T on compact T, topological spaces (X with unique
uniformity % ). A homomorphism ¢: (T, X) — (T,Y), or just ¢: X —
Y, is a continuous surjection that commutes with the actions of 7 on X
and Y. Such a homomorphism ¢ is defined by and defines a closed
T-invariant equivalence relation R, on X, R := {(x},x,)|9(x;) =
é(x,)}. Let R, N %, denote the relative uniformity. Given a homomor-
phism ¢: X — Y the following closed invariant equivalence relations are
considered:

P,i=Ta N Ry|la € Uy}, or (x,,X,) € P, iff (x4,x,) € R, and
there are ¢, € T with #,(x;, x,) = (X, X) for a certain X € X; the prox-
imal relation for ¢.

Q,:=N{TaN R |a € Uy}, or (x,,%,) € Q, iff (x},x,) €R, and
there are t, € T, (x},x}) € R, with (x}, x}) = (x,, x,) and #,(x{, x})
— (X, x) for some X € X; the regionally proximal relation for ¢.

E,: the smallest closed invariant equivalence relation in R, that
contains Q,; the equicontinuous structure relation.

Then ¢ is distal (proximal) iff P, = Ay(P,=R,); and ¢ is almost
periodic iff Q, = A, or equivalently iff for every a € %y there is a
B € %y with T(BN R,) C a. If Y is trivial we denote Py, Oy and Ej.
Note that in case Y is trivial (the absolute case), almost periodicity for ¢
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(or just X) is equivalent to the existence of a syndetic subset B, C T for
a € %, such that B, X C a(x) for every x € X.
Another important closed invariant equivalence relation for ¢ is

‘Re(¢) = {(x1,x,) € Ry|x, and x, are in the same connected
component of the fiber ¢ ¢(x;)}.

Then Rc(¢) defines maps k: X - X/Rc(¢) and 0: X/Rc(¢) — Y such
that ¢ = 6 ok, where k has connected fibers and 6 has totally discon-
nected fibers.

There exists a universal point transitive flow S, for T that acts as a
semigroup on every flow X for T such that Tx = S,x. The minimal left
ideals in S, are all isomorphic and they are isomorphic to the universal
minimal flow M for T, and M acts as a semigroup on X such that every
minimal orbit closure Tx in X is just Mx. A point with a minimal orbit
closure is called an almost periodic point. Let J be the collection of
idempotents in M. Then J # @ and x € X is an almost periodic point
iff x = ux for some u € J.

If X is a flow for T, then X induces a flow (T,2%*) where 2% is the
collection of nonempty closed subset of X, endowed with the Vietoris
topology. A subbase for the open sets in the Vietoris topology is formed
by the sets of the form (U) and (U )*, where U C X is open and

(Uy:={4€e€2X|acU}; (U*={4e2X|AnU=+ o}.

€<
o 2

Denote the action of S, on 2% by , the circle operation. For the
convenience of the reader, we now state some results that are known or
easy to prove.

1.1. Note: If ¢: X = Y is an open N-to-one extension, then ¢ is
almost periodic.

1.2. LEMMA. Let ¢: X = Y and y: Y — Z be homomorphisms of flows.
If R, is clopen in R, .4 then Q, = Q.. In particular, if R, is clopen in
R, .4 and ¢ is almost periodic then  ° ¢ is almost periodic.

Proof. Since R, is clopen in R,,,, there is an ay, € %y with
TaNR,,,CRyandsoTa N R, = Ta N R, for every a C a,. Hence

Qs =0Qy.s

The next Theorem (1.3) is a non-minimal version of [MW 76] 2.1.
(compare [Wo 82] 1 1.22).
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1.3. THEOREM. If ¢: X — Y is an almost periodic extension and :
Y — Z is open and N-to-one, then i ° ¢ is almost periodic.

The next theorem is just a restatement of [MW 76] 2.6. in the
nonminimal case. Remember that ¢: X — Y is a quotient group exten-
sion if there is a bitransformation group (7, W, K) with K a compact 7,
topological group acting freely on W such that (T,Y) = (T,W/K), and
there exists a closed subgroup L of K such that (T, X) = (T,W/L) and
¢: (T, X) — (t,Y) may be identified with the canonical quotient map
(T,W/LY - (T, W/K).

(T,W,K) - (T,W/K)=(T,Y)
1) = 7 ¢
(r.w/L) = (T.X)

1.4. THEOREM. If ¢: X — Y is a quotient group extension with totally
disconnected fibers, then ¢ is the inverse limit of open finite-to-one exten-
sions ¢p: Xy — Y (where N is the size of the fiber). a

We end this section with a lemma that is basic in all results to follow,
namely 3.3 from [MW 76]. We provide the proof for the convenience of
the reader since the proof in [MW 76] had an unfortunate although not
severe gap. The Lemma is purely topological.

1.5. LEMMA. Let ¢: X — Y be an open N-to-one continuous map. Then
there exists an open o € U such that for every Yy € %, with y C a there is
a B € Uy such that

(¢X9¢)" (B)cyUa

Proof. For each y € Y denote ¢ (y) = {x}|i=1,...,N}. Since ¢
is open and N-to-one, for every y € Y we can find open neighbourhoods
V,of yinY and W) of x; in X such that ¢~ [V, ]=U{W,|i=1,...,N}
where X, € W‘ and by W‘ -V, isa homeomorphlsm

Let a, € 0]/ be such that a(x}) € W} and «,=a;'. Then
U,:= N qS[a (x )Ni = ,N} is an open nelghbourhood of y in Y.
Choose Vireoes Y, In Y such that Y =U(U,|j=1,...,n} and let a:
CN{e,|j=1,...,n}: with a=a". Since A, cU(U, X U,|j=

.,n} thereisa § € %, such that(y, y") € & implies(y, y') € ij X Uy/
for some j € {1,...,n}.

Choose y € %, with y C a and define

={(y,y) €Y X Y|{x} X (y)Ny=+ & foreveryx € ¢~ (»)}.
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Since ¢ is open, ¢, is continuous, so the map

(x,x) = {x} X ¢(x): R, = 2R
is (lower semi) continuous, so again by openness of ¢ it follows that
v € Uy (hint: look at {(y N R,)*, subbase open in 2R+). Define := 8 N
v E Uy.

Let (¢(x),d(x") € B, then (¢(x),d(x")) € U X U for some j €
{1,...,n}; so for certain k, L € {1,...,N} wehave(x x’)Ea (X)) X
a,(xh).

If £ # L then (x,x") & a. For: suppose (x, x') € a then

x Ea,caca (x )Ca (x5 c W

So W" N WL + J, contradlctmg the choice of V If k=L, then
(x, x ’) IS W" X W" Since (¢(x), (x")) € v there is an x" € ¢~ d(x)
with (x, x") (= Y, 50

x" €y(x)cal(x)c ai}(xfj) c Wyj‘

since Wyf A Y, is one to one it follows that x’ = x” and so that
(x,x") = (x,x") € 7. O

2. The nonminimal case. In this section we discuss two situations
in which an open N-to-one extension of an almost periodic extension is
almost periodic. The results do not require minimality for the flows
involved (except for Z in Theorem 2.5). In the minimal case we can give a
relativized version of 2.2, which immediately covers the minimal case for
2.5. This will be done in §3.

First we need a lemma; the proof depends on [Sh 76] 1.4. Note that in
the proof of [Sh 76] 1.4 only pointwise almost periodicity of the factor
space Y is required (iii = ii).

2.1. LEMMA. Let ¢: X — Y be an almost periodic extension and let Y
be pointwise almost periodic. Then for y = uy € Y and for every a € Uy
there is an open neighbourhood U of u in M such that Ux C a(x) for every

x € ¢ (y)

Proof. Choose v, 8 € %, with 8§ €8 Cy =7y Cy?C a Choose
finitely many x; € ¢~ () such that ¢~ (y) € Ud(x;). Since ¢ is almost
periodic, the closed set §(x;) N ¢~ (y) is an almost periodic point in 2*
([Sh 74] 1.4). Since 8(x,) N ¢~ (y) € v(x;), 8(x;) N~ (») € (¥v(x))),
there is an open neighbourhood U, of u such that

Uo(8(x,) o= (1) = {ae(8(x,) n o= (»)) la € U}  (v(x))-
Hence U; - (3(x,) N ¢ () € (x,).
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Define U = NU, then U is an open neighbourhood of u in M. Let
x € ¢ (y). Then for some i, x € 6(x;) N ¢ (). So

Ux € Ux € U;o(8(x,) n o= (y)) € v(x,).
Since x € 8(x,) € y(x,) and y = y~! we have x; € y(x). Hence

Ux € v(x;) € v*(x) € a(x). s

In the proof of the next theorem we use the same basic technique used
in 1.5 of [W 75].

2.2. THEOREM. Let Y be an almost periodic flow with a finite number of
(connected) components and let ¢: X — Y be an open N-to-one extension.
Then X is an almost periodic flow.

Proof. First note that X is distal and pointwise almost periodic and
that X has a finite number of components, say X =U{C(x;)|i =
1,..., m} where C(x,) is the component of x; in X.

Let y € %, be open. We show that there is a syndetic subset B C T
such that Bx C y(x) for every x € X, which in turn shows the almost
periodicity of X.

Let « € %, be as in Lemma 1.5, and without loss of generality let
¥ C a. By Lemma 1.5 we can find 8 € % such that (¢ X ¢)“(B)C vy
U af. Let u € J. Since Y is almost periodic, Y = uY, there is an open
neighbourhood U of u in M such that Uy C B(y) for every y € Y by 2.1.
Since X is distal and pointwise almost periodic, (x;,..., X,,) is an almost
periodic point in X™. So there is an open neighbourhood U’ of u in M
such that

U'(Xy...5%,) € y(x) X - Xy(x,,).

Let B={t€ T|tu € UnN U’}, then B is syndetic in T and By C B(y)
for every y € Y while Bx; C y(x,) for every x; € X, i € {1,...,m}. Fix
i€ {l,...,m} and set C = C(x;). Define for every b € B the set

A(b):= {x € C|(x,bx) € v}.

By the construction of B we have x; € A(b) so A(b) # &. Since vy is
open, A(b) is open. Also, A(b) is closed, as follows: Let (x,bx) € ¥ C a.
Since (¢(x), ¢(bx)) = (p(x), bp(x)) € B (construction of B), it follows
that (x, bx) € y (Lemma 1.5). So A(b) = {x € C|(x, bx) € Y} and A(b)
is closed. By the connectedness of C, we have C = A(b), i.e., bx € y(x)
for every x € C. Since this holds for every b € B and every C(x,), it
follows that Bx C y(x) for every x € X. O
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2.3. COROLLARY. Let ¢: X — Y be a quotient group extension with
totally disconnected fibers, let : Y — Z be almost periodic with connected
fibers and let Z be finite. Then X is an almost periodic flow.

Proof. Since Z is finite, it follows from 1.3 that Y is almost periodic
and since Y has connected fibers, Y has a finite number of components.
By 1.4, ¢ is the inverse limit of finite-to-one extensions ¢,: Xy — Y.
From 2.2 we know that every X, is almost periodic and so X = invlim X,
is almost periodic. O

Note that Theorem 2.2 is not valid in the nonminimal relativized case
as is shwon in example §5. If connectedness is replaced by locally
connectedness, however, relativization is possible.

Before we come to the theorem we need the following lemma.

2.4. LEMMA. Let {: Y — Z be an almost periodic extension and let Z be
minimal, z € Z. Let V,,...,V, be nonempty open sets in = (z) that cover
Y (z). Then

k
W= UTV,xV,)e R, N Uy.
i=1
If Y is minimal and V is an open set in  * (z), then

Wi=TWVXV)ER,NU,.

Proof. Since Z is minimal and ¢ is open it is easily shown that R,
= T(¢ (z) X ¥ (z)). Choose open sets U, in Y such that V,= U N
Y (z),andlet U=U{U,|i=1,...,k}. Let p € %, be such that

pNy(z2) Xy (z) c U{U X Ul}i=1,...,k}.

[For every y & U choose an open neighbourhood U, of y with U, N ¢
(z) =¢. Then U{U; X U;|i=1,...,k} VU[U, X U,|y € U} € %y.] By
almost periodic there is a p’ € %y with Tw’ "R, C p. Let y € Y, we
show that (y, y) € int r,W- Suppose (y,y) & int R, W Then there are nets
(Vh 73) €47 (2) X ¥ (2), 1, € T, such that 1,(y}, y}) > (7, y) while

t(»x ¥3) € W, hence (y}, yi) € W. Since (3, ¥3) = (1, »),
tH(yx, y3) € ' for every A > A,. Hence (y}, y?) € p for A > A,. After

passing to a suitable subnet, (y3,y3) € U X U, for a certain j &
{1,...,k}. But as U Ny (z) =V, it follows that (y;, y) € W con-
tradicting the choice of (y}, y3). Consequently, (y, y) € int &, W; thus
WeR,NUy.

If Y is minimal, R, = T({ y,} X ¥ (z)) for every y, € ¢~ (z). So
let y, € V, let p € %y be such that { y,} X u(y,) "R, < {y,} X V. Let
p’ € Uy be such that Tp’ N R, C p. We show that (y,, y,) € int, W.By
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minimality of Y it follows that Ay C int; W, so W € %, N R,,. Suppose
(Yo Vo) & intRw W. Then there is a net y, € ¢y (z), t, € T such that
1:(Yo> ¥2) = (Yo, o) While (yo, y1) € W. Then 1,(yy, y5) € p’ eventually
O ( ¥y, ¥») € 1 eventually. But then y, € u(y,) € V, so (yy, o) € V X
V C W. This contradicts the choice of y,. O

The following is a relativized version of Theorem 3 of [SS 74]. As
seen in §5, the condition that Z be minimal cannot be dropped (or even
weakened to Z having a trivial action).

2.5. THEOREM. Let Z be a minimal flow (a finite union of minimal flows
suffices), let : Y — Z be an almost periodic extension such that  (z) is
locally connected for some z € Z and let ¢: X — Y be an open N-to-one
extension. Then § o ¢: X — X is almost periodic. (X and Y are not assumed
to be minimal!).

Proof. Let a € %, be as in Lemma 1.5, let y € %, be open with
YCaand let B € %, be for « and y as in Lemma 1.5. By almost
- periodicity of ¢ thereisav € %, with Tv N R, C B. Let y €y~ (z) be
arbitrary. Since ¢ is open and N-to-one we can find pairwise disjoint
open ne1ghbourhoods U, of x' in X and a neighbourhood U of yinY
such that ¢ : U — U, is a homemorphism for i € (1,.. N }, where
o (y)={x'|1< i< N} Choose a neighbourhood U, of y w1thU - U
and Uy X U, C ». Since ¢(z) is locally connected we can find a con-
nected neighbourhood V, of y in ¢ (z) with ¥, C U, Ny~ (z). By
compactness of { < (z), there are finitely many y,,..., Y In Y7 (z) such
that U{Vll—-—l Sk} =y (2). SmceVCUCU we can find
(using ¢|u ) connected sets V/ C (Yo ¢)“ (z) w1th x; € V‘ =V, , where

6 (y) = {*/|1 <i<N).
(i) Define W,:= T(¥, X Vyj) CRyand W:=U(W,|j=1,....k}.

Then, by Lemma 2.4, W is a closed and T-invariant element of R,NU,.

(ii) We claim that (¢ X ¢) ~ W, = U{T(V/ X V})|i,L=1,...,N}.
Obviously, (¢ X ¢)“ T(Vyj XV,)= U7V} X V;.L) li,L=1,...,N}.
Let (x;,x;) € (¢ X ¢)~ W, and let O be a neighbourhood of (x,, x,) in
R,.4 Since ¢ X ¢: R, ¢—->R¢ is open, qSqu[O]ﬂT(V X V)=#¢
SoOoN{T(V/x V") |i,L=1,...,N} # ¢ and

(x1,%,) € clg, . U(T(Vi X VF)|i,L=1,...,N}

= U{T(V/ x VH)li, L=1,...,N}.
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Thus we have “ C ”; the containment “ D  is trivial. Denote T( Vj‘ X V}L)
by P,(i, L).
By (i) and (ii),

(¢ X0)" W
=U{P(i,L)|j=1,....,k;i,L=1,...,N} € 4y N R,.,.
So thereis a v’ € %, with ¥y’ C y such that
Y NR,.,cU{PGL)j=1,... ki L=1,., N}.

Let F={(j,i,L)|y' N P(i,L)# B} and for f=(j,i,L) € F denote
P;i= Py(i,L). Then Y "R, C U{ P;|f € F}. Since P; is closed and
T-invariant and F is finite, it follows that

(i) Ty' N R,., € U{ P;| f € F}. We claim that

(ivy ,C TY N R, for every f € F. Indeed, let f=(j,i,L) € F.
Then @ #y' N P,CyN P, say 1,(X,,X,) € y for some ¢, € T, (X, X,)
€ V' X VjL. As 1,(X;, X,) is an almost periodic point, there is a (dis-
cretely) syndetic set B, C T with B/z,(X,,X,) C v. Let A, be finite with
T = Afo = A/Bt,. For every b€ B, bt,(%,X,) € bt (Vi X VF)yny
and, obviously, bz (V; X I/;L) is connected. Since

& x o[ b1, (Vi x V1)
=bt,(V,x V,) c bt,(U, X U,) "R, c TvN R, C B

it follows from Lemma 1.5 that bz,(V/ x V') Cy U a“. Hence, by
connectedness, bt (V} X V}*) Cy. So, since b € B, was arbitrary,
Bt (V] X V}) C v. But then

T(Vi X V) = AByt (Vi X V) < 4.
Hence P, = .T( Vji X VJL) c 71/_7 = Ay € T¥, which proves our claim. By
(ii) and (iv) it follows that
TY NR,.,c U{P|f€EF}cTYNR,.,.

Since Q,., S Ty' N R, and y can be chosen arbitrarily small, we have
Qy.s € Py, However, y o ¢ is distal, so P,,, = Ay and it follows that
Q.4 = Ax. This shows that ¢ o ¢ is almost periodic. a

2.6. COROLLARY. Let Z be a minimal flow, let 8: W — Z be an open
N-to-one extension, & Y — W an almost periodic extension with locally
connected fibers and let : X — Y be a quotient group extension with totally
disconnected fibers. Then § o § o ¢: X — Z is an almost periodic extension.
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Proof. By 1.3, y = §<§ is an almost periodic extension, and obvi-
ously, ¢ has a locally connected fiber. By 1.4, ¢ is the inverse limit of
open finite-to-one extension ¢,: Xy — Y. From 2.5 we know that ¢ o ¢,
is almost periodic, hence ¢ © ¢ is almost periodic. a

3. The minimal case. In this section we confine ourselves to exten-
sions of minimal flows and we prove the relativized version of 2.2 (3.2). In
doing so we need the characterization of the regionally proximal relation
for distal extensions of minima flows as stated in 2.6.1 of [V 77].

The proof uses Ztopology techniques.

For details about Ftopologies we refer to [V 77] or [Wo 82] Ch. 111,
VIIL

In the following %, denotes the neighbourhood filter of x in X, and
u is an idempotent in M, the universal minimal flow for 7. In the next
lemma we use the same technique used in 2.2.

3.1. LEMMA. Let ¢: X — Y be an open N-to-one extension of minimal
flows. Let y: Y — Z be almost periodic with a connected fiber  (z) and
let x =ux € ¢~ (z). Then for y € U, small enough there is an open
neighbourhood U of u in M such that for B(U) = {t|tu € U} C T we have

B(U) - (yN¢"¢7(2) X"y (2)) € ¥>.

Proof.Let x » y = z,a € U asin Lemma 1.5; y = y! € %, with
YCYCa Let B€ %, be for « and y as in Lemma 1.5. Since ¢ is
almost periodic, there is a neighbourhood U, of u in M such that
Uyy' € B(y') for every y’ € Y (z) (Lemma 2.1). Since ¢ “ (z) is con-
nected and ¢ is N-to-one, ¢~ ¢ < (z) has finitely many components, say
C,...,C, (m < N). Choose x; € C;,, then there are open neighbour-
hoods U, of u in M such that Ux; C y(x;). Define U = N/.,U; and B(U)
as above. For every b € B(U) define

A,(b) = {x € C;|(x,bx) €y}, notethat x, € 4,(b).
Since y is open, A4,(b) is open in C;. Also, A,(b) is closed in C;:

Let x € C; be such that (x,bx) € ¥ C a. Then ¢ X ¢(x,bx) =
(y,by) € B (bu € U,). Hence, by Lemma 1.5, (x,bx) € y U af, so
(x,bx) € v. So A,(b) = {x € C;|(x,bx) € ¥} and as ¥ is closed, 4,(b)
is closed.

Since C; is connected and A4,(b) # &, a,(b) = C,. It follows that
bx € y(x) for every x € UL,C, = ¢ ¢ (z). Let (x;,x,) €y N
o Y (z) X ¢~ ¢ (z) and let b € B(U). Then (bx,, bx,) = (bxy, x;)°
(X1, X3) o (X5, bx) € y°. o
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3.2. THEOREM. Let ¢: X — Y be an open N-to-one extension of
minimal flows. Let ¢: Y — Z be an almost periodic extension with a
connected fiber Y = (z). Then y o ¢: X — Z is almost periodic.

Proof. Let y € %, be open and small enough. Then, by Lemma 3.1.
with the same notation,

(%) B(U)-(yn¢ ¢ (z) xp"¢(2)) € ¥°
for some open neighbourhood U of u in M. Choose x = ux € ¢“ ¢ (2)
and let x" € Q. [x], ie. (x,x") € Q,.,. Then, by 2.6.1 of [V 77] (this is
where minimality is used), there are #, € T, x, € ¢~ ~ (z) such that
ty > u; x, > x and fx, > x'.

For a certain A, we have (x, x,) € y for every A > A,. Since also t,u — u,
there is a A, such that #,u € U for every A > A,. Hence ¢, € B(U) for
every A > A,. So for every A > max(A,,A,) we have ¢, € B(U) and
(x, x,) € y. Consequently, by (), #,(x,x,) €y’ for every A >
max(A,, A,), and so (x, x") = lim#,(x, x,) € v>.

Since y may be chosen arbitrarily small, it follows that x = x’; i.e.
Qy.o[x]={x}. Since Yo ¢ is a distal map it follows that Q ., = Ay,
which shows that o ¢ is almost periodic. O

3.3. COROLLARY. Let ¢: X — Y be an almost periodic extension of
minimal flows with totally disconnected fibers and let : Y — Z be an
almost periodic extension with a fiber ¢ (z) having finitely many compo-
nents. Then ¢ o ¢ is almost periodic.

Proof. Let Rc({) C R, be the closed invariant equivalence relation
that identifies the points in the same component (cf. [MW 76] 2.3.). Then
0: Y/Rc(y) = Z is open with a finite fiber, hence @ is finite-to-one, and
k: Y = Y/Rc(¢) has connected fibers. Since an almost periodic extension
of minimal flows is a quotient group extension (e.g. [MW 76] 1.1) it
follows that 1.4 that ¢ is the inverse limit of finite-to-one extensions. But
then, by 3.5 and an inverse limit procedure it follows that k © ¢ is almost
periodic. So, by 1.3, ¢ ° ¢ is almost periodic. a

Note that 3.3 also covers the case where some fiber of ¢ is locally
connected. For a locally connected compact 7, space has a finite number
of components (compare 2.5).

Let ¢: X —» Y be a distal extension of minimal flows. In [MW 76]
3.7, modulo the non-metric version of the Furstenberg structure theorem
[MW 81], it was shown that the quotient map X — X/E, has connected
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fibers, as long as the phase group is semi-compactly generated. In 3.4 we
replace the group assumption by the assumption of X/E, — Y having a
fiber with finitely many components. From this it follows that ¢ is
connected iff X/E, — Y is connected.

3.4. THEOREM. Let ¢: X — Y be a distal extension of minimal flows. If
0: X/E, > Y has a fiber 0 (y) with finitely many components, then «:
X — X/E, has connected fibers. In particular, ¢: X — Y has a fiber with
the same amount of components as 0 < ( y).

Proof. Let Rc(8) be the connectedness structure relation for § and let
Z = X,/Rc(8) where X, = X/E,. Then, as in the proof of 3.3 Z —» Y is
an open N-to-one extension (N is the amount of components in 8 ~ ( y)),
and X, — Z has connected fibers. Since ¢: X — Z is distal, it follows
from the Furstenberg structure theorem that there exists a tower {¢g:
X, = X;3|0 < B < a <) of height » with X, = Z, X, = X/E,, X, = X
and ¢**': X,,, = X, is almost periodic. Moreover, if ¢, X = X,

Xoi1=X/E,, s0 ¢2*! is the maximal almost periodic factor of ¢,.

By transfinite induction we show that ¢§: X, — X, has connected
fibers for every a < ». We know already that ¢; has connected fibers. Let
« be an ordinal and suppose ¢f: X; — X, has connected fibers for every
B < a. If «a is a limit ordinal clearly ¢§ = invlim{¢£|B < a} has con-
nected fibers. If a is not a limit ordinal then ¢f ': X, , = X, has
connected fibers. Since ¢5_, is almost periodic, the induced map (¢5_;)
X,/Re(¢8) = X,_1/Re(¢5™ 1) is almost periodic (MW 76] 3.7). But
X, _1/Rc(¢2™ 1) = X,, so X, factorizes over X,/Rc(¢%). Hence, (¢%_,),
has connected fibers. Since X, = X_,/Rc(¢]) has connected fibers, so has
¢5. Consequently, ¢7: X — X; = X/E, has connected fibers. Moreover,
¢p: X — Z has connected fibers so ¢ has a fiber with N components. O

4. Local almost periodicity. In the previous sections we have seen
that under certain connectedness conditions on an almost periodic exten-
sion iy, the extension i o¢ is almost periodic for an open N-to-one
extensions ¢. It is only natural to ask whether or not something similar
holds for a locally almost periodic extension .

Example §6 shows that just connectedness for iy is not enough,
neither is the assumption of the phase group being semi-compactly
generated. But it will turn out that (in the minimal case) locally con-
nectedness for ¢ suffices.

Recall that a map n: X — Y is highly proximal iff 5 is irreducible
(n[A] = Y implies 4 = X) iff 1< (y) converges to a singleton in 2¥
for a certain net {¢;} in T, in particular, uon“ (y) = {ux} for every
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x € n°(»). An extension ¢: X — Z of minimal flows is locally almost
periodic iff ¢ = £on where £ Y — Z almost periodic and 1: X > Y is
highly proximal [MW 80].

For details concerning highly proximal extensions we refer to [AG 77],
[AW 81] and [Wo 82] Ch. IV, and for local almost periodicity (of maps) to
[MW 72] and [MW 80], (Note the terminology of [MW 80] is “almost
equicontinuous” instead of “locally almost periodic”, 1.12 and 1.15 if
[MW 80] yield the above characterization).

First we are concerned with interchanging an open N-to-one exten-
sion and a highly proximal extension.

4.1. THEOREM. Let ¢: X — Y be an open N-to-one extension of
minimal flows and let y: Y — Z be highly proximal with connected fibers.
Then ¢ o¢ = §om where 1: X = X/Rc(y o ¢) is highly proximal and &:
X/Rc(y o ¢) = Z is open and N-to-one.

Proof. First we show that for every z € Z the fiber (Y °¢) “(2)
consists of N components and that points in different components are
distal:

Let y = uc 4y (z). Since ¢ is N-to-one and open, we can choose an
open neighbourhood U, of y and open neighbourhoods U,i such that
Ui = U, for every i € {1,..., N }. Then for some ¢ close to u in S we
have 1y~ (z) € U, and note that 1§ < (z) = ¢~ (#z) is connected.

Define C, =t} UiN ¢~ x(tz)). Then ¢~ ¢ (1z) = U{¢C,|i =
1,..., N} and, since ¢l is a homeomorphism, every ¢C; is connected.
Since the U,i can be chosen such that their closures are disjoint, the ¢C,’s
are just the components of (o ¢)“ (#z). Hence {C;|i=1,...,N} are
the components of (Y °¢)“(z). Note that ¢[C,]=4y ~(z) for every
ie{l,...,N}.

Let x;, € C; and x, € C,, choose x} € C, such that ¢(x;) = ¢(x5).
Then (x;,x%) is a distal pair. Suppose (x;,x,) € P, then there is a
minimal left ideal I and a v € I with vx;, = vx,. Since voy“ (z) =y for
some y € Y, veU",C,=¢"y (¢ is open!). So every voC,; is a point
(v ° C; is connected!) (*)

Hence vx, = vx}; but then vx, = vx, = vx}, and x; = x5 which
contradicts the fact that C, N C, = &.

Define n: X — X/Rc(¢ © ¢), then 7 identifies exactly the points in
each component. By (*) it follows that n is highly proximal. Let §:
X/Rc(Y ° ¢) — Z; then, obviously, £ is an N-to-one extension. Also £ is
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distal (and so open), since any pair of proximal points in X/RC(¢ o ¢),
comes from a pair of proximal points in X which must be in the same
connected component by the above. 0O

As the technicalities in the proof of 4.4 obscure the basic idea, we will
ilustrate that basic idea by first proving an absolute version of 4.4 that is
slightly stronger. Note it is easy to see that if X is proximal and locally
connected then it is connected.

4.2. THEOREM. Let ¢: X — Y be a proximal homomorphism and let Y
be almost periodic. If X is locally connected then ¢ has connected fibers. ( X
not necessarily minimal.)

Proof. Suppose ¢ (y) is not connected. Then there are open sets U,
and U, in X such that U, N U,= @ and ¢~ (y) € U; U U,. Choose
x, € ¢ (y) N U, and let (w,w) € T(x,, x,) (¢ is proximal!) Let { W, |A
€ A} be a neighbourhood filter base at w consisting of connected open
sets. Then there are ¢, € T with #,(x,, x,) € W, X W,. Since t;'W, is
connected and #;'W, N U, # @ it follows that 'W,\ (U, U U,) # 2.
€hoose w, € W, such that v, := tlw, € ;W\ (U, U 1,).

Then v, — v € U; U U, while w, - w. Hence

t)\(v)\’xl) - (W,W) and (U)oxl) - (U’xl)'
This shows that v € Q[x,]. Since Py = Oy = R,, it follows that v € ¢~
(»)- But then v € U; U U,, which was not the case. This contradiction
shows that ¢ ( y) is connected. O

Before we can show that the highly proximal extension that is part of
an open locally connected locally almost periodic extension has connected
fibers we need the following lemma.

4.3. LEMMA. Let 0: X — Z be an open locally almost periodic extension
of minimal flows, say 0 = Y o ¢, ¢: X = Y highly proximal and §: Y - Z
almost periodic. Let z € Z and W C (Y ° ¢) “ (z) such that $[W] has a
nonempty interior in ¢~ (z). Then T(W X W N R‘pw) EUyNR,,,

Proof. Since ¢[W]° is open in ¢~ (z) and ¢ is almost periodic, it
follows from 2.4 (minimal case) that T([W] x ¢[W] N R,) € %, N
R,. Suppose (x,x) & inty T(W X WNR,.,,). Then for every
neighbourhood O of (x,x) in R 0'=0\T(Wx WnNR,.,) is
nonempty and open.

4,04)!
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By [Wo 82] IV. 4.13 (with ¢ = {,0 = §, 7 = id, ¢’ referring to our 6),
¢ X ¢: R‘p . — R, is an irreducible surjection. So there is an open set
P, =P in R, such that P—(¢X¢}R .9 X¢[Pland PC O
For every 0 choose (x}, x2) € P, then (x4, x3) = (x, x). So

(9(x5), 9(x3)) = (9(x), $(x)), and since T(¢[W] X ¢[W] N R,) € 2,
N R,

(¢(xb).9(x2) € T(¢[W] x s[W] N R,) = ¢ X $T(W X W R,.,)

eventually. But P, consisted of full fibers under ¢ X ¢|, , and P, N
T(WX WNR,.,)= @, hence

(o(x5),0(x3)) & T(¢[W] x 6[W]NR,).

This contradiction shows that (x,x) € inty  T(W X W N R,,.,). Since
x was arbitrary it follows that Ay C int,  T(W X W N R,.,). o

4.4. THEOREM. Let ¢: X — Y be a highly proximal extension of
minimal sets and let : Y — Z be almost periodic such that o ¢ is open
and has a locally connected fiber. Then ¢ has connected fibers.

Proof. Let y € Y and suppose ¢ (y) is not connected. Then there
are open sets U, U, with ¢“(y)c U, U U, UN¢“(y)+ & and
U, N U,= @. Consider a base # for %, ordered by inclusion. For every
p € # construct open sets U¥ C U, such that ¢~ (y) N UF # @ and
0" (y)=MN{UtV U |p € Ux}.

Let z € Z be such that ({ ° ¢) “ (z) is locally connected. For p € %,
and x € (Y ° ¢) “(z) choose connected closed neighbourhoods W* of x
in (¢ ¢) “(z), with W} C p(x). Then there is a finite collection {W“ |i
=1,...,n,} such that

(Yoo) (z)=U{mrli=1,...,n,}.

Since ¢~ (z) = U{o[W}]|i = 1,...,n,}, thereisan i, € (1,...,n,} with
o[WE]° # @ in Y (z). Define W“ = W}!.Takea subnet of .%' such that
X; —>xE(1]/ ¢) “(z), and note that it w, € W* then w, - X in
(¢ $) “(z). By Lemma 4.3, T(W* x W"ﬂR¢ s) €Uy NR,.,. Note
that proximality of ¢ and the fact that U* N ¢ (y) # & imply that
Ayc T(U} X UF N R,,,). Hence

T(WEX WFNR,.,)NULXUFNR,. #+ @
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So, by openness of U' X U} N R, ., it follows that there is a z, with
L(WEXWH)NUEX UFNR,.,# 2.

Say t,(wf,wj) € Ut X U} N R, Then, after passing to a suitable
subnet, z,(wf,w}) = (X, X,); where X; € ¢“ (y), and (wf,w}) = (X, X).
Since ¢, W* is connected and & # {,W* N UF c t,W* N U, it follows
that 1 W ¢ U, U U,; say 1ot € 1, W'\ U; U U, for some v* € W*. Let
t,o* = v and note that v* — X. Also, note that v & U; U U,. But then
t,(v*,wf) = (v, X,), while (v¥,w}') = (X, X). So (v, X;) € Q,.,; but, since
Y o ¢ is locally almost periodic, Q,., = P,., = P,. Hence (v, X;) € P,,
so vE ¢ (y)C U, U U, while v &€ U, U U,. This is a contradiction,
showing that ¢~ (y) is connected. O

4.5. THEOREM. Let ¢: X — Y be an open N-to-one extension of
minimal flows. Let §: Y — Z be open and locally almost periodic with a
locally connected fiber. Then y o ¢ is locally almost periodic.

Proof. Let §: Y — Z be given by n: Y — W highly proximal and §:
W — Z almost periodic. By Theorem 4.4,  has connected fibers. Then,
by Lemma 4.1, no¢ = a° 8, where B is highly proximal and « is open
and N-to-one. So £ ° « is almost periodic by 2.5. Since Yo p = §ono¢p =
£oao B, it follows that ¢ o ¢ is locally almost periodic. ]

4.6. COROLLARY. Let ¢: X — Y be an almost periodic extension of
minimal flows with totally disconnected fibers and let : Y — Z be locally
almost periodic with locally connected fibers, then { o ¢ is locally almost
periodic.

Proof. After noting that an inverse limit of locally almost periodic
extensions is locally almost periodic again, this follows in the same way as
3.6. O

5. Example related to 2.2 and 2.5. We give an example showing
that 2.2 cannot be relativized without further restrictions on the “smallest”
flow Z ({*} in 2.2)) and that 2.5 is not true without the minimality
condition on Z (even Z semisimple is not sufficient).

We were unable to prove or disprove the relativized case for 2.2 where
Z is minimal.

We construct an open 2-to-one extension ¢: X — Y and an almost
periodic homomorphism ¢: Y — Z with connected locally connected
fibers, such that y o ¢: X — Z is not almost periodic.
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Define Z = {0} U {1/n|n € N} with a trivial action, so Z is semi-
simple. Define

X=Y= {(%,%i,cosﬂ)m e N, R} U{(0,0,cos8)|6 € R}.

So X = Y is a collection of ellipses with decreasing small axes, converging
to an interval.

For each n € N define homeomorphisms f,, g, and 4, on X,Y and
Z by

fn((l, sinf ,0050)) = (l, —sin(0 + 7/2) ,cos(0 + m/2)
n n n
and f, leaves the rest of X fixed;
g,,((—l—, sing ,cosﬂ)) = (l, sind , ~cos0)
n n n
and g, leaves the rest of Y fixed;
h, leaves all of Z fixed.

Let T be the free group generated by N and define the action of T on
X,Y and Z by the homeomorphisms f,, g, and 4,. Define ¢: X — Y by

qﬁ((l, gl—q,cosﬂ)) = (l, sza,cosZO) and
n’ n n n

¢((0,0,cos6)) = (0,0, cos26).

One checks readily that ¢ is well defined, continuous, 2-to-one and open.
To see that ¢ is equivariant note that

qbf,,((-’l;, sin cosﬂ)) = ¢((l, :—Sin—(o—:ﬂ—/z),cos(ﬂ + 'n'/2))

n’ n
= (—1—, Sm20',—cos20) = gn((—l-, szo,cosw)
n n n n
1 siné
= g,,qb((—n-, — ,cosﬂ)).

Define {: Y — Z be projection on the first coordinate. Note that
each g, is an isometry, so that Y is almost periodic and hence ¢ is an
almost periodic extension. Remark that Y is not connected so 2.2 itself is
not in danger, but ¢ is fiberwise connected locally connected.

We show that ¢ o¢: X — Z is not almost periodic by showing that
(0,0, cos(7/4)) and (0,0, cos(37/4)) are regionally proximal with respect
to Y ° ¢.
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Obviously,

lim l,w z)=(0,0,cos z), but

n—oo \ 1 n 4 4

fim f 1 ’ sin 77/4) 17_ — lim l, ~sin(37 /4) ,cos3-75

n—oo " 4 n—ooo \ 1 n 4
= (0,0,cos§4£)

lim f l, —————Sm(_ﬂ/ 4) ,cosir) = lim —1—, ————_Sln(w/ 4) ,cosz)

noow "\ n n 4 n—oo \ 1 n 4

= (0,0,cos Z—)

6. Regional proximal relation for suspensions. We give an example
of a connected locally almost periodic extension and a 2-to-one extension
of minimal flows such that the composition is not locally almost periodic.

To that end we first discuss suspensions, aimed at extending a Z-flow
to an R-flow. Then we give an example of a minimal 2-to-one extension of
a locally almost periodic flow that is not locally almost periodic. After
suspension these flows are connected and still the resulting flow is not
locally almost periodic.

This shows that Theorem 4.5 cannot be strengthened to the case
where the locally almost periodic extension has connected fibers.

Let T be a topological group and let S be a closed syndetic subgroup
of T, say T = KS for K C T compact. Let (S,Y) be a flow for S. Then
also (S, T X Y) is a flow for S. Define an equivalence relation ~ on
T X Y by

(2, p) ~ (¢, y*) ifft* €S and t7't*y* =y.

[Note that foreverys € S, t € T, y € Y: (t, y) ~ (s, s 'y).] The suspen-
sion X of Y is defined as

X=TXY/~ notation X =T X Y; ~ (¢,y):= [t, y].
t'-[t,y]:=[t,t,y] foreveryt' € T,]|¢,y] € X.
Then (T, X) is a flow for T ([H 60] §5).

6.1. REMARK. If (S, Y') is minimal then (7,7 X ¢ Y') is minimal.

Proof. Let [t, y], [t*, y*] € T X5 Y. Let 5, € S be such that s,y —
y*. Then t*s,t7 !¢, y] = [¢, y'], for t*s,¢7 ¢, y] = [t*s,, y] = [%, 5, ¥]. O
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The proof of the next lemma is left as an exercise to the reader.

6.2. LEMMA. Let S be a syndetic subgroup of T. Let (S, X) and
(T, X) be flows such that the action of S is just a restriction of the action of

T. Then Q s xy = Q(r,x)-

In the sequel we assume S C Z(T), ie. st =1ts for every t € T,
s € S.
Note that in that case s[¢, y] = [s¢, y] = [t5, y] = [¢, sy]. O

6.3. THEOREM. Let x,, x, € X, say s, = [t;, y;]. Then
(X1, %,) € Qe xy fti't, =5 €S and  (y1,5,) € Qs.vy-
Proof. The if-part is trivial.
Suppose (x;, X,) € Q7 xy, then, by Lemma 6.2, (x;, x,) € Q (g xy-
So there are s, € S and [#}, yi] € X, i = 1,2, such that for a certain
[r,y]€ X:
[t;\, y;\] - [t;, 5] and SA[tia )’;\] - [r, 7]
As T = KS, we can write ¢t} = kiul, t, = ks, for k}, k, € K: u}, s, € S.
Note that
[ti’yi] = [k;,s0]; [ti, y;\] = [ki’“iy;;] = [k 5]
and
sl il = [t sl = [k wisivil = [, 51
Since K is compact we may assume, after passing to a suitable subnet,
ki >k, €K;ulyi>y €Y and uisi, >z €Y.
Then in T X Y we have
(k;u u;\y)t\) - (7&;" yl) and (k;\a uis)\yi) - (}iazi)‘
Hence, after applying “ ~ ”:
(2, ] = [k s,01] = [%n j-)i] and " [r,y] = [%1’21] = [%2’22]-
In particular this means that k, = k,5 and 5z, = z,. In T X Y we have
sy(@hrh, Bk9R) = (wsaoh, suisi i) = (20,52,) = (2, 7)),
(whn w33) = (whoh, 5uiyd) = (5 97);
which means that (yy,sy,) € Qs yy- Since [1;, ;] = [ky, y1] and [15, y,] =
lk,, ¥,]1 = [k5, ,] = [ky,50,], there are r; € S such that

ky=tr, and ny =y, k =t,r, and BSYs = V,.
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Hence 1, = k,r;' = tyryr5Y, where rir;' € S5 so t7't, = rr;' € S. We
are left to show that (y,, r,r;'y,) € Q (s,vy> as follows. Since rysy, = y,,
we have r,r;'y, = rry'r,5p, = r,59,. So, by the facts

n=ny and (j,5,)e Qs.v)
it follows that

()’1”""2-1)’2) =n(»n,v,) € Q5.7 a
In a similar way, but easier, one shows:
6.4. THEOREM. Let x,, x, € SX, say x; = [t;, y;]. Then

(x1,%,) € Prr xy iffti't, €S and (y),59,) € Pisyy- o

Let ¢: (S,Y) - (S,Z) be a homomorphism of S-flows. Then ¢
induces a homomorphism ¢: (7,7 X Y) — (T, T X ;¢ Z) defined by

o[, y]:=[t,0(»)].

One checks readily that ¢ is a well defined continuous and equiv-
ariant map.

It is left to the reader to give proofs for the relativized versions of
Theorems 6.3 and 6.4. The next corollary is then easily derived:

6.5. COROLLARY. Let ¢: (S,Y) = (S,Z) be a homomorphism of
S-flows, and let $: (T, T X Y)Y — (T, T X s Z) be the induced extension.

(a) If ¢ is almost periodic, distal or proximal, so is é. In particular, if
(S, Y) is almost periodic, then (T, T X ¢ Y') is almost periodic too.

(b) If Y is minimal, then & is highly proximal if ¢ is.

(c) If ¢ is N-to-one, & is N-to-one. O

After this discussion about suspensions we give an example of a
minimal 2-to-one extension of a locally almost periodic flow that is not
locally almost periodic:

Let (Y, ¢) be the Ellis minimal set (([E 69] 5.29.). As Y is a highly
proximal (2-to-one but not open) extension of the circle with irrational
rotation, (Y, ¢) is locally almost periodic. Let X = Y X {0,1} be the
topological sum of two copies of Y.
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Define a homeomorphism § on X as follows:

Fix a basic clopen subset W of Y such that ¢[W] N W = &. Define
0(y,i)=(o(y),1-1i), i=0,1, ifyeWw,
0(y,i)=1(o(y),i), i=0,1, ifyew.

then & (X,0) — (Y,¢) is open and 2-to-one, where £ is defined by
§(y,i)=y.

In order to see that X is minimal, recall that Y consists of two circles,
say S* and S~, and that the basic clopen subset W of Y has the form
(a*;b*) U [a~; b7), where (a™;b") and [a~, b”) denote intervals in S™,
S~

Note that §(a~,1) = (¢(a”),0) as a~€ W but 8(a*,0) = (¢(a™),0).
Since Y does not have periodic points ¢(a~) and ¢(a™) are both inside or
both outside of W under positive powers of ¢. So under positive powers
of @ they are in the same (0 or 1) level of X, hence (a7, 1) and (a*,0) are
proximal under positive powers of 6.

Similarly, (a*,1) and (a~, 1) are proximal under negative powers of 6.

6.6. REMARK. With notation as above. X is a minimal Z-flow and X
is not locally almost periodic.

Proof. Since Y is minimal and § is open and two-to-one, X is the
union of at most two minimal subsets. If X is not minimal then X = X,
U X, where X; is minimal.

Since (a~, 1) is proximal to (a*,0) as well as (a*, 1), all three points
have to be in the same minimal subset, say in X;. But both X; and X,
project onto Y; so if (a*,1) € X;, (a*,0) has to be in X, which is a
contradiction. Hence X is minimal.

In order to show that X is not locally almost periodic, it suffices to
show that P, is not an equivalence relation. If it were, then (a*,1) and
(a*,0) were proximal, but as they are identified by £ they are distal. O

By now we are able to give the example showing that mere connected-
ness is not enough in 4.5.:

Let (R, X), (R, ¥) and (R, $) be the suspensions of ( X, 8), (Y, ¢)
and (S, a), where (Y, ¢) 5 (S, a) is the highly proximal map of (Y, ¢)
onto the irrational rotation (S, a).

By 6.5, S is equicontinuous, % is highly proximal, so ¥ is locally
almost periodic and £ is 2-to-one.

Moreover, as R is connected and )?, Y and S are minimal, they are
connected. However, as P, is not an equivalence relation, Py is not an
equivalence relation either. So X is not locally almost periodic.
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