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REPRESENTING CLASSES IN THE BRAUER GROUP
OF QUADRATIC NUMBER RINGS AS

SMASH PRODUCTS

LINDSAY N. CHILDS

Azumaya algebras may be constructed as smash products of Galois
objects with respect to a dual pair of Hopf algebras. In this paper we
explore how useful this construction is for representing the non-trivial
class in the Brauer group of a real quadratic number field.

The classical representation of a class in the Brauer group of a field K
as a crossed product with respect to a finite Galois extension of K is often
not available for the Brauer group of a commutative ring R [1], if one
restricts to Galois extensions of R with group G in the sense of Chase,
Harrison, Rosenberg [3]. A well-known example is R = Z[\/2 ]; then the
Brauer group of R has two elements, and the non-trivial class of Br(iί) is
not split by a Galois extension, much less representable as a crossed
product, because R has no non-trivial Galois extensions. However, if one
considers extensions S of R which are Galois objects with respect to a
finite Hopf algebra //, then at least for number rings, Galois //-objects
can easily be found which split all classes in the Brauer group. This fact
suggests that the crossed product construction involving Galois objects of
Hopf algebras may provide access to Azumaya algebras and Brauer
classes whose representation heretofore has been obscure.

The object of this paper is to examine this idea, in particular for
crossed products arising from Galois //-objects with normal basis where
H is a free rank 2 Hopf algebra. Such crossed products have an attractive
presentation as the smash product of two Galois objects with normal
basis. We find a collection of such smash products over rings of integers
of real quadratic fields. Included is a table presenting all such smash
products over rings of integers of QiJin), rn < 100.

We also show that even with the availability of these more general
crossed products, examples may be found of classes in the Brauer group
which cannot be represented by these crossed products.

1. Free rank 2 Hopf algebras and their Galois objects with normal
basis. Let R be a commutative ring, and suppose H is a Hopf algebra,
commutative and cocommutative, which is free of rank 2 over R. Since the
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augmentation map ε: H -> R is a split epimorphism, kerε, the augmenta-
tion ideal, is free of rank one over R, kerε = Rx. Then, as Tate and Oort
[20] and, subsequently, Kreimer [15] and Nakajima [16] have shown,
H = R[x]/(x2 - ax) for some a in i?, with

Δ(x) = x Θ l + l ® x - b(x 0 x),

and ab = 2. Similarly, H* = HomΛ(iί, i?) is of the same form, and, as
Hurley [14], following Tate-Oort [20] shows,

(1.1) H*^R[f]/(p-bf),

b as above, where (/, x) = — 1.

Notation. Set Jϊα == JR[X]/(X2 - ax), with

Δ(x) = x <8> 1 + 1 Θ x - b{x ® x), αδ = 2.

Then # * = /ί^.

EXAMPLES. Let a = 2. Then # 2 = i?[x]/(x2 - 2x). Let G throughout
denote the cyclic group of order 2 with generator σ. Then RG -> //2

 v i a

the map σ >-> 1 — x, is an isomorphism.
Let 0 = 1. Then i/x = i?[x]/(x2 — x) = i?e0 4- i?el9 ^Q,^! pairwise

orthogonal idempotents, via x »-> e0, 1 — x »-> ex. Then ^ is isomorphic
to the dual of the group ring i?G, where ef (σ 0 = δ/y.

For a less-standard example, let i? = Z[vT], let α = \/?. Then i / ^
= i?[x]/(x2 - ]/ΐx), which is self-dual.

PROPOSITION 1.1. 77ze isomorphism classes of free rank 2 Hopf R-alge-
bras form a poset under the relation: Ha < Hh if there is an injective map
from Ha to Hh. This poset is isomorphic to the poset under inclusion of the
principal ideals of R containing the principal ideal (2).

Proof. Suppose c, d are in R and c divides d, d = ce. Then we have
an injective map from Hd = i?[x]/(x2 — dx) to Hc = R[y]/(y2 — cy)
via x >-* ey. This is easily seen to be a Hopf algebra map, and an
isomorphism if e is invertible in i?. Since by definition of Hd, d divides 2,
the proposition is clear.

Note in particular that H2 = RG, hence, in particular, G embeds in
Ha for any a, where σ maps to 1 — bx, ab = 2 and Ha in turn embeds in
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COROLLARY 1.2. If (2) is a maximal ideal of R, then the only free rank

2 Hopf algebras over R are RG and its dual. If 2 is inυertible in R then the

only free rank 2 Hopf algebra over R is RG (which is isomorphic to its

dual).

More generally, if (2) is maximal and the class number of R is odd,

then the only rank 2 Hopf algebras (free or not) are RG and its dual ([20],

p. 21).

DEFINITION. If H is a Hopf /?-algebra and S an /{-algebra, S is an

//-object if there is an algebra map a: S -> S ® H such that (α 0 l )α =

(1 ® A)α and (1 <8> ε)a = id. If //, S are finitely generated projective

/{-modules, S is a Galois //-object i f γ : S ® S -> S ® H by y(s ® t) =

(s ® l)cc(t) is an isomorphism.

If S is an //-object, H* acts on S via a measuring, and [4, Theorem

9.3] S is a Galois //-object if and only if the map j : S#H* -> End Λ (S),

j(s#f)(t) = s/(0> i s a n isomorphism. Just as with classical Galois exten-

sions, this isomorphism points the way to constructing non-trivial Azumaya

i?-algebras by altering the multiplication in S#H* by an appropriate

two-cocycle. The construction has been developed by Sweedler [19] and

Yokogawa [22].

The trivial Galois //-object is H itself, with a = Δ.

If S is a Galois //-object, S has normal basis if S is isomorphic to H

as an //*-module. Kreimer [15] and Nakajima [16] have obtained a

classification of Galois //-objects with normal basis, subsequently ex-

tended by Hurley [14] to classify such objects for any prime p, not just

p = 2. For our purposes we need the following version.

Suppose 2 is not a zero divisor in /?, and H = Ha, ab = 2. Denote by

UC(R) the units of R which are congruent to 1 modulo cR.

PROPOSITION 1.3. The set (actually group) of isomorphism classes (as

R-algebras and H*-modules) of Galois Ha-objects, NB(R, Ha), is isomor-

phictoUh2(R)/Uh(R)2.

The relationship, given by Hurley, is as follows: Given u in Uhi(R),

set e = (u — l)/b2, and set

Ha(e) = R[t]/(t2-at-e).

The //^-comodule structure of Ha(e) is given as follows: if Ha = R[x\

then a: Ha(e) -» Ha(e) ® Ha is given by

(1.4) a(t) = / ® 1 + 1 ® * - b(t Θ x) .
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If Hb = R[f] with f2 -bf= 0, </, x) = - 1 then / acts on Ha(e) by

(1.5) / / = - 1 + bt, / I = 0.

In particular, σ = 1 — af acts on / by

σ(t) = (1 - a/)ί = r - α ( - l + bt) = a + t - 2t = a - t,

as it must if σ is to be an automorphism of Ha(e).

As Kreimer and Hurley show, any Galois i/α-object with normal basis
is isomorphic, via an Λ-algebra, //^-module isomorphism, to Ha(e) for
some e with 1 4- b2e = u in Uhi(R).

2. Crossed products. As noted in the introduction, any Azumaya
algebra over a ring of integers of a number field is split by a Galois object.
In fact:

PROPOSITION 2.1. Let R be the ring of integers of a number field K, and
suppose Br(i?) Φ (0). Then S = R[i] is a non-trivial Galois RG-object, G
cyclic of order 2, which splits Br( R).

Proof. Since Bτ(R) Φ (0), R has a real embedding. Thus z2 + 1 has
no roots in i?, and so S = R[i] = R[z]/(z2 + 1) = i?[x]/(jc2 + 2x + 2)
is a non-trivial Galois i?<?-object with normal basis.

Now the map from Br(i?) to Br(#) is 1-1 by [1] and fits into the
diagram of 1-1 maps (cf. [17], p. 78)

Br(R) ^ U
v real

I
Br(tf) -* U Br(^) ^

v real p finite

where Kp9 Kp denote completions of K at the real infinite, resp. finite
primes of K. Let L = K[i], the quotient field of S. Then L is totally
imaginary, so at every real prime v of K, the map Bτ(Kv) -> Br(#„ 0 L)
is zero. Thus the composite map Br(i?) -> Br(AΓ) -> Br(L) in the com-
mutative diagram

i 1
Br(S) -> Br(L)

is zero. But the map Br(S) -> Br(L) is also 1-1 by ([9]). Thus Bτ(R)
Br(5) is zero, completing the proof.
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This result motivates the inquiry, which Azumaya algebras, or which
Brauer classes, can be represented as crossed products.

Recall that if S is an if-object where we denote the comodule action
a: S -> S ® H by a(s) = Σ ( J ) J ( 1 ) ® j ( 2 ) , and T is an i/*-object, then the
smash product of 5 and T, S#T9 is defined as S ®R T with multiplica-
tion defined as follows: for s, s' in S, t, t' in Γ,

(S#t)(s'#t') = Σ ^1)('(2),<2))#W'>
(-0(0

(e.g. Chase [5] p. 163 or Gamst and Hoechsman [12]). Then [12] S#T is
an Azumaya iϊ-algebra.

Suppose 5, T are Galois objects for Ha9 Hh, respectively, where
ab = 2, and suppose 5, Γ have normal basis. Then S = Ha{e) for some e
with 1 + ί 2e G Utf(R), and Γ = #*(</), 1 + tf2d e t/Λ2(Λ). In that case,
S#T = it{2,w} with z2 - az - e = 0, w2 - 6w - J = 0, and zw + wz
= bz 4- αw - 1. For we have S = R[t], t2 - at - e = 0, T = R[t], y2 -
by — d = 0, and z = ί # l , w = 1 # ^ satisfy the claimed relations.

A smash product of the form Ha(e)#Hb(d) will be called a normal
basis smash product.

The rest of this section is devoted to constructing examples of smash
products, particularly normal basis smash products.

In determining whether or not a given smash product is a non-trivial
element of the Brauer group, the following result is useful.

PROPOSITION 2.2. Let R be the ring of integers of a number field K. Let
A = Ha(e)#Hh(d). Then A <8> K is the quaternion algebra

(l + b2e,l + a2d)K=K{xyy)

with x2 = 1 + b2ey y2 = 1 + a2d, xy 4- yx = 0. Thus A represents a
non-trivial class of Br(i?) if and only if 1 + b2e and 1 H- a2d are in U(R)
and for some real embedding ι\ R -> R, *(1 + b2e) and ι{\ 4- a2d) are
both < 0.

Proof. We have A = R{ z, w) with z2 - az — e = 0, w2 — bw — d =
0, zw + wz = bz + aw — 1. Set x = bz — 1, j ; = αw — 1. Then since
ab = 2, jc2 = 1 + 62e, j ; 2 = 1 + α2d, xy + joe = 0. Thus

(1 + 62<?,1 + tf2d)Λc,4

and the two algebras become equal over K. The remainder of the proof
follows from the fact that A is non-trivial in Br(i?) if and only if A ® K
is non-trivial in Br(AΓ), if and only if A 0 if ®' R is non-trivial in Br(R)
for some real place * of if.
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EXAMPLES 2.3. Let 2 = ab in R, and e, d in R such that 1 + b2e =

— w2,1 + a2d = — y2, w, ι> units of R. Then

Λ = Ha(e)#Hb(d)

is a separable maximal order in the usual quaternion algebra H(K) =

(-1,-1)*.
If A = R{z,w}, z2 = az + e,w2 = bw + d, then Λ embeds in H(K)

by

/« + 1 jυ + 1

This class of examples is of particular interest because for real
quadratic fields K, maximal orders in H(K) represent the only non-trivial
class in Hv(Θκ) except when K = Q(Jm), m = l (mod8). But before
considering such examples, we illustrate (2.3) with two examples of Swan
[18] over a quartic extension of Q.

EXAMPLES 2.4 (Swan). Let R = Z\t\ t = (2 + ]/ϊ)1/2, a root of
x4 - 4x2 + 2, the ring of integers of Q{t) = Q(ξu) Π R.

Then ί2 = 2 + ^2 = yfϊ(y/2 + 1), hence y/2 = (y/ϊ - I)/ 2 is in R.
1. Set a = 6 = \/2, then

an Azumaya ϋ-algebra which embeds in H(K), the usual quaternion
algebra over the quotient field of R, via

z ^ (1 + 0/i/2 , w -> (1 +j)/}/2.

2. Set α = ί, ft = 2/ί, e = - 1 , rf = - 2 / / 2 . Then 1 + b2e = 1 -
4//2 = - 3 + 2i/ί = -(^2 - I) 2 , 1 + ^ 2 J = 1 + / 2 (-2// 2 ) = - 1 , so
set

A2 = / / f ( - l ) # / / 2 / ί ( - 2 / / 2 ) = i?{x, y),

where x 2 = /x - 1, >̂ 2 = ly/t - 2/t2, xy + yx = 2x/ί + ty - 1. Then
Λ2 embeds in H(K) by

i(i/2 - 1) 4- 1 / + 1

The generators of the image of A2 in H(K) are, up to a unit of R, the
same as those given by Swan.

These algebras provided examples of the failure of cancelation of
projective modules [18] and of the failure of the Skolem-Noether theorem
for Azumaya algebras [6], [7].
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Here is another set of examples based on Example 2.3.

PROPOSITION 2.5. Let m = p or 2p, p an odd prime = 3 (mod 4), or

m = 2, and let K= Q(Jm). Then the non-trivial class in Bτ(Θκ) is

represented by a normal basis smash product.

Proof. Since K has odd class number [11] and 2 ramifies in K, we

have 2ΘK = b2Θκ, and we may find a in Θκ with ab = 2 and aΘκ = bΘκ.

Then setting e = -a/b, d = —b/a, u = v = 1, we obtain the Azumaya

algebra

-b

which is a maximal order in the quaternion algebra H(K), and hence

represents the non-trivial class in Bv(Θκ).

The same example may be obtained over Θκ, K = Q(]fm), for any

m = 2 or 3 (mod 4) such that 2ΰκ is the square of a principal ideal. For m

composite < 100 this is the case for m = 51 and 66.

REMARK 2.6. Let R = Θm, the ring of integers of K = Q(]/m), and

suppose 2R = b2R. Let G = Gal(Λyρ) = (σ> where if a = r 4- V̂̂ w,

α = σ(α) = r — S]/m. Then the Azumaya 2?-algebra A of Proposition 2.5

is G-normal in the sense of [8]. For ±2 = ad, so b = ± α , and we may

present A = Ha(-a/b)#Hh(-b/a) (ab = 2) inside H(K) as

i + 1 / + 1 , \
—:τ—, , product).a a I

Then there is a group homomorphism of G into Aut(yί) extending the

action of G on i?, defined by σ(ι) =j, σ(j) = /. While G extends to a

group of automorphisms of A, A is not lifted from Z. Thus we have a

collection of examples which illustrates the necessity of the hypothesis in

Corollary 5.2 of [8] that R/RG be a Galois extension.

For quadratic fields K = Q(y/m), we cannot obtain crossed products

involving rank 2 Hopf algebras other than ΘKG and (ΘKG)* if m = 5

(mod 8), for 2ΘK is prime. For m = 1 (mod 8), we have the following

result:

PROPOSITION 2.7. Let K = Q(yfm), m = 1 (mod8), and let w =

(1 + ]fm)/2. Then the non-trivial class in Bΐ(Θκ) is represented by a

normal basis smash product under the following circumstances:

Suppose the fundamental unit e = r + sw, /% s > 0 in Θκ, satisfies
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ε = 3 (mod 4). Then

H2(-2)#H1((-e-l)/4)

represents the non-trivial class in Bτ(Θκ).
Suppose 2ΘK = PP, P Φ P, P = (ft), so ±2 = ftft. Then

Hh((-ε - l)b2/4)#H2/b{(-ε - l)/ft2)

represents the non-trivial class in Bτ(Θκ) ifε = 3 (mod ft2) and εε = 1.

Proof. The hypotheses on ε are needed to insure that ( —ε — l)/4,
( —ε — l)ft2/4 and (-έ - l)/ft2 are in &κ, and to satisfy the hypotheses
of Proposition 2.2.

Examples include m = 33, 57. For m = 33, ε = 19 + 8w, ft = 2 + w,
ft2 = 12 4- 5w, and w ̂  0 (modft2). For m = 57, ε = 131 + 40w, ft = 3
+ w9 ft

2 = 16 4- 7w, and w = 0 (modft2). In each case both kinds of
smash products occur.

No other examples occur for m = 1 (mod 8), m < 100. In all other
cases, ε Φ 3 (mod4) so computing UΛ(R)/U2(R)2 one finds that no
Galois i/Γobjects with normal basis of the form Hλ(e) with 1 + 4e < 0
exist; also in all other cases εέ = - 1 , so no examples of the second kind
exist.

TABLE I

H
x

u-\

standard

m

2

3

5

6

7

10

11

13

14

15

17

19

21

22

23

26

29

30

31

— ε
_ ~ 2

— ε

- ε 3

- ε 2

- l )

v

- 1

- 1

- 1

- 1
- 1

- 1
- 1

- 1

- 1

w
1 4- w

2 + w
3 + w

3 + w

4 + w

13 4- 3w

non-standard
u

- 1
- 1

- 1
- 1

- 1

- 1

14 + 3w - 1
5 4- w - 1

39 + - 1

v

- 1
1

- 1
- 1

- 1

- 1

- 1
- 1

- 1



CLASSES AS SMASH PRODUCTS 251

TABLE I (continued)

m

33
34

35
37
38

39
41
42

43
46
47
51
53
55
57
58

59
61
62

65
66
67
69

70
71

73
74
77
78
79
82
83
85
86
87
89
91
93
94

95
97

standard
u

— ε

- ε 2

- ε 2

— ε
- ε 2

- ε 2

— ε

- ε 2

— ε

- ε 2

- ε 2

- ε 2

- ε 3

- ε 2

- ε 2

- e 2

- ε 2

- ε 3

— ε

— ε

V

- 1

- 1

- 1
- 1

1

- 1

- 1

- 1

- 1

- 1
- 1

- 1

- 1

- 1

- 1

- 1

- 1
- 1
- 1
- 1

b

2 + w
6 + w

6 + w

59 + 9w
156 + 23w

1 + w

1 + w

3 + w

23 + 3w

8 + w

8 + w
221 + 2Ίw

59 + Iw

9 + w

9 + w

102 + l lw

1464 + 151w

non-standard
u

- 1 9 - 8w
- 1

- 1

- 1
- 1
- 1

1

- ( 1 3 1 + 40vt>)

1

- 1

- 1
- 1

- 1

- 1

1

- 1

- 1

V

- 1 9 + 8w
1

- 1

- 1
- 1

1

- 1

-(131 - 40^

1

- 1

- 1
1

- 1

- 1

1

1

- 1

Table I describes all possible normal basis crossed products which
represent the non-trivial class of Bτ(Θκ) for K = Q(]/m), m < 100. That
no others occur than are shown follows from explicit computations of the
groups of Galois i/-objects with normal basis (Proposition 1.3) using the
table of fundamental units in [2], and application of Proposition 2.2.
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3. Representing Brauer classes. Table I illustrates that normal ba-
sis smash products can be useful for describing Azumaya algebras and
representing Brauer classes, but often such smash products may not be
available. Here we explore this further.

(3.1) There are Brauer classes which are not representable as normal
basis smash products but are representable as crossed products.

Our example is K = Q(yfi>9), Θκ = Z[]/39]. The ideal 2ΘK is the
square of a non-principal ideal of 0K, so the only free rank 2 Hopf
algebras over Θκ are &KG and its dual, G cyclic of order 2. Thus if a
normal basis smash product exists over Θκ for the non-identity class in
Br(C^), it is of the form H1(e)#H2(d) where 1 + 4e and 1 + d are
negative units of ΘK9 by Proposition 2.2. Now the fundamental unit of 0K

is 25 + 4\/39\ which has norm 1 and is congruent to 1 (mod 40^), hence
every negative unit of Θκ is congruent to —1 (mod 4ΘK). Thus 1 + 4e
cannot be a negative unit of Θκ, and no Galois (i?G)*-objects with
normal basis exist.

Thus the non-trivial class in Br(<\) is not representable as a normal
basis smash product. However, Fossum's example of [10] for m = 39 is a
classical crossed product:

D = D(ΘL9G)f

where L = K(i), ΘL = Θκ[u], u = (^ + i)/2, and /: G X G -> U(ΘL)
is the normalized 2-cocycle with /(σ, σ) = — 1 for Gal(L/K) = G = (σ).
Thus the non-trivial class in Br(^^) is representable as a crossed product.

For K = Q(]fm), m = 3 (mod4), the extension L = K(i) always has
ring of integers ΘL = Θκ[u], u = (]fm 4- /)/2, and ΘL is a Galois exten-
sion of 0K with group G = Ged(L/K). Whenever the fundamental unit ε
of &κ satisfies ε = yfm (mod 2ΘK) then ΰL has a normal basis over Θκ

consisting of (ε -I- i)/2 and (ε — ί)/2, as is easily seen. It is known that
e = yfϊn (mod 2ΘK) whenever m is prime [21].

(3.2) There are Brauer classes not representable as rank 4 crossed
products.

The first gap in Table I is for m = 5. We show

PROPOSITION 3.3. The non-triυiαl class in Br(05) is not a crossed

product for any Galois object with respect to a Hopf algebra of rank 2.

Proof. Recall [19] that if H is a Hopf i?-algebra, S an #*-object, and
/: H 0 H -> S a normalized 2-cocycle, the crossed product S#fH is
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defined to be S <8>Λ H with multiplication given by

for s, t in S, g, h e # . Suppose H = Hb= R[x]9 x2 = bx, S = Ha(e) is
a Galois i/α-object with normal basis (ab = 2) and /: Hh® Hb-+ SL is
defined by /(1,1) = 1, /(I, x) = /(x, 1) = 0, / ( * , x) = d with 1 + Λ G
£/(!?), then / is a cocycle and one sees easily that Ha(e)#fHh =
Ha(e)#Hh(d): the cocycle / in the smash product has the effect of
altering the ring structure of Hh.

The symmetric character of Ha(e)#Hb(d) means that any crossed
product S#fHh where S is a Galois i/^-object with normal basis is
isomorphic to a crossed product T#gHa where T is a Galois ^-object
with normal basis (ab = 2).

Now let R = Θ5. We first limit the posssible Hopf iί-algebras.
Since R has class number 1, and 2R is a prime ideal of R, the only

rank 2 Hopf algebras over R are RG and its dual ([20], Corollary to
Theorem 3, page 21). Thus we need only look for Galois objects for RG
and(i?G)*.

First suppose H = H2 = RG. Then any Galois //-object S has the
form S = Sx ® Sσ, where Sλ = R and Sσ is a rank one projective jR-mod-
ule. Since R has class number 1, Sσ is free, and S = i? + 2?z, z2 = α, a
unit of i?. But then

S = H2(a- 1) = Λ[/]

with t2 - 2t - (a - I) = 0, via the map sending t to z + 1. So S has
normal basis. But then any crossed product S#fH2 involving S is
isomorphic to a classical crossed product T#HX involving a Galois
extension T of R with Galois group G and with normal basis.

Suppose then, that H = Hx = (RG)*. Then we are seeking a Galois
extension T of R with group G of order 2. However, any non-trivial such
T would have a field of quotients L which would be contained in K+, the
maximal abelian extension of K = Q(yf5) which is unramified except at
the infinite primes. But since no prime congruent to 3 (mod 4) divides the
discriminant of K over Q, K+ is the Hubert class field of K ([13], p.
VII-7, Remark), which is K itself since K has class number 1. That
completes the proof.

Fossum [10] has an explicit representative for the non-trivial class of
Br(jR), namely, the free Λ-submodule of the usual quaternions over K
generated by 1, u = (1 4- w + i 4- jw)/2, j and uj, where w =
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If S = R[j]9 it follows from Proposition 2.1 that Bτ(R) = Br(S/R).
Now Yokogawa ([22], A-7) has extended the Chase-Harrison-Rosenberg
seven term cohomology sequence to Galois objects of Hopf algebras, to
yield

• . -+ H^H^S/R^U)-^ Bτ{S/R) -» H^H^S/R^ic) -»

where γ is the crossed product map. Proposition 3.3 shows that when
R = 0s, S = R[j], then γ = 0. Thus the non-trivial class of Br(S/R),
represented by Fossum's algebra, gives rise to a non-trivial element of
Hι(Hl9 S/R, Pic), a subquotient of Pic^G).
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