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ANALYSIS OF INVARIANT MEASURES
IN DYNAMICAL SYSTEMS

BY HAUSDORFF MEASURE

WM. DOUGLAS WITHERS

Hausdorff measure is a preliminary concept in the definition of
Hausdorff dimension, which is one concept of the degree of singularity
of a finite measure. In general, Hausdorff measure does not permit as
detailed an analysis of an arbitrary natural invariant measure arising
from a dynamical system as Lebesgue measure permits of an absolutely
continuous measure. It is shown that even for a dynamical system as
simple as a modified baker's transformation, the natural invariant mea-
sure has no representation as an indefinite integral with respect to any
Hausdorff measure. However, Hausdorff measure can be used to com-
pare different natural invariant measures according to degree of singular-
ity even when their Hausdorff dimensions are identical.

1. Introduction. In this article we seek to illustrate some of the
capabilities and limitations of Hausdorff measure for the analysis of
invariant measures in dynamical systems in more detail than is possible
with Hausdorff dimension alone.

Hausdorff dimension is a concept of the size of a set or the degree of
singularity of a measure. In recent years it has often been used for the
study of dynamical systems because many of the sets of interest which
arise are of Lebesgue measure zero and many of the measures of interest
whch arise are singular with respect to Lebesgue measure. Thus Lebesgue
measure is of little or no aid in the analysis of these sets and measures.
The Hausdorff dimension of a set of Lebesgue measure zero or a measure
singular with respect to Lebesgue measure can, however, range over a wide
spectrum of possible values; such sets and measures can thus be dis-
tinguished and classified by their Hausdorff dimensions.

Hausdorff measure is a necessary preliminary to the definition of
Hausdorff dimension and in cases where the Hausdorff dimension fails to
distinguish between two sets or between two measures (their Hausdorff
dimensions being the same) it is sometimes possible to compare their sizes
using Hausdorff measure.
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Perhaps the greatest possible amount of information concerning a
measure μ is given by a representation

μE= [ 8(x)dA(x),

where δ is a density function and Λ is a "reference measure" which is
uniform at each point, such as Hausdorff measure is. In several cases, an
invariant measure arising from a dynamical system does have such a
representation (we give some examples in §3) and in view of the natural
relationship between the Hausdorff dimension of an invariant measure in
a system and other properties of the system (for example, see [12]) and the
relationship of Hausdorff measure to Hausdorff dimension, it seems
reasonable to suppose that the invariant measure arising from a dynamical
system might always have such a representation.

In this article we present a simple example of a dynamical system,
namely, a modified baker's transformation, which shows that such is not
the case. A by-product of the arguments used to establish this result is an
illustration of the use of Hausdorff measure to provide a finer classifica-
tion of measures than is possible by the use of Hausdorff dimension
alone.

In §2 we review the definitions of Hausdorff measure and Hausdorff
dimension. In §3 we give some examples of dynamical systems giving rise
to invariant measures having representations as integrals of Hausdorff
measure. In §4 we present our example of a system giving rise to an
invariant measure without such a representation. In §5 we use Hausdorff
measure to classify a family of measures akin to the example of §4 which
have the same Hausdorff dimension and we discuss the extension of our
methods to general invariant measures in dynamical systems.

2. Definition of Hausdorff measure and Hausdorff dimension. Let

Ω be a metric space. Let λ be a function from some (0, η) to (0, oo). The
function λ need not be continuous or increasing. For a subset E of Ω we
define the Hausdorff measure of E (associated with λ), denoted mλE, by

mλE = sup inf £X(diam^4n),
0<ε<η iAn)

where {An} ranges over all coverings of E by open balls in Ω with
diamyl^ < ε. Note that different choices of λ and different metrics on Ω
can yield different measures mλ. We call λ an index function for mλ. The
mλ-measurable sets in Ω include all Borel sets. Many familiar measures
can be obtained as special cases of Hausdorff measure. For example, if
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Ω = R" and λ(t) = tn, then mλ is just a constant times ^-dimensional
Lebesgue measure. If we set λ = 1, then mλ is just counting measure; that
is, mλ{x} = 1 for each x in Ω.

If Ω is a linear space, and λ(/) = td for some d, then the measure mλ

has an interesting scaling property. Let E be a set in Ω and a be a real
positive number. Then

mλ(aE) = admλE,

where aE = [ax: x e E) is the set E magnified by the factor a.
Compare this to the scaling property of ^-dimensional Lebesgue measure.
Also, mλ is translation-invariant.

For the definition of the Hausdorff dimension of a set, we set λ(t) = td

for some unspecified value of d. Then mλE is a function of d as well as
E, If we fix E and vary d, we find that there is a critical value d0 for d
such that mλE = oo when d < dQ and mλE = 0 when d > d0. The
number d0 is the Hausdorff dimension of the set E, which we denote
dim£.

The Hausdorff dimension of a finite measure μ on Ω can be defined in
terms of the Hausdorff dimension of subsets of Ω. Let

d0 = infldimjE1: μE > 0};

then d0 is the Hausdorff dimension of μ, denoted dimμ. Alternatively,
dimμ is the unique number such that, letting λ(t) = td, /A is absolutely
continuous with respect to mλ when d < dimμ and μ is singular with
respect to mλ when d > dimμ.

For a set E and a Hausdorff measure mλ, mλE may be zero, or
positive, or positive and finite. These are analogous to the range of
possibilities for measures and, for a finite measure μ, correspond to μ
being singular with respect to mλ, absolutely continuous with respect to
mλ, or having a representation as an integral of mλ, respectively.

Let μ and v be finite measures. If dimμ < dim*>, then there exists a
Hausdorff measure mλ such that μ is singular with respect to mλ while v
is absolutely continuous with respect to mλ; for example, we may take
λ(ί) = td with d = (dimμ 4- dim J>)/2. Thus we think of μ as being
"more singular" than v. Even in some cases where dimμ = dim?, there
exists mλ such that μ is singular with respect to mλ while v is absolutely
continuous with respect to mλ; an example of this situation is given in §5.
In this case, we could distinguish μ as being more singular than v even
though dim μ = dim v. This is what was referred to in the introduction as
Hausdorff measure providing a finer classification of measures than
Hausdorff dimension alone. For a detailed treatment of this sort of
classification of measures, see Rogers and Taylor [8].
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3. Examples of invariant measures representable by integrals of
Hausdorff measure.

A. The logistic map.
Let /: [0,1] -> [0,1] be given by f(x) = 4x(l - JC). Let us define a

sequence μn of measures on [0,1] by setting μ0 equal to Lebesgue measure
on [0,1] and defining μn+ιE = μnf~

ι(E). The sequence μn converges
weakly to a limit measure μ, which is the invariant measure for the
system. Given an initial point x0 chosen uniformly at random from [0,1]
and letting xn+1 =/(x w ), μ is the probability distribution of xn for n
very large.

The measure μ has the integral representation

dm(x)

E 7r/x(l - x) '

the notation dm(x) denoting integration with respect to Lebesgue mea-
sure, which is a special case of Hausdorff measure. This representation
gives a much better picture of μ than the bare fact that dim μ = 1; we can
see, for example, that the density of μ goes to infinity at 0 and 1.

The logistic map may be the most widely-known example of a
dynamical system; for an introduction to its theory see Collet and
Eckmann [2]. The more general map fa(x) = ax(l - x) is more difficult
to analyse, but in the work of Jakobson [4] and Benedicks and Carleson
[1] it is shown that for a set of values of the parameter a of positive
measure, the map fa generates an invariant measure which is absolutely
continuous and thus can be represented as an integral of Lebesgue
measure.

B. For complex z, let f(z) = z2 — 2z. This map has as a chaotic
attractor the region of C where

p(z) = 4(z3 + z3) -{zzf - 18zz + 27 > 0.

Moreover, the invariant measure μ generated by / is absolutely continu-
ous and has the integral representation:

3dm2(z)
μE=ί

where dm2(z) denotes integration with respect to Lebesgue area measure
in C. Again, this representation tells us, for example, that the density goes
to infinity on the boundary of the attractor and that the measure is
invariant under multiplication of z by —1/2 4- z
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This example and the mapping /(JC) = 4x(l — x) above are members
of a class of mappings with many special properties, among which is the
existence of an absolutely continuous invariant measure with an algebraic
density function. A more complete description is given in Withers [11].

C. A modified baker's transformation.
Let S be the square [0,1] X [0,1], endowed with the square metric, so

that dist((x1? yx), (x29 y2)) = sup{ \x2 - xx|, \y2 - yx\}. We define /: S ->
S by

(x/392y) ifj>
(( ) , - l ) if y > 1/2.

Note f(S) Φ S. As before we define a sequence μn of measures on S by
setting μ0 equal to Lebesgue area measure on S and letting μn+ιE =
μnf~

ι(E). Then the sequence μn converges weakly to a limit measure μ
on S. The measure μ is supported on the set C X [0,1], where C is the
canonical Cantor set (C = [0,1] - (1/3,2/3) - (1/9,2/9) - (7/9,8/9)
— ), which has zero area. Thus μ cannot be represented as an integral
of Lebesgue measure.

However, let us set λ(/) = td, where d = Iog36 = dimμ. Then μ has
the representation

= / δ(x,y)dmλ(x,y),

where δ(x, y) = 1 if x £ C, δ(x, y) = 0 otherwise, and the notation
dmλ(x,y) denotes integration with respect to the measure mλ. Again,
from this representation we can see, for example, that μ is of uniform
density on the set C X [0,1] and of zero density outside this set, which
cannot be inferred just from the Hausdorff dimension of μ. A generaliza-
tion of this example is the subject of the next section.

D. Let M be a Riemann manifold and /: M - ^ M a C 1 + ε map which
is conformal; i.e., its derivative is a scalar times an isometry. Let / be a
compact subset of M with an open neighborhood V satisfying the
following conditions:

(i) There exist C > 0 and a > 1 such that | |(/W)Ί| > Can for all
x G / and n > 1.

(ii) / = {x G V: fn(x) G V for all n > 0}.
(iii) For every nonempty open set U intersecting / there exists n > 0

such t h a t / c / Λ ( C / ) .



390 WM. DOUGLAS WITHERS

These conditions make / a repeller for / and imply in particular that
/ is invariant under /. For a function ψ: / -> R, we define the pressure

= s u p | * ( μ ) + /

where μ ranges over all probability measures on / invariant under / and
h is the entropy of μ with respect to /. Let φ: / -> R be Holder
continuous. There is then a unique Radon measure μ on / such that
p(φ + ψ) - p(φ) > Jψdμ for all ψ. The measure μ is a probability
measure invariant under / and is called the Gibbs measure associated with

In the case where φ(x) = —dim/ log||/'||, it follows from a theorem
of Ruelle [9] that μ has a representation as an integral:

μE = fδ(x)dmλ(x)9

where λ(t) = ίdim/.

4. The modified baker's transformation. Our system has three

parameters: /?, q, and r, all positive numbers such that p < 1 and
q + r < 1. Let us define g0, gx: [0,1] -> [0,1] by go(x) = qx, gx(x) = rx
+ 1 - r. Let S be the square [0,1] X [0,1]. We define /: S -> S by

m /
i j n x ' y ) \(gMΛy-p)/(i-p)) Uy>P

As in example C of the previous section, / generates an invariant
probability measure μ on S. It can be shown that the measure μ can be
written as a product measure v X m, where v is a finite measure on the
x-axis given by vE = μ(E X [0,1]) and m is Lebesgue measure on the
j-axis. It can be further shown that μ has an integral representation as an
integral of Hausdorff measure if and only if v does. We can thus simplify
our problem by considering the measure v on [0,1]; we ask whether there
exist an index function λ and a density 8 such that

Our computations will be simplified if we restrict consideration to the

following set Ξ of intervals. Each interval is indexed by indices

(Yi. Y2» . Y»)» e a c h Y, s {0,1} We define
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We call the number n of indices for / = I(yv γ 2 , . . . , yn) the degree of /
and denote it deg/. Note that with q + r < 1, if deg/ = degA' and
J Φ K, then J Γ\ K= 0. Let us define

Note K[0,1] " **) = 0. We further define
00

then J>([0, 1] — JF) = 0 and we can ignore this part of the interval when
seeking an integral representation. We also introduce a modification of
Hausdorff measure.

4.1. DEFINITION. Let λ: (0,η) -> (0, oo). Let £ c f . W e define the
modified Hausdorff measure of E (associated with λ), denoted MλE, by

MλE = sup inf Σλ(diam/J,

where {/„} ranges over all coverings of E by elements of Ξ with
diam/rt < ε.

The only modification introduced is that the covering of E must be
contained in the set Ξ.

The measure μ can be represented as an integral with respect to a
modified Hausdorff measure Λfλ if and only if it can be represented as an
integral with respect to the ordinary Hausdorff measure mλ. This follows
from the next lemma, of which the proof is straightforward.

4.2. LEMMA. Suppose λ is such that for each a > 0, λ(at)/λ(t) is
bounded as t goes to 0. (On the real line, any Hausdorff measure of interest
can be obtained from such an index function.) Let a be such that

for t sufficiently small. Then for each £ c f ,

mλE < MλE < amλE.

Our main tool for seeking a representation for μ as an integral of
modified Hausdorff measure Mλ is the following theorem.
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4.3. THEOREM. For λ: (0, η) -> (0, oo) and a finite measure v on 7% we

define a function Dλv: [0,1] -> (0, oo) as follows:

Dλv(x) = inf sup τ-r-^—-r-,
o<ε<η x G / e Ξ λ(diam/)

where diam/ < ε. Le/ Γo = {x: Dλv(x) = 0}, Γ + = {x: 0 < Dλv(x) <

oo}, am/7^ = {x: Dλv(x) = oo}. Then:

(i) p w absolutely continuous with respect to Mλ if and only if vT^ = 0.

(ii) v is singular with respect to Mλ if and only if vT0 = vT+= 0.

(iϋ) v has a representation as an integral with respect to Mλ if and only if

PT0 = vT» = 0.

Proof. Rogers [7, Theorem 67] is exactly like this except using

standard Hausdorff measure mλ rather than modified Hausdorff measure

M λ. The proof of this theorem is a straightforward adaptation of his

arguments.

We now make a symbolic analogy which is frequently used in the

study of dynamical systems. Let us consider in more detail the properties

of the intervals /(γ^ γ 2 , . . . , γ j . Note first that if k < n then

/(γi,Ύ2> > Ύ j c '(&>&>•••>&) ^ and only if γ, = ft for 1 < i < k.

From the definition of /(γ1, γ 2 , . . . , yn) we see that

d i a m J ( γ i , γ 2 , . . . , γ J = V*γ2 " " V

where s0 = q, sλ = r. Using the fact that μ is uniform in the ^-direction

and invariant under /, we have that vgo(E) = pvE and vgλ(E) =

(1 - p)vE for any ^-measurable set E. It follows that

where t0 = p, tx = 1 — p.

Now we consider Dλv(x). Recall that v has a representation as an

integral of the Hausdorff measure mλ if and only if the set of points

where Dλv(x) = 0 or Dλv(x) = oo is a p-null set. We restate this in

probabilistic terms. Let x be chosen at random, distributed according to

p. The measure v has a representation as an integral of the Hausdorff

measure m λ if and only i fO<Z) x j>(x)<oo with probability 1.

Let x be chosen at random, distributed according to v. Consider the

set Z of all intervals /(γi,γ 2 , ..,Yrt) in Ξ containing x. The set Z is

totally ordered by inclusion. Recall that for k <n, / (γ 1 ,γ 2 , . -,yn)
 c

I(βγ, j82, . > βk) if a n d o n l y if % = βi f°Γ 1 ^ / < ^ Thus corresponding

to x there is an infinite sequence ( γ 1 ? γ 2 , . . . ) of indices and Z contains

just those intervals of the form /(γ 1 ? γ 2 , . . . , γw), the indices being the first
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n terms of the sequence. This gives a one-to-one correspondence between
the points of F and infinite sequences (γ1? γ 2 , . . .) of indices. We note that
the functions g0 and gx are equivalent to right shifts on the set of
sequences of indices.

Choosing the point x at random is equivalent to choosing the
sequence (γ1? γ 2 , . . .) at random. We describe a method for choosing the
sequence which makes v the distribution of x. Choose the yn indepen-
dently, each yn equalling s( with probability ti9 i = 0,1. We then have

as required.
We can now calculate Dλv(x) thusly:

1,γ 2,...,γj)

tyι ' " ' K= hm sup —. r .

We take the logarithm of both sides:

(2) log Dλp(x) = limsup
./-I

log/ -Λ Σ logs A
\J = 1 /

= limsup(ί/ f l- Λ(ϋn)),
π—• oo

where Λ(w) = logλ(e"). Thus we can rephrase our problem in terms of a
random walk on a lattice. In a plane with coordinates u and v, with initial
position (0,0), we take randomly chosen steps. Each step is equal to the
vector (Δw = logg, Δϋ = log/?) with probability /> and equal to the
vector (Δw = logr, Δϋ = log(l - p)) with probability (1 — p). If (un, υn)
is our position at the wth step, does there exist a function Λ: (— oo, a) -»
(— oo, oo) such that

-oo < l i m s u p ^ - Λ(wJ) < oo
«-* oo

with probability 1?
First suppose we try a function of the form Λ(u) = ud, equivalent to

setting λ(/) = td. Thus we consider

n

^ - dun) = limsup ^ (Δyz
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Note Δϋj — dΔui equals (log/? — dlogq) with probability p and equals
(log(l — p) — d logr) with probability (1 — p). The mean value of a step
is therefore

a = plogp +(1 -/>)log(l - p) ~ d(p\ogq + ( l -/?)logr).

If a > 0 then this limsup is 4- oo and Dλv(x) = oo with probability 1;
thus v is singular with respect to mλ by Theorem 4.3. If a < 0 then this
limsup is — oo and Dλv{x) = 0 with probability 1; thus v is absolutely
continuous with respect to mλ by Theorem 4.3. We therefore have
dim v = d0, where

,*\ , =/»log/> +(1 -
K) ° / 7 l o g 9 +

is the value of d which makes a = 0. This is the formula dimension
= — entropy/Lyapunov exponent as in [12], p. 110. Also dimμ = dim*>
+ 1 = d0 + 1.

In the case d = d0 we apply the following theorem from statistics:

4.4. LAW OF THE ITERATED LOGARITHM (Feller [3]). Let Δal9 Δa2,...
be independent identically distributed random variables with mean a0 and
variance σ2. Let

Then with probability 1,

h m s u P „„ , , ^ = !•

In the case at hand, we have Δaέ = Δvi - d0Δui9 a0 = 0, and σ = 0 if
log/? logr = log(l - p) logq; σ > 0 otherwise. Thus in the case σ > 0,
we have

limsup ^zMn— = ι^ a n d
/4\ n-*oc σ/(2wloglog«)

limsup(^ - doun) = oo.
n—* oo

Thus Dλp(x) = oo with probability 1 and v is singular with respect t o m λ

by Theorem 4.3. In the case σ = 0, then Δvn - d0Δun = 0 with probabil-
ity 1 thus

logDλv(x) = l i m s u p ^ - doun) = 0
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with probability 1, and by Theorem 4.3, v has a representation as an
integral of the Hausdorff measure mλ, where λ(/) = td, and d = d0

reduces to the value logp/log q = log(l - p)/\o%r.
So we have a special case where v (and hence μ) has a representation

as an integral of Hausdorff measure. To treat the general case, we make
use of an extended version of Theorem 4.4:

4.5. THEOREM (Feller [3]). Let Δav Δ# 2 , ...be independent identically

distributed random variables with mean a0 and variance σ2, each taking

only two possible values. Let

Let φ: (0, oo) -* (0, oo). If the sum

(5) Σψ
converges, then with probability 1,

(6) an> nao + σ}/nφ(n)

for only finitely many n. Conversely, if the sum (5) diverges, then with

probability 1, (6) holds for infinitely many n.

First we treat the special case q = r, so that Δw = logq with proba-
bility 1 and un = n \o%q. We also assume without loss of generality that
p < 1/2. We let an = υn, so that a0 = p logp + (1 - p) log(l - p) and
σ = //>(1 -/>)(log(l - /̂ ) - log/?)-

For our puφoses, the crucial point of Theorem 4.5 is that it describes
two alternatives, each of which in appropriate circumstances occurs with
probability 1. Let z be the random variable

z = limsup vn - Λ ( κ J - Δ^,

so that logZ>λ^(x) = z + Δi7x. Suppose z is finite with positive probabil-
ity. We show that this contradicts Theorem 4.5. Let

ε = ( l o g ( l - / 0 - l o g / 0 / 3 .

Then there exists an interval (z0, z0 + ε) such that z e (z0, z0 + ε) with
positive probability δ. Recall that Δi^ equals log/? with probability /? and
equals log(l - p) with probability (1 — p). Thus the probability that
Dxv(x) G (z 0 4- log/>, z0 + log/7 4- ε) is at least /?δ and the probability
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that Dλv(x) e (z0 + log(l - /?), z0 + log(l - p) + ε) is at least (1 - Jp)δ.
Note that these two intervals are disjoint. Let

zλ = z0 +(e + fog/> + log(l - p))/2.

The probability that Dxv(x) < zx is at least />δ and the probability that
Dλv{x) > zx is at least (1 - ρ)8. Let

φ(n) = (A(n\ogq) - na0 + zj/σy/n .

Then

υn > na0 + σ]fnφ(n)

holds for only finitely many n with probability at least pδ and it holds for
infinitely many n with probability at least (1 — p)8. This contradicts
Theorem 4.5.

Hence the probability that z and \ogDλv(x) are finite must be zero.
Then, by Theorem 4.3, v has no representation as an integral of Haus-
dorff measure mλ. We state this result in a theorem.

4.6. THEOREM. Suppose that λ is such that for each a > 0, λ(at)/λ(t)
is bounded as t goes to 0. // q = r andp Φ 1/2, then the invariant measure
μ generated by the modified baker's transformation (1) has no representa-
tion as an integral of Hausdorff measure.

We note that any Hausdorff measure on the square S can be
generated by an index function λ such that λ(at)/λ(t) is bounded as t
goes to 0, so that this hypothesis could be removed from the theorem.

For the more general case q Φ r, we introduce the variable

w = u
log(l -p)-logp

It is then true that

log(l -p)-logp

We can then apply the techniques of this section to a random walk in the
( H>, v) plane to show that v has an integral representation if and only if

(7) log p log r = log(l - p) log q.

The modified baker's transformation is one of the simplest possible
dynamical systems. That a system as simple as this gives rise to a natural
invariant measure with no representation as an indefinite integral of
Hausdorff measure suggests that genetically the natural invariant measure
arising from a dynamical system will have no such representation.
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5. Classification of invariant measures by Hausdorff measures. We

now consider the problem of comparing the degree of singularity of two

invariant measures generated by different values of the parameters in the

modified baker's transformation (1). Recall that we consider a finite

measure μ more singular than a finite measure v if there exists a

Hausdorff measure mλ such that v is absolutely continuous with respect

to mλ while μ is singular with respect to mλ. We first treat the restricted

case q = r. Without loss of generality we assume p < 1/2.

In the previous section we calculated the Hausdorff dimension of the

measure v on [0,1] generated by the modified baker's transformation (1)

to be:

- p)
d°~ log 4

We will consider index functions of the form

(8) λ ( 0 = ^exp(4/log(l/ί) logloglog(l/ί)),

corresponding to a function Λ(w) = \ogλ(eu) of the form

Λ(w) = dou + d}j — wloglog( — u) .

Let us recall equation (4) from the previous section: with probability

1,

(9) limsup ° " έ / e g

where σ = //?(1 — p) (log(l — p) — log/?) is the standard deviation of

Δϋy — ί/0Δw7 and un = n \ogq. From equation (2), we have

logDλv(x) = limsup υn - A(un)

= limsup υn - doun - dj-un\oglog{-un)

= limsup υn - doun - d]/ - log q {n log log n .

log q

Then when d > dl9 then (9) implies \ogDλv(x) = — oo with probability 1

and *> is absolutely continuous with respect to mλ by Theorem 4.3. When

J < dv then (9) implies D X ^ ( A : ) = oo with probability 1 and v is singular

with respect to mλ by Theorem 4.3.
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Note the similarity between the determination of the appropriate
value of dλ and the definition of the Hausdorff dimension of a measure.
With λ as in (8), dim? is the critical value such that v is absolutely
continuous with respect t o m λ when d0 > dim v and singular with respect
to mλ when d0 < dim v. When d0 = dim *>, we further have that dλ is the
critical value such that v is absolutely continuous with respect to mλ when
d > dλ and v is singular with respect to mλ when d < dv This criterion
allows us to define the quantity dx for any measure, not just those arising
from the modified baker's transformation (1). Moreover, for a set E, we
can define a critical value dλ such that mλE = 0 when d> dλ and
mλE = oo when d < dv Besides classifying measures according to degree
of singularity and sets according to size, dx can be used to bound the
errors involved in estimates using the dimension. We suggest the name
paradimension for the quantity dv

The usefulness of paradimension for classifying invariant measures in
dynamical systems depends on its taking a spectrum of values for a family
of measures, as opposed to being uniformly zero, for example. The
analysis in this paper shows that this is true for the family of measures
arising from the modified baker's transformation. Hausdorff measures
with index functions of the form (8) appear also in a theorem by Makarov
[5] concerning the following situation. Let the unit disc be mapped
conformally onto the interior of a Jordan curve Γ and let v be the image
under this mapping of Lebesgue measure on the boundary of the circle;
thus v is supported on Γ. Makarov's result, stated in our terminology, is
that the dimension of v is necessarily 1 while its paradimension may range
from zero to some upper bound. Further work by Przytycki, Urbaήski,
and Zdunik [6] ties this result in with the study of measures on repellers in
dynamical systems and includes calculations of the paradimension of
some such measures.

For an arbitrary ergodic invariant measure, the Hausdorff dimension
can be obtained from the following formula for Hausdorff dimension at a
point x:

dim v = hm inf
logε

where B(x, ε) denotes the ball of radius ε centered at JC. For an ergodic
invariant measure in a dynamical system, the lim inf is independent of x
except on a set of ^-measure zero. In a more general context, we must take
the essential infimum over JC. Proof of an essentially equivalent formula is
given in Tricot [10]. This formula is often used in computations of the
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dimension as in [12]. We have found an analogous formula for the
paradimension; the paradimension of a measure v at a point x is given by

(Λ x , x log*>j?(x,ε) - dimjΊogε
(10) dx{v) = hmsup & °=r.

ε^o ]j(log 1/ε log log log 1/ε)
Again, for an invariant ergodic measure, the value of the limsup is
independent of x except on a set of ̂ -measure zero. The proof of this
formula is rather lengthy, so we do not present it here.

One application of (10) is to calculate dx in the case q Φ r. Equation
(4) still holds; we thus have with probability 1:

limsup ^ ~ ' / M

/(wloglogjz)

where σ2 is the variance of the random variable Δι;f — d0Δw,; thus

_ -\\ogplogr - log(l - p)\ogq\

We also have

lim z-z—: — = -plogq - (1 - p)\ogr

with probability 1. We can thus calculate from (10):

dλ(v) = limsup — —

ii-oo /(-wnloglog(-wj)

= lim sup n ° n = •
π-oo /(-IέΛlθglθg(-IlJ)

σv/2

-(l -p)\ogr)

_ I log/? log r - log(l -p)logqψp(l - p)

(-plogq-(l-p)logrγ/2

In going from the first to the second step above we have replaced
\ogvB(x, eUn/2) by υn9 which is not quite the same thing, but this
restriction to intervals in the collection Ξ does not affect the value of the
lim sup.
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