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A GENERALIZATION OF A THEOREM OF

ATKINSON TO NON-INVARIANT MEASURES

DANIEL ULLMAN

We prove that, if T is an ergodic, conservative, non-singular auto-
morphism of a Lebesgue space (X, μ), then the following are equivalent
forfinLι(μ):

(1) If μ( B) > 0 and ε > 0, then there is an integer n Φ 0 such that

μ\BC\ T~nB Π< x: dμ
<ε

(2) liminf
n-l

j-0
dμ

0 fora.e. x.

(3) ffdμ-O.

Our basic objects of study are a non-atomic Lebesgue space (X, 38, μ)
and a conservative, aperiodic, non-singular automorphism T:X-*X.
Associated with any measurable function /: X -* R" is a cocycle / * : Z x
X ^ R " defined by

/*(«,*) =

n-l

So
0, n = 0,

{-f*(-n,T"x), n<0.

f* satisfies the so-called cocycle identity:

(1) f*(m + n,x)=f*(m,x)

for all integers m and n and for a.e. x e X
The non-singularity of Γ permits us to define the Radon-Nikodym

derivative

"M = dμ^T (*) for έ e Z , a.e. x e X.
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We can use this to build what we call an Jϊ-cocycle—after Halmos [4],
Hopf [5], and Hurewicz [6]—defined by

n-l

Σ ωm(x)f(Tmx) iίn>0,

0 if n = 0,
-ωn{x)U{-n,Tnx) i f > ι < 0 .

The quotient ergodic theorem [3] asserts that, for an integrable /, the rate
of growth of /*(«, x) depends only on the integral Jfdμ. Analogous to (1)
is the i/-cocycle identity:
(2) Urn + n,x) =U{m,x) + o>m{x)Un,T™x).

When T is measure-preserving, the Jϊ-cocycle coincides with the usual
cocycle.

Suppose 5 G 1 A cocycle or an /ί-cocycle f{n, x) is recurrent on B
if, for all ε > 0,

μί\jBΠ T~nBn{x eX^\f(n,x)\<ε}\ > 0.

A cocycle or an ίf-cocycle f(n, x) is recurrent if it is recurrent on all sets
of positive measure. We call a function /: X -» Rn recurrent if /*(«, x) is,
and we call it //-recurrent if f*(n, x) is.

These definitions coincide with the classical notion of recurrence (or
sometimes "persistence") of random walks, introduced by Polya [8], who
proved that the Bernoulli random walk onZ" is recurrent (that is, bound
to return to zero) if and only if n = 1 or 2. Later, Chung and Fuchs [2]
proved that a random walk on R based on an increment random variable
X of finite mean is recurrent if and only if EX = 0. In 1976, Atkinson [1]
discovered the following beautiful result, extending the theorem of Chung
and Fuchs to random walks with non-independent increments.

THEOREM (ATKINSON). // T is ergodic and preserves a finite measure μ
and f is a real, integrable function on X, then f is recurrent if and only if
Jfdμ = 0.

The following result further extends the theorem of Chung and Fuchs
to the non-stationary case.

THEOREM. If T is an ergodic, conservative, non-singular automorphism
of a Lebesgue space (X,&,μ) and if f:X -> R is integrable, then the
following conditions are equivalent:

(1) /* is H-recurrent,
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(2) liminf |/*(w, JC)| = Ofora.e. x e X, and
(3) ffdμ = 0.

Proof. The first thing to notice is that once we know this theorem for
a measure μ, we know it for all measures v equivalent to μ. To see this,
note that the If-cocycle /* built from / under (X, 38, v, T) is related to
the if-cocycle / * built from / ' = / • dv/dμ under (X,J*,μ, Γ) by the
equation

/'•(«>*) = ^ ( * ) •/*(*>*)•

This shows that /'* gets small exactly when /* gets small. Since j fdv = 0
exactly when // ' dμ = 0, we inherit the result for / and v from the result
for/' and μ.

In particular, since this theorem reduces to Atkinson's theorem if T
preserves μ, we have the result for any dynamical system (X, 3t, μ, T)
with an equivalent finite invariant measure. We also see that there is no
loss of generality in assuming that μX = 1 and we proceed under this
assumption.

(1) =» (2) Let ΰ = { χ G l 3 liminf\f*(n,x)\ > ε} for some ε > 0.
If μD > 0, then there would be an integer N so large that

C = { χ e ΰ ^\fφ(n9x)\> ε for all n with \n\ > N]

would have positive measure. One could then find a set B c C of positive
measure disjoint from its first N forward and backward translates. (Just
remove from C points that return too soon under T or T'1 and use Kac's
recurrence theorem [7].) Then

μ(BD T-"Bn{χB\f*(n,x)\<ε}) = 0

for all integers n Φ 0, which contradicts the //-recurrence of /.

(2) => (3) This implication is proved via a simple application of the
quotient ergodic theorem [3]. Let g be the constant function 1. Since
g*(w, x) > 1 for every x and all positive n,

/*(«,*)
g*(n,x)

a4 \ίfdμ\ =

\fgdμ\
j fdμ

If ffdμ Φ 0, this last quantity is positive and so liminf |/*(n, x)\ > 0 for
a.e. x e X.



190 DANIEL ULLMAN

(3) =» (1) This argument encompasses the remainder of the paper.
Three important estimates are isolated as lemmas.

Assume /* is transient—i.e., not recurrent. This means that there is a
set B G 3t with μ B > 0 and a δ > 0 such that

(3) μ(BnT-"Bn{χB\f*(n9x)\<δ}) = 0 Vn Φ 0.

Let A be a subset of 5 with jû 4 = μB and such that

(4) A Π Γ~"Λ n { x 3 | / * ( w , x ) | < 5 } = 0 for all n # 0 .

By χ we will mean χA, the characteristic function of the set A.
For all ε > 0 and a.e. x, the quotient ergodic theorem tells us that

(5) — μA < ε for sufficiently large n.

Another way to write this is to define the "weight" w(j\ x) of the integer
j \ depending on x, by:

w( x)= lωλx) ifTJχ(=A,

I 0 otherwise.

For the remainder of the proof, fix x such that (5) holds (for an ε to be
specified later) and such that f*(n,x)/g*(n,x) -» j fdμ. Then (5) trans-
lates to

(6)
n-l

Σ w(j,x)~ μA - g*(n,x) g*(n,x)

We call an integer j good if TJx G A. Note that the previous summation
has non-zero contribution only from good indices j . For good m, let Im

be the interval on the real line centered at f*(m,x) and of radius (i.e.,
half-length) equal to w(m, x)δ. Let λ be Lebesgue measure on the line.

LEMMA 1. If m is good, f*(j\ x) Ξ Im only whenj = m.

Proof of Lemma. That m is good means that Tmx e A, which implies
that

(7) \U(j - m, Tmx) \>δ for anyy Φ m.

The ϋf-cocycle identity (2) can be written

Hence equation (7) implies that \f*{j,x) - f*{m,x)\ > w(m,x)δy which
is what it means to say that /*(y, x) £ Im. D
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The intervals Im may be of widely varying size. Yet the following
lemma assures us that no Im for large m can be nearly as long as the sum
of lengths of 1} for 0 < j < m.

LEMMA 2. Ifm is good and sufficiently large, then

-| m — 1

Proof of Lemma. Choose n large enough so that equation (6) holds for
all m > n. Write

m m — 1

w(m,x)= £ w(j,x)- £ w(y,x)
7=0 y=0

and

μA w(m,x) = μΛί g^ίm + l,x) - μ l̂ g*(m,x).
Subtracting the last equation from the one before yields

w(m, x)[l - μA] < εg*(m + l9x) + eg*(m,x)

= 2εg*(m,x) + εw(m, x)

if m > n, using (6).
Rearranging:

w(m,x)[l — Jtxv4 — β] < 2εg*(m?.x).

If ε is sufficiently small, the quantity in square brackets is positive, and so
we get

2ε
(8) w(m,x) _ _

^ ΪΪI — 1

2e Σ- ε)(l - μ^ - e) J y-O

where the second inequality comes from (6). Simply choose ε small
enough so that the quantity in (8) in square brackets is less than 1/10 and
the lemma is proved. D

Let Jn be the convex hull of {f*(j,x) ^ 0 <j < n}. Jn is the
shortest interval on the real line containing the first n f*(j, JC)'S. Our goal
now is to show that the intervals Jn have bounded weight density.
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LEMMA 3. For sufficiently large n

Σ H>O',X

Proof of Lemma. Let % = {Im^ m is good and 0 < m < n). £5 is a
collection of possibly overlapping intervals of varying sizes. Let Sg' be a
subset of 5̂ whose union equals that of !g and which is minimal with
respect to this property. Call m select if /w G ̂ . Then

4λ/n>2λ( U Im)> Σ λ/m
^ m select ' m select

n-l

> Σ Σ
mselect j^f*(n,:

The first inequality comes from Lemma 2. The second inequality holds
because the choice of £$' forces all real numbers to he in at most two Im

with select indices m. The third inequality is just Lemma 1, and the fourth
expresses the fact that every /*(/, x) with 0 <j < n and j good lies in
some select Im. The lemma is proved. D

It is now a simple matter to complete the proof of the theorem.
Equation (6) says that, for all ε > 0,

n-l

if n is large enough. Hence Lemma 3 tells us that

n 4<

This implies that

sup |/*(y,

Thus, for infinitely many n,

if ε is small enough.
But the left-hand-side of this expression approaches \Jfdμ\, which is

seen to be, as required, greater than zero. D
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