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EXTENDED ADAMS-HILTON'S CONSTRUCTION

Y. FELIX AND J. C. THOMAS

/ P

Let F -* E -> B be a Hurewicz fibration. The homotopy lifting
property defines (up to homotopy) an action of the //-space Ω5 on the
fibre F which makes H*(F) into a //*(Ω/?)-module. Suppose B is

p
connected. We prove that if E -> B is the cofibre of a map g: W -> E
where W is a wedge of spheres, then the reduced homology of F, H*(F)
is a free //*(Ω2?)-modiile generated by H*(W). This result implies in
particular a characterization of aspherical groups.

The key point in the proof of this theorem is the following generaliza-

tion of the Adams-Hilton construction. In their famous paper, Adams and

Hilton construct for every simply connected C.W. complex B a graded

differential algebra whose homology computes the algebra H*(ΩB). Ex-

tending their construction to any fibration p we construct a differential

graded module C(F) whose homology computes the ίί5f:(Ω5)-module

H*(F). We suppose E is a subcomplex of B, then C(F) is a free

H*(ΩJ5)-module generated by the cells of E. The differential is defined

inductively on generators in accordance with the way the cells of E are

attached.
~ P

Our construction has many applications. For instance, let K —> K be

a normal covering of a finite C.W. complex. K is the homotopy fibre of

some classifying map K -> K(G, 1). As H^(Ω,K(G,1)) is isomorphic to

Z[G], our construction yields an explicit chain complex whose homology

computes the homology of K as a Z[G]-module. In particular, we estab-

lish some properties of infinite cyclic coverings in low dimensions.

1. The algebra structure of H*(QX; R). Let X be an arcwise

connected space with x0 as base point. For sake of simplicity, we denote

by G the fundamental group πτ(X, x0). Then

g<ΞG

where (ΏX)g denotes the arcwise connected component of ΩX whose

elements are the based loops γ belonging to the homotopy class g.

We denote by e the homotopy class of the constant loop at x 0. For

each γ e g, the homotopy equivalence
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defined byL γ (ω) = γ*ω, induces for each ring R a unique i?-module
isomorphism (Lg)«: H*((ΩX)e; R) -> H*((QX)g; R). Let R[G] be the
group ring of G. If g = Σiλigi belongs to R[G] and / belongs to
^((ΩJSQ^ R), the map

Φ: H*((QX)β; R) β R[G] -» H*(QX; R)

defined by

is an isomorphism of i?-module.
Moreover, Φ is an algebra isomorphism when H*(ΏX; R) is equipped

with the canonical Pontryagin algebra structure and if the product in
H*(ΩXe; R) 0 R[G] is given by the formula

where fg e H+((ΩX)e; R) denotes the image of / by the unique homo-
morphism H+((ΩX)e; R) -> H^((QX)e; R) induced by the conjugation
map cυ >-> γωγ" 1 with γ G g.

REMARKS. (1) Suppose that X admits a universal covering p: X -+ X,
then Q,p: ΏX -» (ΩX)e is an isomoφhism of topological monoids.

(2) By the natural inclusion (ΩX)e -• ΩX, /^((ΩA')^ i?) is a subal-
gebra of H(QX\ R), and so H+(ΩX; R) is a free left module on the ring
H(QX; R).

(3) The conjugation map ω -> γωγ" 1 in (ΩX)e corresponds via Ω/? to
the map in ΩX defining the operation of τrx( X, x0) = G on ?7W( X, x0).

(4) If i? is a field of characteristic zero, then by the Milnor-Moore
theorem [10] the Hopf algebra H(ΏX; R) is isomorphic to the enveloping
algebra U(π(ΩX) β R). In this case Φ induces a Hopf algebra isomor-
phism

H*(QX; R) = U(ir^(ax) β Λ) β Λ[G]

where the operation of R[G] on t/(7r>1(ΩX) ® i?) is induced by the
natural operation of irλ(X, x0) on ττ>2(X, Λ:0).

2. Adams-Hilton construction in the non-simply connected case.
Recall the Baues' construction [2].

Let AT be a 0-reduced CW complex. There exists a 0-reduced CW
complex K together with a homotopy equivalence

q: K^ K
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such that the attaching map of a 2-cell of K belongs to the free monoid
generated by the 1-cells of K. In order to do that, replace each 1-sphere in
Kι by the 2-dimensional complex

s1 =

with one 2-cell and two 1-cells y and y. The attaching maps of the 2-cell
is yy. The attaching maps of the /t-cells of K define attaching map of K
and for the cellular chains complex of K we have the relations:

ii = 1,

n = 2y

cn(K)9 n>3.

THEOREM 1 [2, D3.7 and 3.16]. Let K be a 0-reduced CW-complex.
There is a differential d on T(s~ιC*(K)) together with a weak equivalence
of chain algebras

v: A(K) = Tis^CtiK)) -• Q ( f i ^ ) .

Moreover, the construction of d and v is inductive. Assume constructed
vn: A(Kn) -> C*(ΏKn) then for each (n + l)-cell e, with attaching map /:
Sn -» X, put ds~ιe = z where (vn)*[z] = (Ω/)*(£) with £ a generator of

Each 1-cell y of K yields a loop y e ΩK c C0(ΩK). Then v(s~ιy) =

y
For a 2-cell e in K> ds~xe = a - 1, where α is an element of the free

monoid generated by the 1-cells of K, representing the attaching map of
e.

REMARK. These formulas differ slightly from the Baues' ones. (Simply,
subtitute formally y by y + 1).

Now, consider the canonical fibration
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Let denote by S*(ΩK) (resp. S*(K), S*(PK)). The singular chain

group generated by non-degenerated cubes (resp. whose vertices are at the

base point, in Ώ(K)). Following, the original Adams-Hilton construction

it is easy now to obtain.

THEOREM 2. // K is a Q-reduced CW-complex there is a commutative

diagram of augmented chain complexes

{A(K),d) Λ

r i

{B(K)βA(K),d) i

<π i I p

(B(K)J) Λ s*(K)

with B(K) = Z Θ C(K\ such that

1. v is a homomorphism of Z-algebras;

2. θx is a homomorphism of differential modules',

3. The induced maps v*, (fl^*, 0* are isomorphisms.

REMARKS, (a) Denote by An the set of ^-dimensional cells. Then

( ί α , a G Λx; rβ, β e Λ 2 ) is a presentation of the fundamental group G of

K. This defines a group extension:

I -> H ^ F -+ G-*l

where F denotes the free group (ta9a e Λx) and H the normal subgroup

of F generated by the elements rβ, β e Λ2.

The group ring Z[F] is an augmented Z-algebra concentrated in

degree zero. We denote by

A(K) = Z[F]*T{s-1C,2(K))

the free product of the two associative Z-algebras. As A(K) =

Tis^C^K) Θ s^C^K) Φ C^iΓ) θ s~1C>2(K)), the homomorphism p:

A(K)-*A(K) defined by

induces an isomorphism in homology. If K is countable, Milnor con-

structs a topological group G(K) which has the homotopy type of Ώ(K).

In this case it is possible to construct directly an equivalence of chain

algebras, between (A(K\ D) and S*(G(K)).
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(b) As in the classical construction, we define on the chain complex
B(K) ® A{K) (resp. B(K) <8> A{K)) an ε-derivation s such that

sd + ds = I — ε

where ε denotes the augmentation of the complex.
In partiuclar, using Fox calculus we obtain in B(K) ® A(K) the

following relations, in low degrees;

dtt = 0, i e Λ l9

Λ ® ϋ j = l β r ; . - 1 ® 1, j e Λ2,

where

Λ(K) = Z ^ , / " 1 ] *(<;]), ' e Ax, 7 e A7, / > 2,

NOTATIONS. (υa)9 « G Λ denotes the free group (resp. the free
association algebra) generated by the vjs when the degree of the va's is
zero (resp. is positive) (Z>α), a G Λ denotes the abelian group freely
generated by the bjs.

EXAMPLES.

EXAMPLE 1. K = P 4(R),

Λ = 0, έfo! = t2 -

^ 3 = tυ2t~
ι

EXAMPLE 2. K = S 1 x S 2 ,

= tυ2t~
ι + v2- υ\Γ2.

ί/ !̂ = 0, dv2 = ^ i / " 1 — i7 le

Therefore the natural projection A(K) -» (Z[ί, ί"1] Θ (ϋ x), 0) is a
quasi-isomorphism.

3. Adams-Hilton construction for homotopy fiber and applications.
3.1. Let /: K -> L be a cellular map between 0-reduced C.W.

complexes. Denote by g: F -+ K the homotopy fibre of / and by δ the
connecting homomoφhism in the Puppe sequence.
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THEOREM 2. With the notations introduced in §2, there is a commutative
diagram of augmented chain complexes

(A(L),d) °ί S

ir 18

{B{K)®A(L),d) ^

(B(K),d) S

such that Ψ is a homomorphism of differential modules and Φ* is an
isomorphism.

Proof. Clearly we may suppose that / is an inclusion. We have only
to define d and Ψ on B(K) <8> A(L). d is defined as the restriction of the
differential d of B(L) ® A(L) to B(K) ® A(L). This is possible since /
is an inclusion. The cellular construction of Theorem 2.2 shows that the
restriction of ΘX(L) to B{K) ® A(L) factors into a homomorphism of
differential modules Ψ, making commutative the above diagram.

(i) Suppose that K = VaS
ι

a and denote by ΩL -> F' -> K the in-
duced fibration by the inclusion K -* L. Then we obtain a commutative
diagram

B(K)®A(L) 5 s*(F')

Ji if
B{K)®A(L) -> ^(F).

As j+ and 7^ are isomoφhism, it suffices to prove that ( ^ ) * is an
isomorphism.

The Leray-Serre spectral sequence of the fibration ΩL -> F' -> K on
one hand and the spectral sequence obtained using the filtration B<p{K)
<8> A(L) on the other hand, yield the commutative diagram

-> Hq+ι(B(K) *A(L))-+B1(K) Θ ̂ (

Hq+ι{F) -+ CX(K) ® Hq(QL) -+ Hq(QL) -* Hq(F)

So, from the five lemma we deduce that Ψ* is an isomorphism.
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(ii) Suppose we have proved Theorem 3 for C.W. complexes of
dimension less or equal to n and let K = Kn+1. The following diagram
defines then F' as the total space of a pull-back fibration

Ω(L)

4
F'

i

Kn

= Ω(L)

1
-+ F

i

-> K

=

—*

f

Ω(L)

i
P(L)

I p

L

So obtain the commutative diagram:

From the inductive assumption and the five lemma it suffices to prove
that (Ψ)* is an isomorphism.

We denote by χ: (2?n+1, Sn) -> (Z, Z") the characteristic map of the
cell e, and suppose that ίΓ = Kn U β.

Now from the commutativity of the diagram

U

S*(F)/S*(F') ^ S*{p-ι{T" U e), p

where the two horizontal maps are quasi-isomorphisms, we might as well
suppose that

Έ~n = Tn and Ψ = θλ (01? as in Th. 2).

Now, let us recall the construction of θx: B(L) 0 A(L) -> S*(PL).
We denote by ξ a cycle of S*(ΩSn) corresponding by homology suspen-
sion to a generator of Hn(Sn). Let ξ e Sn(PSn) and η e 5t

n(Ω£'"+1) such
that dξ = ξ and dη = ζ when f is considered as an element of S*(PSn)
or of S*(ΏEn+1). Considering now, all these chains in S'Jit(PJ5;/I+1) we
obtain the relation d\i = ί — η for some K G Sn+ι(PEn+1). Now θλ is
defined such that

θx{e 0 1) + Pχ(κ) G Sn+1(PL») c Sn+1{p-ιL")

with Pχ: the canonical map PEn+ι -* PK <^> PL.
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From this formula we deduce the following commutative diagram,

B(Γ"Ue)®A(L) ^ S.j/i-^Ue))

i _ I

(B(Γ" U e)/B(P))®A(L) i S^p-'iΓ" U e), /^(

where,
(i) a = γ ® vτ with γ(e) = — p(/c) and p is the canonical map

1) -* S*(PEn+\ΩE"+1 UΩSn PS").
(ii) x' is defined by the following diagram

(x"1(/'),χ-1(/')|s.) - (p-'Cί" u «), . P - 1 ^ ) )

I

(in) μ is induced by the homotopy equivalence

(PE»+\ΩE"+1 U PS") X ΩZ Λ (χ

with μ(c) = (Pχ(c), c(l)) if c G PEn+ι and extended using the operation
of ΏLonχ~\p).

By excision χ^ is an isomorphism and since α* and μ* are also
isomorphisms, so is (^)*.

3.2. Fibre of a cofibre.

PROPOSITION. Let K and L be connected C.W. complexes. Iff: K -> L
is the cofibre of a map VaS

n« -> K and F the homotopy fibre of f, then
H+{F) is a free H*{SLL)-module generated by H+(VaS

n«).

Proof. The 1-connected version of this theorem soon appears in [6].
Nevertheless, for the convenience of the reader, we sketch the proof again.
By 3.1,
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Consider then the exact sequence of differential chain complexes

(*) 0 -+ {B(K)®A{L)9d) -* (5(L)®Λ(L),d) -» (B(L)/B(K)®A(L),d) -* 0

The inductive property of the Adams-Hilton construction shows that:

H*{B(L)/B(K) ®A(L), d) = B(L)/B(K) ® H*

The long exact sequence induced by (*) is an exact sequence of
i/*(^4(L))-modules. So on we obtain an isomorphism of H*(A(L))-mod-
ules

B(L)/B{K) ® H*(A(L)) -* H*(B(K) 8> A(L)). D

3.3. Coverings. Let K be a connected finite C.W. complex and
H -> πλ{K) = G a normal subgroup with quotient group N = G/H.
Denote by θ2: A(K) -> C*(G(K)) an Adams-Hilton model of K, by
K -> K a covering corresponding to ΛΓ and by T ^ : A(K) -> Z[ττ1(ΛΓ)] ->
Z[iV] the composite of the canonical projections. The following proposi-
tion results then directly from Theorem 3.

PROPOSITION.

B(K) 0 Z[N] ={(B(K) 0 A(K)) ®Λ{K) Z[N]

is a chain complex whose homology is isomorphic to H#(K; Z) as Z[N]
module.

Proof. The homotopy fibre of the inclusion

K^ L =

has the homotopy type of K. From Theorem 3 and the definition of p:
A -> iA we obtain the following commutative diagram:

Z[N] £ A(L)

I®P
B(K)®Z[N] <r- B{K)®A(L) <r- (B(K) ®A(L),d)

1 ®

It is easy, then to prove that I ® vL and 1 Θ p induce isomorphisms at
the homological level.
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If we choose α, A(K) -> A(L) such that τvκ = avL, and if we define

a A(K )-mod\ήe structure on Z[N] with τvκ, we obtain a commutative

diagram

B{K) ® A(K) ®Λ{K) A(K) -> B(K) ® A(L)

K) Z[N] ->

where the canonical isomorphisms μ and μ' commute with differentials,

and so induce isomorphisms between homologies. D

With the notations of remark (b) below Theorem 2, the differential d

of the complex B(K) ® Z[N] is defined in low degrees as follow:

d(b) 0 l) = 1 ® [ i j - 1 0 1,

where [α] denotes the image of α by the projection Z[ί/5 ^~x] -^ Z[Λ^]. So

we recover the classical formulaes of [5].

3.4. Infinite cyclic coverings in low dimensions. Let K -^ K be an

infinite cyclic covering of a 0-reduced finite C.W. complex K. Denote by

si the matrix ([9^/3/J) defined in 3.3 and by rank si the maximal r

such that there exists in si a non-zero r X r minor. Then

PROPOSITION. // K -> K is a connected infinite cyclic covering of a

^-reduced finite C.W. complex, then Hγ{K\ Q) is finite dimensional if and

only if rank si= n — 1, where n is the number of 1-cells in K.

Proof. Hλ(K) is a finitely generated Z[/, /"^-module. If we write,

HX{K\ Q) will be finite dimensional if and only if all at Φ 0, and so if and

only if

Tensoring the complex C*(K) by the field Q(t) over Z[t, t~ι], we obtain a

chain complex of Q-vector spaces

(*) 0 <- C0(K) ®Z [,, r l ]Q(0 £
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(whose Euler characteristic coincide with χ(^0). As H0(K) = Z, H0(K)

(g> r - Q(/) = 0 and d i m l n ^ = 1. Sorank s/= dimlm32 = n - 1 if

and only if

Hx(cm{k) ®z[M-i]Q

COROLLARY 1. Le/ K be a 0-reduced finite 2-dimensional C.W. com-

plex whose Euler characteristic is zero and satisfying rank s/= n — 1

(n = number of 1-cells). If K -> K is a connected infinite cyclic covering,

then Ht(K; Q) is finite dimensional for each i.

Proof. In the chain complex (*) as χ(K) = 0, 32 becomes injective, so

dim H2(K; Q) and dim H*(K; Q) are finite.

COROLLARY 2. Let K be a 0-reduced finite 3-dimensional C. W. com-

plex satisfying

(i) K satisfies Poincare Duality with rational coefficients

(ϋ) rank s/+ 1 = number of l-cells.

Then each connected infinite cyclic covering K has the rational homotopy

type of a compact manifold.

Proof. In this proof we assume a lot of material and notation from S.

Halperin's paper [8]. Consider the K.S. model [9, 20-2] of the classifying

map φ: K -> S1 of the covering K:

(Λί,0) -> (Aί β AV,D) -> (AV,D)

In [7] we show that d i m Q i Γ ( Λ F ; D) < oo if and only if dim#,.(£; Q)

< oo. From the duality assumption we deduce a surjective quasi-isomor-

phism

(At® AV,D)^(A,D)

such that A>3 = 0 and ^l3 = QJ7. Moreover, since K is arcwise con-

nected, Hλ(φ) Φ 0 and there exist a cocycle v e ΛF such that ^(/ϋ) = J7.

Consider now the c.d.g.a. (At ® AV ® At, D') with D'(ϊ) = /, / > Ί Λ / β ) Λ K

= D, deg(ί) = 0. Denote now by (A Θ At, D) the tensor product of the

two commutative differential graded algebras

(A,D) ®(Aί*AV)(At ®AV® AΪ,D').

Clearly, (A <g> At, D) is quasi-isomorphic to (AV, Ί>). Now (A ® Λ/)3 =

Q ί / β Aί. AS t / β P = D(θ(v)tn~1/n) for π > 1, i/ 3(ΛF,5) = Q and

thus H3(K; Q) is finite dimensional.
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On the other hand, the above proposition shows that Hλ(K; Q) and
H0(K; Q) are finite dimensional. As χ ( ^ ) = 0, in the chain complex (*)
we obtain H2{K) ® z[t ri] Q(t) = 0, so H2(K) is also finite dimensional.

The corollary results then of the Milnor theorem ([11]).

3.5. Aspherical groups. Let (W,w0) be a wedge of Sl9s and let X be
obtained by attaching 2-cells to W\

J e2\.

For each, k e /, φ^: Sι -» W denotes the attaching map of the 2-cell

Let Nx be the normal subgroup of 7Γ1( W, *) generated by the homo-
topy classes [φ J , k G /.

Note that the group extension

induces on the abelianized group (Nx)ab a canonical structure of
Z[ττ1(X)]-module. Denote by φ{ the image of [φ ] in (Af^)ab.

PROPOSITION. {iwx)#: TΓ^PF,^) -* ir^X.w^) is surjective iff (Nx)Άb

is freely generated by the φ^s as Z[τrx( X)]-module.

Proof. We denote by j : Fx -> W the homotopy fibre of iwx. Then
each φ/9 / G /, factorises into φ(: S1 -* Fx and so induces Φ, belonging to
Hλ{Fx). From 3.2, the reduced homology H+(FX) is freely generated as
7/*(ΩX)-module by the Φ7's. An argument of degree shows that HX(FX) is
isomorphic to 0 .e/Z[ττ1(Ar)]Φ/., since # 0 ( Ω ^ 0 = Zt^AT)].

(a) If ( / ^ ) # is surjective, then Fx has the homotopy type of a wedge
of S '̂s and so

(b) In order to prove the "only i f direction first remark that the exact
sequence

obtained from the homotopy fibration Fx -> W -> X naturally splits.

Now, if we suppose that (Nx)ab is a Zfπ^X, w0)]-module freely
generated by the φ/s then HX(FX) is isomorphic to (Λ^χ)ab.

Thus τr2( X, w0) = 0 and then π> 2( X, w0) = 0. D
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