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LOEWY SERIES AND SIMPLE PROJECTIVE MODULES
IN THE CATEGORY <9S

RONALD S. IRVING AND BRAD SHELTON

Results are obtained on the Loewy length and Loewy series of gen-
eralized Verma modules and projective modules in certain categories
(9s of modules over a complex, semisimple Lie algebra. The results
obtained rely on a study of the behavior of Loewy series under trans-
lation functors and on the existence of simple projective modules in
suitable blocks of (9s An example is given of two generalized Verma
modules such that the space of ^-homomorphisms from the first to
the second is two-dimensional.

1. Introduction.
1.1. In this paper we study the Loewy series of generalized Verma

modules and self-dual projectives in the category (9s associated to a
complex semisimple Lie algebra g and a parabolic subalgebra p$. The
principal theme is the translation of data from a block of (9s associ-
ated to a non-regular weight to the blocks arising from other, possibly
regular, weights, especially in case the first block contains a simple,
projective module. In particular, we find that (9s contains simple pro-
jectives for any choice of parabolic subalgebra if g is of type An, and
thereby obtain precise formulas for Loewy length in (9s. For other Lie
algebras, the presence of a simple projective depends on the choice of
Ps We consider some cases where simple projectives do exist, and
study in detail the smallest example in which a simple projective fails
to exist: g is of type D4 and ρ$ is a minimal parabolic. For this ex-
ample we find a generalized Verma module whose socle is a direct
sum of two isomorphic copies of a simple module. Thus, we obtain a
pair of generalized Verma modules whose space of homomorphisms
is two-dimensional.

1.2. To describe our results in more detail, recalling earlier related
work along the way, we need to introduce some notation to be used
throughout the paper. Any unexplained terminology can be found in
[8], [9]. However, some of the notation below differs from that in
[8], [9] because of the convention used here for highest weights of
Verma modules. We fix a complex simple Lie algebra g with Cartan
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subalgebra f) and Borel subalgebra b containing ίj; corresponding to
these choices are a root system i?, with positive roots R+ containing
a base of simple roots B, and Weyl group 3Γ. The lattice of integral
weights is denoted by P(R). We denote by a the co-root 2a/(a,a),
and p = 5 Σα€Λ+ α The Verma module of highest weight λ - p is
denoted Λ/(λ), with simple top L(λ) and projective cover P(λ) in the
category f̂.

For any λ G f)*, we associate the relative root system Rλ with base
2^ and Weyl group Wλ as in [8], and denote by wλ the longest element
of Wχ. To any w G Wχ we associate the τ-invariant τ̂ (vv) = {α G
l?;ι|wsα < w}, where < denotes the Bruhat order of 3^.

Let S be a subset of B, and let p^ be the associated parabolic sub-
algebra, with semisimple part @s, nilradical m^, and Weyl group W$.
(For more details, see [8, 2.0]). Let P++ = {λ e l)*\(λ,ά) G N+ for
a e S}. For λ e P ^ + , we form the coset space sWλ = Ws\Wλ, and iden-
tify it with the set of minimal length coset representatives in Wχ. In
this way sWλ inherits a Bruhat order and length function, with longest
element swλ. The generalized Verma module of highest weight λ - p,
for λ G P ^ + , is denoted Ms(λ) and its projective cover in @s is PsW-
We denote by 0^ the full subcategory of @s consisting of modules
whose composition factors lie in the set {L(wλ)|w e sWχ}. For λ regu-
lar, 0^ is a block of &s, but typically 0^ may split into more than one
block..Let Λ be the coset λ + P(R) of l)*/P{R). Then ^ = (BμeA#g;
in other words, &£ consists of the part of the category ffs accessible
from ff^ via translation functors.

Given λ and Λ as above and μ e Λ, the Jantzen translation functors
Tλ'' ^S ~* ̂ S a n d Tί: ^S "* ffS a Γ e d e f i n e d ί 1 2 l T h e y a r e e x a c t a n d

adjoint to each other. We will denote by θμ

λ the functor Tfc o Γj". Let

B° = {ae Bμ\{μ,a) = 0}, with f/ = {wG ar|w/έ = μ}, and let w^ be
the longest element of 2^°, which is itself the Coxeter group generated
by {sa\a G 2?μ}. In case A is regular and B® = {α}, we write θa for ^ .

Assume λ G /^"+ is regular. The set

{w G sWjί\L{wλ) is a summand of socMs(yλ) for some y G sWχ}

is denoted 5X^. It is proved in [8] that the corresponding socular
simples {L(wΛ,)|w G sXχ} have self-dual projective covers Ps(wλ), with
respect to the contravariant duality functor D defined on ff. Moreover,
for each w esXλ there is a unique element w esW~λ maximal in the
set {y G sWλ\{Ms{yλ): L(wλ)) φ 0}. We also let w denote the longest
element of the Coxeter group generated by {sa\a G τχ(w)}.
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1.3. We can now review the results on Loewy length from [9]. Let
U(M) denoe the Loewy length of a module M. Let λ be a dominant
regular weight, that is, a regular weight with (λ,&) > 0 for a e i?^,
and let μ be a dominant weight in λ + P(R). One of the main results
of [9], an extension of Vogan's conjecture, is that UθaM < ίίM + 2
for M e @λ. This allows one to prove that UM(wλ) = ί(wλw) + 1, so
UM(λ) = ί{wλ) + 1, and £ίP(wλλ) = 2ί(wλ) + 1.

For M in ^ , it is also proved that UTJ M > UM + 2i(w$). In
2.1 we will prove that for M simple, equality holds. This is an easy
consequence of a theorem of Bernstein and Gelfand [1] and the θa

result above. With this in mind, let us note for λ integral how the
Loewy length results in (fλ could be easily derived. As shown in [9], it
suffices to prove UP(wλλ) = 2£(wλ) + 1. Let μ = 0. Then ^ consists
only of the simple, projective module L(μ). Therefore UT^L(μ) —
1 + 2£(w%) = 1 + 2ί(wλ). But T*L(μ) inherits projectivity and self-
duality from L(μ)9 and P(wλλ) is the only possible self-dual projective
in ^ Λ . We simultaneously obtain the self-duality of P(wλλ) and its
Loewy length.

This observation can be taken as the starting point of the present
paper. For arbitrary Λ, there may be no simple projective in ^ Λ , hence
no Tμ or θλ

μ to use as above. Instead, we must work with the #α's,
which always exist even for non-integral λ\ this is the reason longer
proofs of self-duality and Loewy length were required in [8], [9]. When
we pass to <?£ for λ e /^"+, even for integral A, there may be no simple
projective in ff^ at all. But if there is one, we can derive information
in &£. We should note that the idea of using a simple projective in
0 and translation functors to obtain information on other projectives
can be found in a paper of J. Humphreys [6]. As Humphreys observed,
this is a standard technique in the representation theory of Chevalley
groups, with Steinberg modules playing the role of simple projectives.

1.4. Let us recall what is known. As noted already, it is proved in [8]
that Ps(wλ) is self-dual for w e sXλ, and these are the only possible
self-dual projectives. If ff^ contains a simple projective L(wμ) for
μ e Λ, then T*L(wμ) must be a self-dual projective. This yields the
existence of some self-dual projective in ^ , but an argument in [8]
shows that self-duality of Ps(wλ) for all w e.sXλ follows. (The proof
of this in [8] seemed to require the validity of the Jantzen conjecture,
which we prefer to avoid, so that the general proof of self-duality was
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preferred. On the other hand, this dependence on Jantzen's conjecture
can be eliminated, [10].)

Regarding Loewy length, suppose for some x e sXχ that xx = x.
Then it is proved in [9] that UMs{xλ) = ί{x) + 1 and tiPs{xλ) =
2ί(x) + 1. Moreover, by an argument analogous to that in [8, §9] (with
a similar dependence on Jantzen's conjecture, which can be eliminated
by [10]) we obtain UMs(wλ) = i(x) + 1 and UPs(wλ) = 2t{x) + 1 for
all w e sXχ. We prove in §2 that the existence of x with xx = x is
closely related to the presence of a simple projective in (9$. In fact,
we have:

PROPOSITION. There is a simple projective in &<>• if and only if for

some x e sXλ satisfying xx = x there is a weight μ e Λ with B® =

τλ(x). In this case, Ps{xλ) = T*L(yμ) for L(yμ) the simple projective.

Thus, the presence of a simple projective yields, as in 1.3, the desired
Loewy length conclusions. Although in general this is a stronger hy-
pothesis than xx = x, for λ integral the existence of the desired μ is
automatic. The advantage of this result is that it is not obvious in
general how to find x e sXχ with xx = x, but as we will see in §3,
finding simple projectives can be easy. In particular, for g of type An

and S arbitrary, there is always a simple projective in <f£(R\ as well
as for several families of parabolics in the other classical cases, and all
maximal parabolics. This allows us to extend the Loewy length results
of [9] considerably.

Observe in addition that the existence of x e sXχ with xx = x
is a condition on the Coxeter group Wλ and the choice of parabolic
subgroup W$. This can be seen since all the data involved is encoded
in Kazhdan-Lusztig polynomials, and the validity of the Kazhdan-
Lusztig conjecture for arbitrary λ shows that the data depends only on
Wλ and S. Thus, if we find a simple projective in ff^W for a particular
S and Weyl group 3Γ, the existence of a suitable x as well as the
resulting Loewy length information carries over to s'Wχ and ff$, for λ
a weight of any semisimple Lie algebra such that (Wλi Bλ) = (2Γ, B)
and S1 corresponds to S under the isomorphism.

1.5. A natural question raised by these considerations is what we
can say about Loewy series of generalized Verma modules and self-
dual projectives in (9% for v dominant but not necessarily regular.
Even if (9% contains no simple projective, it may split into a sum of
small blocks which can be analyzed. If so, and if we can control the
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increase of Loewy length under T$ for λ regular in v + P(R), we can
again obtain information for ff^. In particular, we should expect self-
dual projectives in ff^ to have Loewy length 2£(w%) more than in ff%,
and generalized Verma modules to have maximal Loewy length £(wf*)
more. In turn, passing to other non-regular μ's in v + P(R), we can
obtain information for &£.

We carry out this process for certain examples in §§4 and 5, with an
indication in §2 of how one may be able to control T* even when ff%
contains no simple projective. The example in §4 is for g of type An

and ps a particular minimal parabolic. We choose a v for which &%
contains a simple projective and pass through ff^ to 0% for a particular
μ of interest and analyze #g. In §5 we consider g of type D4 and ps

the minimal parabolic associated to the simple root at the center of the
Coxeter graph. This is the smallest example for which ffgW contains
no simple projective. We are able to choose a ^ G P£+ for which ff%
can be analyzed and T* controlled, so that for μ taken to the highest
root, we obtain Loewy length information in #g.

1.6. It is possible in some cases to use the knowledge of ££Ps(wμ)
for Ps{wμ) a self-dual projective to obtain the layers of the socle and
radical nitrations on Ps(wμ). A guess was formulated in [9] for μ
regular which can be extended in general. Let μ be a dominant weight
with wμ E P£+ and Ps{wβ) self-dual. The proposal for layers of the
radical filtration for Ps{wμ) is as follows:

(*) mdrPs{wμ)

= Θ Θ (ndiMs(zμ):L(wμ))τad^iMs(zμ).
zeWμ/Wμ0 i<HMs{zμ)

Here z runs over coset representatives of Wμ modulo W®9 and if zμ φ
P£+ then of course M${zμ) = 0 so there is no harm including such
z's in the sum. The rationale for this guess is given in [9]. As is also
pointed out, we may be able to confirm the guess in certain cases in a
manner summarized by the following Lemma:

LEMMA. Suppose (i) the layers of radical filiations for all Ms(zμ)
are known, (ii) the Loewy length 2t+1 ofPs(wμ) is known and coincides
with the number of non-zero layers of(*)9 and (iii) for each i < t the
guesses for layers i and It - / in (*) coincide. Then (*) correctly depicts
the layers in both the radical and socle filiations ofPs{wμ).
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The proof of this is essentially given in [9], and it is used in many
examples in [9].

In our examples of §§4 and 5 it is possible to determine the Loewy
layers of all the generalized Verma modules by direct calculation. As
indicated in 1.5, we also know the Loewy length of the self-dual projec-
tives. Thus, we are in a position to apply the Lemma, and hypothesis
(iii) is satisfied as well. This is particularly of interest for the D4 exam-
ple of §5. For, as observed at the end of [9], all the previous examples
for which (*) had been confirmed have generalized Verma modules
occuring once, if at all, in a Verma flag for Ps(xμ). But in the D4 ex-
ample there is a multiplicity 2. This yields more substantive evidence
for the validity of (*) in general: for all parabolics and singular as well
as regular weights.

Another interesting feature of the D4 example is that for appropri-
ate y and w, the socle of Ms(wμ) is L(yμ) Θ L(yμ). Thus, we find
that Hom&s (Ms(yμ),Ms(wμ)) has dimension 2. Moreover, for λ a
dominant regular weight, we are able to preserve enough information
under T* to show that Ms(wλ) has socle L(yλ) Θ L(yλ)9 where w is
the shortest element in the coset wW® and y is the longest element
in yW®. This answers negatively the question raised in several places
(for λ general or λ regular) of whether Horn spaces between generalized
Verma modules must be 0 or 1 dimensional.

1.7. Some of the results in this paper were obtained while the first
author was a visitor at U.C.S.D. in the winter of 1985; he thanks
the mathematics department for its hospitality. Both authors were
partially supported during the work by the N.S.F., the second via an
N.S.F. postdoctoral fellowship.

2. Loewy length under translation.

2.1. In this section the Loewy length results discussed in the in-
troduction will be proved. We will fix throughout a dominant regular
weight A, with Λ = λ + P(R), and another dominant weight μ in Λ.

PROPOSITION. Let M be a module in @λ. Then liT^T^M < U(M)+

REMARK. In case B® = {a} for some a e Bλ, the functor TμT% is
θa and the formula is MθaM < ££{M) + 2. As noted in 1.3, this is the
extension of Vogan's conjecture proved in [9]. The proposition may
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be viewed as a generalization, and the proof depends on this special
case.

Proof. Suppose £(w%) = r and w® factors as saι "-sar with α/ e Bλ.
Let θ = θar o o θaι. By induction, we obtain the inequaltiy ίίθM <
MM + 2r. Thus it suffices to prove that θμ

λ is a summand of θ; that
is, Θ%M is a summand of ΘM for all Λ/ in @λ. By the fundamental
theorem of Bernstein-Gelfand on projective functors [1; 3.3, 3.5], this
will follow if θμ

λM{λ) is a summand of ΘM(λ).

The module θ%M(λ) is T*M(μ). By results of [12] this is a pro-
jective module with a Verma flag whose constituents are {M(yλ)\y e
Wf}, from which we see that T*M(μ) = P(wjλ). On the other hand,
ΘM(λ) is also projective, and applying the 0tt |'s in turn we find that it
has a Verma flag with M(w^λ) as uppermost quotient. Thus P{w%λ)
is a summand, as desired. D

COROLLARY 1. Let w be an element ofWλ of maximal length in the
coset wWμ0. Then T*T£L(wλ) has Loewy length 1 + 2£(wJ).

Proof. The hypothesis on w is equivalent to T^L(wλ) being non-
zero, in which case it equals L(wμ). Thus T*TμL(wλ) = TμL(wμ),
and by [9], the Loewy length is at least 1 + 2£(w%). The preceding
Proposition yeilds equality. D

COROLLARY 2. Suppose L(wμ) is projective in tfg f°r somew e Wλ.
Then T*L(wμ) is a self dual projective in (9^ ofLoewy length l+2£(w%).

Proof. The Loewy length formula follows from Corollary 1 once we
note that TμL(w'λ) = L(wμ) for w1 the longest element in wWfi. D

2.2. We obtain in this subsection the result discussed in 1.4.

Proof of Proposition 1.4. Suppose x exists in sXλ with xx = x and
μ e A satisfies B% = τχ(x). Then x is exactly w$m The proof in [9; 4.3]
shows that Ps{xλ) has a Verma flag with constituents {Ms(xzλ)\z e
W®}, each occurring once. Therefore T£Ps(xλ) is a projective module
whose Verma flag constituents are all copies of M$(xμ). This means
each Ms{xμ) is itself a self-dual projective, forcing Ms{xμ) to be
L(xμ). The same argument used in 2.1 shows that Tjj L(xμ) = Ps(xλ).

Conversely, suppose L(xμ) is a simple projective for some μ e Λ,
and x is the longest element in xW®. Then T^L(xμ) = /^(xi,) and
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the Verma flag constituents are {Ms(xzλ)\z e ^ ° } Thus x is the

shortest element of xW®, equalling xx. D

As noted in 1.4, in the integral case the hypothesis on the existence
of μ is automatic, so we obtain:

COROLLARY. Assume λ is integral Then &£ contains a simple pro-
jective if and only if there is an x e sX with xx = x. In this case,
Ps(xλ) has Loewy length 2£(x) + 1 and Ms(xλ) has Loewy length
£{x) + l.

2.3. As discussed in 1.5, one might expect for μ and λ as in 2.1

that UTJJiM = ££M + 2£(w%). One collection of modules for which

this is known to hold is the self-dual projectives in ̂ Λ , for which we

have T*P(wλμ) = P{wλλ), with ££P(wλμ) = 2{£(wλ) - i(w%)) + 1 and

UP(wλλ) = 2ί(wλ)+1 [9]. It is also known for certain categories &$ in

case B® = {a} for some a e Bλ [2]. The result for &A can sometimes

be transferred to

LEMMA. Let M and N be modules in @μ with IIM < UN. Then

Proof. There is no harm in assuming that N has simple top L(xμ)9

with M C radTV. Then T^N is an extension of Tfr radTV by T*L(xμ).

In particular, we have a sequence of epimorphisms T*N —> T^L(xμ)

—• L(xλ)9 assuming x is chosen of maximal length in xW®. There-

fore, if TJj[N has simple top, the desired conclusion holds. But by the

adjointness of Tfr and T£, we obtain

H o n v ( 7 ^ L{yλ)) = Hom#(N, Tλ

μL(yλ)),

so T*N does have simple top. D

COROLLARY. Let M be a subquotient of socr+s P(wλμ)/ socr P(wλμ)
in 0", with ίlM = s. Then UT^M = s + 2i(w%).

Proof. We know ίlT^M >s + 2£(w%)9 so it suffices to prove

ί£T*(socr+s P(wλμ)/ socr P{wλμ)) =s + 2£{wQ

μ).

But £ίT*P(wλμ) = UP(wλμ) + 2£(wJ), so repeated application of the
lemma and its dual yields the result. D

We will apply the corollary in 5.1 to the self-dual projective Ps{wμ)
in place of M.
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3. Simple projectives. In this section we will prove that simple pro-
jectives exist in ff^ for certain choices of g and ρ$. As noted in 1.4,
we may as well restrict to integral weights, so throughout this section
Λ is P(R)9 the lattice of integral weights.

3 . 1 . Type A n . L e t g — sln+χ a n d le t B = {ax ...,an}9 w i t h (aif

= - 1 . Let {ω\,...,ωn} be the fundamental dominant weights. An
integral weight v can be represented by an element (a\,...,an+\) of
C w + 1 , with [y, ά, ) = at - <Z/+i G Z, so v = Σ/=i(Λ/ ~ ^/+i)^ι W e m a Y
let {βi,..., zn+\) denote the standard orthonormal basis of C Λ + 1 , with
ai = eif -e/ + i . The Weyl group 3Γ acts on C"+ 1 and I)* by permutation
of the ε/'s. Let S be a subset of 2?, given by S = {α/|/ e /$•}, with

= ih + M i + 2 , ...,

and /; > /7_i + r7_i for all j with 2 < j < s. Thus z/ G JP^"+ if and
only if <zz - <z/+1 G N + for / G 7^.

DEFINITION. Let v$ be the weight (Z?i,..., bn+\) with
k+ 1 andδ z = 0for i ^ / 5 .

PROPOSITION. The only weight in Wvs n P£+ is vs

Proof. Let us introduce additional notation. Let (λ\,...,λs) be
a permutation of (r\,...,rs) so that λ\ > λ2 > ••• > A5, and let
(/ii,..., μt) be the dual partition. Thus t = max{r/} and μ, = |{i |λ7 >
/}|. Let //5 be the dominant weight (t,...,t,t - l,...,t - 1,..., 1,
.. ., 1,0,..., 0), where the integer / is repeated μ, times for / > 0 and 0
occurs q times with q = n+l - Σ/=i /*/• Notice that μs is the unique
dominant weight in Wus.

Let ( α i , . . . , α Λ + i ) lie in WμsnP£+. We must have αz - α / + 1 > 0 for
i e Is- Thus for each j between 1 and s one obtains # / y + i > aij+2 >

> aij+rj > aij+rj+ι > 0. Therefore, ai&k > r}•, - k + 1 = bij+k

for 1 < k < Γj. For those j with r7 = /we obtain aij+k — bij+k.
Proceeding inductively through / s with ry = ί — 1, etc., we obtain
fl/ = bi for all /. D

COROLLARY. Let S bea subset ofB as above and let λbea dominant,
integral regular weight. Let μs, ^s, and (μ\,..., μt) be as above. Let
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(i) The category (fgs contains a unique non-zero module L(vs)>
is projective. (ii) Given w e SX, the Loewy length ofPs(wλ) is 2m$ + 1
and the Loewy length ofMs(wλ) is ms + 1.

Proof. Part (i) is an immediate consequence of the Lemma. For part
(ii), by 2.2 and the discussion of 1.4, we need to show that £{w®s) =
ms. The Coxeter group W®s is of type Aμι-\ x • x Aβt_x x Aq-\9

and the length of the longest element in a Coxeter group of type At is
1(1 + l)/2, or ( /+ 1). The result follows. D

3.2. Type Dn. Let g be of type Dn with B = {a\,..., an}, where
{a\,...,an-i} form a root system of type An-\ as in 3.1 and (an>άn_2)
= - 1 , so αΛ = en-\ + εn. The Weyl group W acts on Cπ via all
permutations of {β/} and all changes of an even number of signs. Let
S be a subset {α/|/ e Is} of B\{an} with Is as in 3.1. Let vs =
(6i,...,6Λ) with

6/7+A: = *ι>l - £ + 1 for 1 < fc < Γy + 1,

6/ = 0 for / and / - 1 not in Is.

Notice in particular that ft/, +r,+i = -[rjβ] Let w/ = |{7'k7 = /}|,
with t = max{r7} and t1 = 2[{t+ l)/2] - 1.

PROPOSITION. ΓΛ^ set Wvsr\Pg+ has cardinality 2W l + m 3 +-+»v,
z/5 w /te unique maximal element.

Proof. An argument like that in the proof of Proposition 3.1 shows
that (a\,...,an) lies in WιssΓ\P£+ if and only if 0/ = 0 for /, i+l φ Is,
while ai+k = 6, +jt for A: < r^ + 1 if r7 is even and either aijΛ.^ — bij+k

for all k <rj+l or ai+k = 6/ +^ - 1 for all /c < r}•+ 1 if r7 is odd. This
yields the claimed size for WvsC[P£+. We also see for a e Wι/sΓ\P£+
that vs - a is either 0 or a sum of roots of the form β/ + β/+1. D

The proposition makes clear that the parity of the r/s exerts a strong
influence on the category <?£. The most manageable choice of S yields
the following.

COROLLARY. Let S be a subset ofB\{an} such that all rj 's are even.
Then Ms{vs) is a simple projective.

REMARKS. (1) In the setting of the corollary, one obtains Loewy
length results for ff^ analogous to those in 3.1.
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(2) Results similar to those above can be formulated for subsets S
with an e S.

(3) In §5, we will consider in detail the first case not handled by the
corollary, with S = {ai) and n — 4. In this case, we will find that &£
contains no simple projective.

3.3. Type Bn. In types Bn and Cn one can obtain results similar to
those of 3.2, and in fact one can do a little better. But the improvement
in results requires Jantzen's criterion for the simplicity of a generalized
Verma module, which we will review at the appropriate point.

We will work with Bn only, the Cn analysis being essentially iden-
tical. The positive roots are {β/ - ε y | l < i < j <n}U {ε/|l < / < n},
with ai = e, - β/+i for 1 < / < n - 1 and an = εn. The Weyl group
W acts via permutations and arbitrary sign changes of {β/}. Given
S c B\{an}, let vs be defined exactly as in 3.2, and let Is> ij, rj, nti
be as before.

PROPOSITION. The set WvsnP£+ has cardinality 2mi+mi+'~+m<', and
vs is its unique maximal element

We omit the proof, which is identical to that of Proposition 3.2. In
3.2 we deduced the simplicity of Ms{ys) if n o 0 *s ° ^ ^ e r e w e m a y
allow odd r/s provided no odd value occurs more than once.

COROLLARY. Let S be a subset ofB\{an} such that for j odd either
rrij = 0 or mj = 1. Then Ms{vs) is a simple projective.

Proof. (1) It suffices to prove that Msiys) is simple, for the maxi-
mality of vs

 a n d BGG reciprocity [13] imply that Ps{vs) = Ms(vs)-
To do this we use Jantzen's criterion [11], see also [5], which we may
summarize as follows. Let A = {a e R+\R^\(vs>a) > 0}, where we
recall that i?J is the set of positive roots associated to 05, and R+\R$
is the set of roots of the nilradical m^ of ps. Let A\ — {a e A\ there
is a β G RJ such that {savs, β) = 0}. Then Ms(vs) i s simple if and
only if one of three conditions holds:

(i) A is empty.
{n)A = Ax.

(iii) For each a e A\A\ there is an a' e A\A\ so that sa<vs = wsa^s
for some w e W$ of odd length.

(2) We will consider each type of root in R+\R% systematically in
order to verify that one of the three conditions above is satisfied. We
begin with the short positive roots {ε/}, none of which lies in i?J. Let
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a = 6[. Then a lies in A if and only if b\ > 0, in which case savs

differs only by having -6/ as its /th coordinate. Choose j and k so
I = ij + k. If k > 1, or k = 1 and rj is even, then bι+2bι = ~~^ι a n c *
sQiss is orthogonal to ε/ - ε/+26,> s o α G ^ i .

Thus, a is in A\A\ only if / = /7 + 1 for some j for which r7 is odd.
In this case consider the root a' = β/ + β/+^. The weight v ^ s differs
from vs via a 0 in entry / and -b\ in entry / + b\. Thus α' also lies
in A\A\, and one can pass from savs to sa>vs

 γ i a a reflection about

(3) We have shown that A Φ A\ only if some ry is odd, in which
case condition (iii) is satisfied for the short roots in A. If all the long
roots of A other than those which we have just paired with the short
roots of A\A\, lie in A\, then condition (iii) will be satisfied.

Consider a = εp + εq. If a lies in A then bp + bq > 0. We may
assume that bp > bq without loss of generality, so bp > 0 and p e 1$.
Assume bp > bq. Then savs has -bq as its coordinate in entry p and
in entry p + bp + bq, so savs is orthogonal to εp - β ( p + ^ + ^ ) and a e A{.

Alternatively, assume bp = bq, and let p = ij + k and # = ij> + k'. If
one of k or /c' is > 1, say k, then sα 1/5 has coordinate -bq in positions q
and # + 2Z><7, so saus is orthogonal to εq - εq+1bq

 a n ^ α G i i . If instead
k = kf = 1, then 6P = bq implies rj = ry /. The hypothesis of the
theorem is used here, insuring that rj is even. Therefore bp+rj = — bp

and savs is orthogonal to εp - εp+rj9 so a€ A\.
(4) Finally we must examine roots a of the form εp - εq with p < q

and bp > bq. If bp = 0 or bq = 0, it is clear that a eA\. Otherwise, let
p = ij + fc and q = /7 / + k1. If y = / , then a e i?^, so we may assume
j Φ j ' . But then savs is orthogonal to εp - β(^+^p-^)> so α € ^ i This
completes the proof. D

3.4. Maximal parabolics. In this subsection we prove for g classical
that &£ contains a simple projective if ps is a maximal parabolic
subalgebra of g. For type An, this follows from 3.1. Let us consider
the Dn case in detail, using the notation of 3.2.

DEFINITION. Let g be of type Dn and S = B\{ar}. Define a domi-
nant integral weight us as follows.

(i) If r = 1 let vs = {0,n — 2,/i — 1,... , 1,0).
(ii) I f l < r < w — 2 and r = 2/?, let q = n - r and z/$ = {p,p-

1,...,1,-1,-2,...,-/ι fft...,1).
(iii) If 1 < r < « - 2 and r = 2/? + 1, let q = n - r - 1 and

ι>s = (A p - 1,..., 1,0, - 1 , . . . , - p , ft . .., 0).
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(iv) If r = n - 1 let vs = (n - 1, n - 2,..., 2,1,1)
(v) \ϊ r = n and r = 2/7 or 2/7 + 1, let ι/s be (p,. . . , 1, - 1 , . . . , p)

or (p,...,1,0,-1,...,/?).

PROPOSITION. Lei g &e of type Dn and S = 2?\{αr}. For z/5 defined

as above, Wv$ n P / + = {^5} flπrf £(*<s) & projective in £

REMARK. For λ dominant integral, this provides Loewy length for-
mulas in <9ςi.

Proof. The proposition is easily proved case-by-case. Let us con-
sider case (ii) as a typical example, with (a\,...,an) e Wv$ n i ^ + .
Then di - 0/+i G N + for / φ r and αΛ_i > \an\. Suppose first that
p < <?, so |α/| < q for all /. If \an\ > 1, then α r + i > \an\ + q - I > q,
which is impossible. If an = — 1, then αn_i > 2 and #„__£ > /: + 1 for
1 < /: < q - 1, forcing an_^ = /: + 1. Thus α differs from vs

 m the
last q entries by a single change of sign. Since W can only perform an
even number of sign changes, some number must appear twice among
# 1 , . . . , α r, contrary to hypothesis. Thus an = 1, from which we obtain
(a\t...tan) = vs- If instead p > q, then the hypothesis that ar+\ > q
or an = - 1 lead to a repetition among # i , . . . , ar, by similar arguments,
so again (a{,...,an) = 1/5. D

For g of type Bn or Cn a similar construction works. We will list
the relevant data, using the notation of 3.3, but omit any proofs.

DEFINITION. Let g be of type Bn or Cn and let S = B\{ar}.
( i ) I f r = l l e t i / 5 = ( O , / i - l , . . . f l ) .

(ii) If r > 1 a n d r = 2/7, let <? = n-r a n d ^ 5 = ( p , . . . , 1, - l , . . . , - p ,

(iii) If r > 1 andr = 2 p + l , l e t ^ = « - r a n d ^ = (p, . . . , 1,0, - 1 , . . . ,

PROPOSITION. Le/ g Z?̂  of type Bn or Cn and S = B\{ar}. Then
Π P£+ = {^5} (2«rf L{ys) is projective.

REMARK. If p 5 is a maximal parabolic of Hermitian symmetric
type, and λ is a dominant, regular integral weight, then ff^ has been
studied in detail in [2] and [4]. In particular, the Leowy filtrations
for generalized Verma modules can be completely described, and the
proposed description in 1.6 of self-dual projectives is correct [2].
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4. An example of type An. Let g be of type An, with {a\,...,an}
the simple roots as in 3.1. Let μ be the highest root a\ H h an and
S = {a\}. In this section we study the category <9^m The orbit Wμ is
the set R of all roots, and Wμ Π P/+ is the set

{a{ + + α/|l < i <Λ}U{-(α 2 + + α/)|2< i < n}.

For brevity, let μt = a\-\ h α/+i and μ_/ = -{a2 H h α/+i) for
I < i < n, with μ0 = a\. Notice that the weights in Wμ n /^i"+ are
totally ordered with respect to the usual order on weights.

The structure of generalized Verma modules in ff£ is easily calcu-
lated, using the known structure of Verma modules in @μ [7]. (Al-
though this is unpublished, a variant of the required calculations is
done in 5.1.) One obtains the following result.

PROPOSITION, (i) For 0 < / < n - 1 the module Ms(μ-i) is uniserial
ofLoewy length n - i with socle filtration layers as below.

L(μ-i-ι)

(ii) The module Ms(μχ) is a non-trivial extention ofL(μ0) by L(μ\).
(iii) For 1 < / < n - 1, the module Ms{μι) has coincident socle and

radical filiations, ofLoewy length i + 1, with layers as below.

L(μo)

In particular, the socular simples of fig are L(μ0) and L(μ-n+\). We
can determine the structure of the projective covers by the procedure
suggested in 1.6.

COROLLARY. The self-dual projectives Ps{μo) and Ps(μ-n+\) in &s
have Loewy length In - \, their radical and socle filiations coincide,
and the layers are given by the formula <9/1.6(*).
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Proof. Let v = (1,0,..., 0) and let λ be a regular weight of P(i?)+. It
is obvious that WvnP£+ = {V}, so L(i/) is projective. By 2.1 or 3.1,
self-dual projectives in <9^ have Loewy length 1 +2 (̂vt>£) = 1 +n(n-1).
Thus, by 1.4, self-dual projectives in <9ς have Loewy length at most
1 + n(n - 1) - 2£(w%) = 2n - I. The generalized Verma module of
highest weight occurring in a Verma flag for P(μ_ r t +i) (or P(μo))> by
BGG reciprocity and the proposition, is Ms(μo) (or Af$(/jn_i)). Both
these modules have Loewy length n, so the usual argument using self-
duality (see [9]) forces the Loewy length of the self-dual projectives to
be at least In - 1. Thus the Loewy length is 2n - 1, and we can easily
verify that the hypotheses of Lemma 1.6 are satisfied, from which the
corollary follows. D

REMARKS. (1) This example provides evidence that some general
statements proposed in [9] for categories (9$ with λ regular, and proved
in certain cases, may carry over to <9^ for μ non-regular. The pro-
posal for Loewy filtration layers of self-dual projectives makes sense,
as noted in 1.6, and is correct here. In addition, it is the case that the
generalized Verma modules of maximum Loewy length are precisely
those occurring in Verma flags of self-dual projectives with maximal
highest weight (or those of maximal highest weight containing a par-
ticular socular simple as composition factor), this length being half of
(1+ the Loewy length of self-dual projectives).

(2) Another noteworthy feature of this example is the location of
the socular weights μo and μ-n+\ in the ordering of highest weights
of simples in <9^. For λ regular, the socular weights form a right cell
[8], so every weight obtained from a socular weight by going down
in the ordering via a sequence of simple reflections is still socular
and the resulting set sXχ is a pathwise connected subset of sWλ in
an obvious sense. This connectivity property is not the case in the
example, provided n > 2, suggesting for a general non-regular μ that
a good description of the socular simples in (9$ may be difficult.

5. An example of type D4.

5.1. Throughout this section g is a Lie algebra of type Z>4. We depart
from the notation of 3.2, letting B = {η, a\, ai, #3} with (η, ά/) = - 1
and (α, , άj) = 0 for all / and j . Here a\ = ε\ - €2, a2 = £3 - 84 and
α 3 = ε3 + ε4. We shall fix the parabolic subalgebra ps with S = {η}.
Our main goal is an analysis of (9^ with μ the highest root, but we
postpone this until 5.2. Here we will consider (9% with v = (1,0,0,0).
In order to apply Corollary 2.3, we actually need to understand <9V.
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Below are the eight weights of Wv listed with respect to the Bruhat
order, and to the right a re-labelling of the weights which we will use
for convenience.

V V\

I I
V — OL\ V2

v — OL\ — η v>$

I \ I \
v — OL\ — η — Oί2 v — a\ — η — a$ V4 v$

\ I w
v — a \ — η — o?2 ~~ a3 ^6

I I
v — ot\ — 2η — # 2 — # 3 ^7

I I
v — 2ot\ — 2η — Oί2 — # 3 ^8

Observe that Wv Π P^ + = {v2,vβ}.

PROPOSITION, (i) The socle and radical filiations of Verma modules
in @v coincide, with layers depicted in the diagram below.

L(u5)

L{u6) L(u6) -ήf- L(uΊ)

(ii) The self dual projective P{v%) has coincident socle and radical
filiationsy with layers given by 1.6(*).
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Proof. By [9], the Loewy length of P(i/8) is 2 x 7 - 1 or 13, since the
Bruhat order has 7 levels, so part (ii) follows from (i) via Lemma 1.6.
To prove part (i), we use Jantzen's character formulas for his filtrations
on a Verma module M(ξ) and a quotient M(ζ)/M(sγξ)9 in [12; 5.3,
5.16], and the resulting multiplicity 1 criterion of [12; §5]. The only
Verma module multiplicities which are not 0 or 1 are the multiplicities
of L(u6) in M(y\) and M(v2), and L(vΊ) in M(v\). The character
formulas yield (Af(i/2)/Af(i/3) : L(ι/6)) = 1 = {M{yx)jM{y2) : L(ι/7)),
while {M{v\)/M{v2): £ ( ^ ) ) = 0. Thus the multiplicities indicated in
the proposition are correct, as is the structure of M (ι/, ) for 3 < / < 8.

Since UPfa) = 13, we obtain as in [9] that ίlM{yx) = 7 and
UM(v2) = 6. It follows that the diagrams for M(v\) and M(v2)
correctly depict the layers of their radical filtrations. (For instance,
since all composition factors of M{v2) but the copy of L{v$) not in
Af (1/3) are standard factors, the only possible alternative to that shown
would place L(v6) in a layer above L{v$)9 but then the Loewy length
would be too large.)

That the diagrams for M(v{) and M(v2) also depict the socle fil-
trations can be checked directly by calculating in appropriate weight
spaces. Alternatively, we can already apply Lemma 1.6, obtaining the
Loewy filtrations of P{v%)> from which we can read off the socle fil-
trations of M(v\) and M{u2) as submodules of P{v%), proving the
proposition. D

REMARK. One can use exactly the same sort of arguments to prove
the proposition of §4.

COROLLARY, (i) The category @$ has L(v2) and L(u^) as its simples;
Ms{v2) is an extension of L{y^) by L(v2) and Ps(^β) is an extension
ofMs{y2) by L{vβ).

(ii) The module Ps(^β) is a subquotient o/soc7 P{v%)/ soc4 P{v%) in
the category @v\

(iii) Let λ be a dominant integral regular weight Self dual projective
modules in &£ have Loewy length 15.

(iv) There is no simple projective in &gίR\

Proof. Parts (i) and (ii) follow from the Proposition by inspection,
and (iii) follows from (ii) by Corollary 2.3, since £(w®) = 6. For part
(iv), if there were a simple projective in ff^ for some integral μ, then
by 2.1 the length of w® would be 7. But no parabolic subgroup of W
has a longest element of length 7. D
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5.2. Let μ be the highest root 2η + a\ + a2 + α;3 of R. In analyzing
<9%> we will need to consider some Verma modules in @μ, so let us
recall the root system Wμ with its Bruhat order:

—2η — θί\ — a2 —
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For brevity, let //"" = —η - a\ — 0.2 — a?,. Then the weights of
Wμ Π Pg+ are

- a2 ~

The roles of a\> a2, ^3 are completely symmetric, so any statement
proved for one of theπi has a parallel statement for the other two, an
observation we will use freely. Our main result is the following.

PROPOSITION, (i) The socle and radical filtrations of generalized
Verma modules in &£ coincide. The layers of some of these modules
are depicted in the diagram below. Those not depicted are given by
symmetry.

Ms

L(μ)
φ , L(η + α, )

L(η)φL{η)

L(μ-)

L{η)

L{-a2) Θ L{-a3)
L(μ-)

Ms{-ax) : M_£Li Ms(μ~) : L(μ~)

L(μ-)θL(μ-) [fi }

(ii) The self dual projective Ps(μ~) has coincident socle and radical
filtrations, with layers given by 1.6(*).

REMARKS. (1) This example is of interest because it has a socular
simple, L(μ~), with multiplicity > 1 in a generalized Verma module,
the two appearances in fact occurring in the socle. This has not been
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known to occur in any previous examples. Because (Ms(η): L(μ~)) =
2, there are two appearances of Ms{η) in a Verma flag for Ps(μ~), so it
is qualitatively different from the other self-dual projectives for which
1.6(*) is known to hold, yet 1.6(*) is still valid. This provides good
evidence that the validity of 1.6(*) in general is plausible.

(2) The two appearances of L(η) is M${μ) were observed in [3], in
which Conze and Dixmier provided the first example of a Verma mod-
ule, M(μ), with infinitely many submodules. These infinitely many
submodules already occur in Ms{μ).

(3) The two appearances of L(μ~) in Ms(η) can be understood
to be mandated by the self-duality of Ps(μ) and the two appear-
ances of L(η) in Ms(μ). For the two copies of L(η) in soc3 Ms{μ) or
soc3 Ps{β~) must be matched by two copies of L(η) in

Ps(μ-)/md3Ps(μ-).

These two L(ηYs correspond to tops of copies of Ms{η) in a Verma
flag for Ps(μ-). Thus 2 = [Ps(μ-) : Ms(η)] = (Ms(η) : L{μ-)).

Proof, (a) Part (ii) follows from (i) by Lemma 2.3, provided
UPs(μ~) = 9. By Corollary 5.1 and 1.3, we have UPs(μ~) < 15 -
2£{w°μ) = 9. But the validity of (i) yields iέMs{μ)'= 5 and UPs{μ') >
9.

(b) To calculate the generalized Verma modules, we will use the
Jantzen character formulas, as in 5.1, and direct calculation of weight
vectors. This will require additional notation for g and its univer-
sal enveloping algebra U(g). Let {xε, yε\ε e R+} U {hε\e e B} be a
Chevalley basis of 9, with b spanned by the xε's and Λε's.

Among other relations, we have

[*ε, ^ε] = hε for ε e B

[*<*,, yη+ax ] = y Ψ [χΨ y η + Q ι ] = -yaι

Let v be a highest weight vector of the Verma module M(μ), of weight

μ-p-
(c) We begin with an analysis of Ms{μ). This is M(μ)/M{sημ)9

which has a Jantzen filtration by [12; 5.16]. Working in M(μ), we find
that the vector w{ = (ya2yη+Cέ3 -ya3yη+a2)v i s n o t i n M{snμ) and has as
image in Ms{μ) & highest weight vector. Analogously we obtain vectors

M and w3 = (yaιyη+a2+ya2yη+aι)v of weights
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η + oil — p and η + a$- p which have highest weight vectors as images
in Ms{μ). The Jantzen character formula on the filtration Ms(μ)1

yields (®i>0Ms(μY : L{η + aj)) = 1, so (Ms(μ) : L(η + aj)) = 1
and we have accounted for the multiplicity. The images of yajWj are
also highest weight vectors in Ms(μ), of weight η - p, as is any linear
combination, and yaιw\ — ya2

w2 + ^3^3 = 0.
These are essentially the vectors listed by Conze and Dixmier [3],

and they account for two appearances of L(η) in Ms{μ), To show
that (Ms(μ) : L(η)) = 2, one can calculate in the η-p weight space of
Ms{μ), finding that all vectors not in the span of {yaj W/| 1 < j < 3} are
cyclic. The Jantzen character formula yields (φi>0Ms(μY : L(η)) =
4, so both copies of L(η) lie in Ms(μ)2/Ms{μ)3.

The Jantzen multiplicity criterion yields (M(sημ) : JL(-α/)) = 1,
which allows one to compute via the character formula that
{φfroMsiμ)* : L ( - α y ))

 = 3. One copy of L(—α,-) can be accounted
for, since (ya,yη ± y^+αjyα,^ for / Φ j has a highest weight vector
as image in Ms(μ). Thus, this copy lies below a copy of L(η), and
must be in Ms(μ)2. If it is in Ms(μ)3, then it accounts for the 3 in
the character formula and (Ms(μ) : L(-α 7 )) = 1. But otherwise, by
self-duality of Ms(μ)2/Ms(μ)3, there must be at least two appearances
of L(—oij) in this quotient, producing 4 in the character formula.

We have determined all composition factors of Ms{μ) except L(μ~)9

and associated highest weight vectors to each factor, allowing one to
verify that their relative location is as claimed in the proposition.
Since the socle of M${μ) is simple [8], a contradiction would result
if L(μ~) is not a composition factor. Thus L{μ~) is the socle. But
the maximality of μ forces the socle to have multiplicity 1 [8], so the
structure of Ms(μ) is determined.

(d) The Jantzen character formula yields ( M ^ - α ; ) : L(μ~)) = 1,
so the structure of Ms{—<Xi) and Ms{μ~) are as claimed.

(e) Turning to Ms(η), we have

(Ms(η) : L(-α/)) = 1 and (®Ms(ηy : L(μ~) ) = 4.
\/>o /

The structure of Ms(μ) yields dimHom&(Ms(η), Ms{μ)) = 2. Tak-
ing two independent homomorphisms, we obtain two non-isomorphic
submodules of Ms(μ) with top L(η) and socle L(μ~), so (Ms{η) :
L{μ~)) > 2. If the multiplicity is > 2, then (Ms(η)2 : L(μ~)) < 1 and
{Ms{ηγ/Ms{η)2 : L{μ~)) > 3. The self-duality of Ms(η)ι/Ms{η)2

implies that it must have a copy of L(μ~) in its top, as well as its



340 RONALD S. IRVING AND BRAD SHELTON

socle, with Loewy length 3. But then M~s(μ) has this extra copy of
L(μ~) as well, a contradiction. Thus Ms(η) has the claimed structure.

(f) Each Ms(η+aj) maps onto a submodule of Ms(μ) which has the
structure claimed for Ms(η + α ; ). Thus we need only check that the
composition factors all occur with multiplicity 1. The only multiplicity
which isn't obvious is (Ms(η + aj) : L(μ~)), and the Jantzen character
formula yields (®i>0Ms(η + aj)1 : L(μ~)) = 3. An argument like that
at the end of (c) shows that (Ms{η+aj)3 : L(μ~~)) = 1, so (Ms(η+aj) :
L(μ~)) = 1, completing the proof. D

5.3. Let λ be a dominant, integral regular weight; choose y of longest
length in W with yμ — μ~ and w of shortest length with wμ = η.
Notice that y equals swλ (cf. 1.2). Thus yλ is the lowest weight in
Sc

PROPOSITION. The socle of Ms(wλ) is L(yλ) ® L(yλ), and
Hom&(Ms{yλ), Ms(wλ)) is two-dimensional.

Proof. (1) The module T*Ps(μ~), which is T*Ps(yμ), is a self-dual
projective with L{yλ) in its top, and the argument of Lemma 2.3 shows
that the top is simple, so T^Ps(μ~) = Ps(yλ). By Corollary 5.1, its
Loewy length is 15. The analogue of Corollary 2.3 with Ps{yμ) in
place of P{wλμ) can be proved in the same manner. Combining this
with Proposition 5.2(ii), which completely describes the socle filtration
of Ps{μ~), we may conclude that ίlT^M = HM + 6 for M any of the
simples or generalized Verma modules in ^ .

(2) The simples of #£ which are not annihilated by T£ are precisely
those L(xλ) for which x is of longest length in the coset xW^\ for such
an x and for z in W we have (Ms(zλ) : Ms(xλ)) — (Ms(zμ) : Ms{xμ))
[12]. It follows from the adjointness of Tf; and 7j", and the previous
fact, that the socle of T*Ms(wμ) is L{yλ)@L{yλ). Also T^Ms(wμ) has
a Verma flag with constituents {Ms(wzλ)\z e W®}. The generalized
Verma module with maximal highest weight among these, Ms{wλ),
must be a submodule, leaving two possibilities: either the socle of
Ms{wλ) is as claimed, or it is just a single copy of L(yλ).

(3) By part (1), the Loewy length of T*Ms(wμ) is 9 and that of
Tjj;L(wλ) is 7, the second module being a homomorphic image of the
first. Also, the Verma flag of T^Ms(wμ) allows us to deduce that L(wλ)
has multiplicity one in it, and therefore multiplicity one in T^L(wμ)
as well. As L(wλ) is the maximal weight composition factor occur-
ring, it corresponds to the top of a submodule N which is the unique
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homomorphic image of Ms(wλ) in T*L(wμ). The module T^L(wμ)
is self-dual, and the usual argument shows that it has simple top and
socle L(ww®λ). Moreover, this simple has multiplicity 1 in Ms(wλ),
being a standard composition factor, so that N can be described as the
smallest homomorphic image of Ms(wλ) in which this factor survives.
We may deduce from this that N must also contain the standard com-
position factors L(wzλ) for all z e Wf*. This forces N to have Loewy
length at least 4, taking into account that W® is of type A\ xA\ xA\.
Since T*L(wμ) is self-dual of Loewy length 7, we see that the copy
of L(wλ) must occur in the middle layer both in the socle and radical
filtrations.

Pulling this information back to T*Ms(wμ), we find that the unique
copy of L(wλ) is in radβ TμMs(wμ), and that the inverse image K
of the socle of T*L(wμ) lies in rad6 T£Ms{wμ). Thus K has Loewy
length 3. However, K is a submodule of Ms{wλ) with simple top
L{ww°μλ), so T%K is a submodule of T[Ms(wλ), or Ms(wμ), with
L{wμ) in its top. Thus, T^K = Γf Ms(wλ) = Ms{wμ). This implies
that (K : L(yλ)) = 2. The socle of K, by the conclusion of (2), is
either L(yλ) or L{yλ) Θ L(yλ). But L(yλ) cannot be in the top of K
and cannot extend itself nontrivially, so the only place for the two
copies of L(yλ) in K is in the socle. This completes the proof. D
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