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FUNDAMENTAL DOMAINS FOR
THE GENERAL LINEAR GROUP

D O U G L A S G R E N I E R

Historically the most familiar fundamental domain for Pn/GLn(Z)
has been that of Minkowski. This paper develops a new fundamental
domain more suited to applications in number theory. It is shown that
these domains can be determined explicitly for given n and this is done
for n = 3,4, 5,6. A reduction algorithm for an arbitrary element of
Pn is also determined.

1. Introduction. Throughout this paper, let Pn denote the space of
positive definite, symmetric, real n x n matrices. The identity matrix
will always be denoted by / or In where necessary to avoid ambiguity.
If G = GLΛ(R), the general linear group over R, and K is the subgroup
of G of orthogonal matrices, Pn can be identified with K\G as follows:

K\G - Pn

Kg - τgg

where τg denotes the transpose of the matrix g. We can define an
action of the group G on Pn by τgYg for g e G and Y e Pn. We
will use the notation Y[g] = τgYg. Now, as GLΛ(Z) is a discrete
subgroup of G, and so acts discontinuously on Pn, we can define a
fundamental domain Pn/GLn(Z). If Γ is any discrete subgroup of G,
then a fundamental domain for Pn/T is a subset of Pn satisfying two
conditions:

(1) The union of the images under the action of Γ covers Pn, i.e.,

γ(Pn/Γ) = Pn.
yeΓ

(2) If Y and Y[g), g £ Γ, are both in the fundamental domain, then
Y and Y[g] are on the boundary of the fundamental domain or g = I.
From here on, unless otherwise noted, Γ will always be GLΛ(Z).

Historically, the standard fundamental domain for Pn/T has been
that of Minkowski, [9], here denoted Mn. Mn is defined as follows:

Mn = {Y e Pn\ Y[a] > yu ifae Zn,g.c.d.(aif...,an) = 1;

yu+\ > o f o r / = ! , . . . , # — l}.

293



294 DOUGLAS GRENIER

It may not be readily apparent that this indeed satisfies conditions 1
and 2 above, but for the details the reader is referred to Minkowski's
original work [9], or to Terras' discussion in [17].

Fundamental domains are by no means unique, however, and while
study of Mn has led to great progress in the geometry of numbers for
example, for certain areas of number theory it may be appropriate
to define an alternative fundamental domain. One motivation was to
explicitly determine the Maass-Selberg relations for Eisenstein series
on SL3(Z). For SL2(Z) these enable one to solve the integral that is
the parabolic term in the Selberg trace formula. To study the corre-
sponding term in a version of the trace formula for SL3(Z) it would be
necessary to integrate the product of two Eisenstein series on a por-
tion of the fundamental domain. The Minkowski domain does not
appear to be well-suited for this. In [18] the problems of Minkowski's
fundamental domain for this type of work are discussed in detail.
The alternative fundamental domain will be defined in such a way as
to avoid these problems. The other major motivation for studying
a new fundamental domain was to provide a workable reduction al-
gorithm that could be applied to various number theoretic problems.
The fundamental domain defined in this paper will address both of
these issues.

The approach is a generalization of the classical "highest point
method" used to determine the well-known fundamental domain for
the Poincare upper half-plane. Recall that if H is the upper half-plane,
i.e., the subset of complex numbers z = x+iy with y > 0, a fundamen-
tal domain is given by D = {z = x + iy e H \ \x\ < 1/2, x2 + y2 > 1}.
This new fundamental domain bears more than a slight resemblance
to the fundamental domain in the case of Siegel upper half-plane,
Hn, which is yet another generalization of the highest point method.
Define

Hn = {Z = X + iY\X,Ye Rnxn, X symmetric, Y e Pn}.

The symplectic group Spn (Z) defined by

SpΛ(Z) = { M e Z2nx2n I J[M] = / where / = ( _° M l

acts on the space HnbyZ-> {AZ+B){CZ+D)~ι where M e Sprt(Z) is
written a s ¥ = (CD) a n c * ^, B, C, D are n xn block integer matrices.
Note that for n = 1, Spw(Z) = SL2(Z), and this generalization reduces
to the classical case. Under this action a fundamental domain for
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Hn/Spn(Z) is given by the subset of Z e Hn such that
(1) |det(CZ + Z>)| > 1 for all CD with ( £ * ) GSprt(Z)
(2) YeMn

E. Gottschling has shown, [3], that for the case n — 2 the necessary
C and D in condition (1) are C = / and Z> is one of 15 choices,
explicitly determined, all with entries 0, ± 1 , or C is a rank 1 matrix in
which case if Z = (Z

Z;2

Z

Z'2
2) then \z{\, \z2\ > 1 and | z 1 - 2 z 1 2 + z 2 ± l | > 1.

We will achieve analogous results using somewhat similar reasoning
for the fundamental domain Pn/T for n = 3,4, 5, 6. For more details
on the Siegel modular group, in particular the proof that the set defined
above is actually a fundamental domain for Hn/Spn(Z) see [8].

All of the aforementioned groups and spaces are related. For exam-
ple, if SPn denotes the subspace of Pn of those matrices with determi-
nant 1, and SLn(Z) is the special linear group of integral matrices with
determinant 1, the case n = 2 is once again the classical situation, for
SP2 and H can be identified by:

H-+SP2

V~x 0 \ Γl x

o Wlo l
More generally, Hn can be embedded in SPn by

X
i Y ~ z ι o γj[o i

So perhaps study of our fundmental domain for Pn may lead to an
increased understanding in all these areas, through these relations.
For the moment, however, the applications seem to be in the theory
of automorphic forms on GLΛ(Z).

2. Partial Iwasawa co-ordinates. Before we can define the new fun-
damental domain, we must first describe the system of co-ordinates.
For Y G Pn what is sometimes called the Iwasawa decomposition is
given by

dx 0 1 xij

Lθ 1 J0 dn

with di > 0 and x/7 e R. This is the co-ordinate system Minkowski
employed to find his fundamental domain. For the new domain we
will want to look at a generalization of Iwasawa co-ordinates. These
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can be expressed as:

V O\\lj X

o wj[o 4 .
where V e Pj, W e Pk, X e Rjxk and of course j + k = n. Clearly,
there are at least n - 1 different types of partial Iwasawa co-ordinates.
Partial Iwasawa co-ordinates are actually nothing more than a gener-
alization of completing the square. For our purposes, it becomes clear
that the best choice is:

1 τx

0 In-ι

where v > 0, W e Pn-\, x e Rn~\ i.e., τx = (JCI,...,jcn_i), Xj e R.
As will be seen later, with this choice of co-ordinates we can avoid
having to use a determinant, as v is just a scalar.

We are also going to consider what the group action of GLW (Z) on
Pn looks like in terms of these co-ordinates. First, for an element
g e Γ, write g = (a

c

τ£) for a e Z, τb,c e Zn~ι and D e zn~lxn~l.
This corresponds to the specific type of partial Iwasawa co-ordinates
being used. Then

v O\Γ1 Tχlϊa τbλ
0 W ) \ . Q I l i e ϋ\
v vτx \ \a τb]

<vx v[τx]+iv) lc ϋ\

= (a τc)(v vτx \ί a τb\
\b TD)\VX v[τx]+w)\rc ϋ)

v[a + τxc] + W[c] (a + τxc)v(τb + τxD) + τcWD \[ ] [] ( )(
(b + τDx)v{a + τxc) + τDWc v[τb + τxD]

The square bracket notation applies to a column vector as well as
to a matrix, that is, for c e Zn~ι, W[c] = τcWc which of course
is a scalar. Then, since a + τxc is itself scalar, v[α + τxc] —
v(a+ τxc)2. Also, note that the term in the upper left corner must
also be scalar. What we mean by v[τx], τx now being a row of length
n - 1, is v[τx] = vX where X is the symmetric matrix (XJXJ). The
scalar term v[a + τxc] + W[c] will figure most prominently in the
following generalization of the highest point method.

3. The fundamental domain. We are now nearly ready to define the
fundamental domain. The motivation for this definition came from
looking at Y[g] as above and observing that the upper left corner of
Y[g] is v[a+ τxc]+ W[c]. If we think of the "height" of Y as v"1 then
we want Y in the fundamental domain to have height greater than that
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of any Y[g]. In other words, for Y in the fundamental domain we
want v < v[a + τxc] + W[c] for any a and c forming the first column
of a matrix in Γ. The complete definition of the fundamental domain
is then as follows.

DEFINITION. For n > 2, let Fn be the set of those Y e Pn satisfying:
(1) v<v[a+τxc]+ W[c] whereaeZ, ceZn~ι zndg = (a

c

 τ

D

b) eΓ
(2)WeFn.ι

(3) 0 < ; q < \\ \Xi\ < \ for i = 2,...,n- 1.
It will be seen that Fn is a fundamental domain for Pn/ GLn(Z).

Note the similarity between the definition of Fn and the definition
of the fundamental domain for the Siegel modular group. Here the
height is given by v"1; in the Siegel case for Z E Hn, Z — X + iY9

the height of Z is given by det(Γ). The first condition arises from
maximizing the height. Then the second condition is obtained by
looking at g e Γ of the form g = (%ι °) where g e GL^^Z). This
basically sets up an induction; it is therefore, no accident that most
of the proofs of statements about the fundamental domain rely on
some sort of induction argument. The third condition comes from
looking at the "translation-type" matrices, that is, g e Γ of the form
g = (Q Γ /) . These comments will be examined in more depth in the
proof of the theorem in the following section.

We have defined Fn above in an inductive manner, that is, it is
built up using Fn-\. In beginning the induction, F\ will just be the
positive real numbers. However, it is possible to start at n = 2 using
the following proposition.

PROPOSITION 1.

F2 = M2 = j r e Pn I 0 < 2y[2 < y x < y 2 ;

= 0 then 0 < yx
< y2;Y = (

Proof. This can easily be seen by examining the first condition in
the definition. Since n = 2, Y £ Pn is expressed as

Then condition (1) says that v < v(a + xc)2 + c2w for all a, c such that
g = [a

c

b

d) e GL2(Z). Choosing a = 0, c = 1 we see that v < vx2 + w or
w > v(l ~x2). But condition (3) tells us that 0 < x < j so w > |v. It is
then apparent that the only a and c we need consider are a = 0, c = 1
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(compare this with the fundamental domain for H, the upper half-
plane). By this we mean that v < v(a + xc)2 + c2w for a = 0, c = 1
implies this for all other choices of a and c. Thus we have

But
VXίv θ \ Γ l

\0 wj[θ vx vx2 + w) \yι2 y2

and so we have 0 < 2yχ2 < y\ < y2.
This type of argument will resurface in §6. Even without working

through the proof above, we should have expected that F2 = M2 is rea-
sonable, for the partial Iwasawa decomposition we are using reduces
in the case n = 2 to the full Iwasawa decomposition which is what
Minkowski used for his fundamental domain. Now we have explicit
inequalities for F2\ in §6 we will determine explicit inequalities for
some higher n. However, first we must prove that the set Fn defined
above is in fact a fundamental domain.

4. The highest point method. The following Lemma will be needed
in the proof of the Theorem in this section and in later sections as
well.

LEMMA 1. // Y e Fn, Y = (o ^ ) [^Γ] a n d wi is t h e i t h diagonal
entry in W, then n>, > |v.

Proof. YeFn=>v<v[a+ τxc] + W[c] for all g = (a

c 2 ) e Γ. Let
a = 0, c — e;, the standard unit vector in Rn~ι. Then a g e Γ with a
and c forming the first column can be obtained by switching the first
and /th rows in the identity matrix. Then v[a + τxc] = vx2. Since
W[ei\ = wh we have v < vxf + wz, so wt > v(l - xf). But xf < \ so

H>/ > f V.

THEOREM I. (I) Fn as defined above is a fundamental domain for
Pn/T.

(2) Fn has a finite number of boundary inequalities and therefore
is bounded by a finite number of hyper surf aces. The minimal set of
inequalities can be explicitly obtained for given n.

(3) The subset of Y e Fn with det(7) < 1 has finite Euclidean
volume given by

(i) = π-sΓ(s)ζ(2s).
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For Fn to be useful for any applications we need (2). The proof of
(3) depends only on the fact that Fn is a fundamental domain, and
so is the same proof as for Mn given by Siegel [13], or Terras [17],
for example. The statement is included here solely for the sake of
completeness.

Proof. (1) To prove that Fn is a fundamental domain we need to
show two things: first, that {jgeγgFn covers Pn, and second, that for
Y and Y[g] both in Fn, Y and Y[g] must be on the boundary of Fn, or
g = ±1. We have already proved (1) and (2) for n = 2 in Proposition
1, so assume that Fn_{ is a fundamental domain. Then choose Y e Pn:

T
γ _ / y u \ i A X°)\ι

w) |_o
0 W

For Y[g], g = (* ̂ ) , let v* = v[a + τxc] + W[c], so v* is the upper
left corner of Y[g]. We must show that there are only finitely many a
and c forming the first column of a matrix in GLn (Z) such that given
any positive real number m, v* < m. If λ is the smallest eigenvalue
of W9 then W[c] > λl[c] since W - λl will also be positive. Then
W[c\ > λ{c\ Λ h c%_{) and there can be only finitely many c such
that W[c] < m. Once all c have been determined, we must have
v(a + τxcγ < m — W\c\. For each c there will be only finitely many
a satifying this inequality. Since there are only finitely many a and c
so that v* < m we can choose g e Γ as to make v* minimal.

Once the minimal v* has been produced with

1 τx*
.0 /

we can find D* e G L ^ ^ Z ) such that W*[D*] e Fn_ι by the induction
hypothesis. Then

o w*) L<

Let gx = gg*. Then

r [ ^ l ] = V 0 W*[D*]J [o / J'
Write τx*D* = ( α i , . . . , α n _ i ) and choose b* where τb* = (β\,...,

βn-\) so that | α y - βj\ < \ for j = \,...,n - 1. Finally, if -\ <

ax - βι < 0, let
τb*r)(-.•?)
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andif 0 < « ! - β\< £, let

(\ τb*\
g2 = §Λo i )•

Then, in either case,

γ[82)=h °)\ι TΛ
lS2i \0 W2J[0 I \

where v2 = v*, W2 = W*[D*], and u = ±(x*I>* - b*), the sign de-
termined as to make a\ - β\ nonnegative. Clearly, conditions (2)
and (3) in the definition of Fn hold for Y[g2], so it remains only to
show that v2 < v2[r + τut] + W2[t] Vr, / with ( J ^ j e Γ . If we write

v2[r + rw/] + FF2[ί] = v[Γ! + Txti\+W[t{\

and
v2 = v* < v[rj + rjcίi] + Wφi] = v2[r + τut]

because of how v* was chosen. Thus we have shown that any element
of Pn can be written as Y[g], Y e Fn, g e Γ.

To prove the second condition of being a fundamental domain,
again use induction. It has been shown that this condition holds for
n = 2in Proposition 1, so assume this condition holds for Fn-\. Now
suppose Y and Y[g] are both in Fn.

Y eFn=>v<v[a+ τxc] + W[c] Va,c with (a Tb)eΓ.
\c D J

By taking the inverse:

Y[g]eFn=>v[a+ Txc] + W[c]<v ^ g

That is, if Y[g] is in the fundamental domain then the upper left
corner of Y[g] is less than or equal to the upper left corner of FteH/z]
for any h e Γ, including g~\ and ίΛ[^][<?~1] = Y. Anyway, the two
inequalities above imply that v = v[a + τxc] + W[c]. If c Φ 0, then
this shows that Y and Y[g] are on the boundary of Fn, since the
inequalities v < v[a + τxc] + W[c] define part of the boundary. If
c = 0, this reduces to v = v[a] = a2v and so a = ± 1 .

Then g = (%{T£) and det(#) = ±1 => det(Z)) = ±1 => D e

W[D]
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and so Y, Y[g] eFn^ty W[D] e Fn_{ and by the induction hypoth-
esis, either W and W[D] are on the boundary of Fn-\ or D = ±1. If
W and W[D] are on the boundary of i^-i, then so are Y and Y[g]
on the boundary Fn, by definition of Fn. The other case is D — ±1.
Then ^ = ( ^ 3 ) and

v 0 Λ Γl ± ^ ± τb

o w)[o i
Γ - l I

X Y[g]eFn=>x,±x±be \-γ>2

with xh±xι ± i i € 0 , r

But 6 eZn~ι => e i therx { = ±±, bt = ± 1 , / = 2 , . . . , w - 1 ; q = ^, #i =

1 or JC, Φ ±\9 bi = 0.
So, either F and F[^] are on the boundary of Fn determined by

the x co-ordinates, or all the 6/ = 0, in which case g = (^Q ±χ)-

Ifg= (-Q1 J), then y[*] - ( S ί , ) [ J - ^ ] and both ±xx e [0,1], so
X\ = 0, and y and y[#] are on the boundary. Replacing g with - ^
yields the same results. Finally, the only possibilities left are g = ±1.
Thus, we have seen that either Y and Y[g] are on the boundary of Fn,
or g = ±1.

(2) Again the proof is by induction. Proposition 1 gives the proof
for*/? = 2. Now assume that there are finitely many boundary in-
equalities for Fn-\. The boundary inequalities in condition (3) in the
definition of Fn are clearly finite in number, and by the induction
hypothesis so are those for condition (2). It remains to examine con-
dition (1), v < v[a + τxc] + W[c] for all a, c forming the first column
of a matrix g e Γ. Now W e i^-i, so write

By the induction hypothesis the inequalities vf < vf[a'+ Tx'c']+W[c']
are finite in number. But W[c] — v'[c\ + τxc'] + W[cf] where V =
(C2,..., C/ι-i). We now have a finite number of vectors c, and together
with the bounds on the x/, a finite number of a will be forced as well.

To explicitly determine the necessary and sufficient type (1) inequal-
ities, expand v[a + τxc] + W[c] as follows:

v[a+ Txc] + W[c] = v{a+ τxc)2 + v'{cι+
 τx'c')2

+ . . . + v(»-2)(cn_2 + X^-Qcn-x)2 + v ί " - 1 ^ . !
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where χ(n~2ϊ is a scalar, and where

v υ \ I i τx

β W) [0 /„_!

' 0 \\g τx'

o w) Lo /Λ_2
and so on. Then we arrive at Y = D[T] where D is a diagonal matrix
with v, v;,..., v^"1) the diagonal elements and T is an upper triangular
matrix with 1 at each diagonal element and with rows consisting of
the τχ(JΊ beginning with τx at the top and working our way down in
sequence. Now, by repeated application of Lemma 1:

v ί * > > ( j ) * v

and thus we arrive at:

v[a+ Txc]+W[c]
τx'c'y<

If for given a and c, v[^+ ΓJCC]+ΪΓ[C] > v for all 7 e i^, the condition
v < v[a + τxc] + W[c] for this a and c is superfluous. Thus, we can

throw out all a, c that make (a + τxc)2 + h ί | J c%_{ > 1 for

all possible x,x',...,χ(n~2\ The remaining a and c are necessary and
sufficient in condition (1) of the definition of Fn.

(3) Again, for the proof of part 3 see [17].
Finally, the proof of the Theorem has been completed, so we now

know that Fn actually is a fundamental domain for Pn/GLn(Z).

5. Geometry on the fundamental domain. Recall that one of the mo-
tivations for developing a new fundamental domain as an alternative
to Minkowski's fundamental domain, was that Minkowski's funda-
mental domain proved to not have quite the right "shape" for work
on generalizing the Selberg trace formula. In this section we will want
to discuss the "shape" of Fn, in particular to develop a notion of the
"cusps" in Fn, and to show that as a point approaches a cusp, the
fundamental domain will have a shape more adaptable to generalizing
the trace formula. We will also consider some of the structure of the
fundamental domain, especially how it can be built up inductively.
Included will be various inequalities relating the entries of Y e Fn.
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Of great benefit in this section, as well as quite often in later sec-
tions, will be the following Lemma, which can be proved using only
elementary linear algebra.

LEMMA 2. There exists

if and only ifg.c.d.(afchc2,...,cn-ι) = 1.

Proof. One direction is trivial: if g.c.d.(α, c\, c2, ...,cn-\) = m >
1, then m | det(#). Now suppose g.c.d.(α,c\,..., cn-\) — 1. If we
consider the set of matrices obtained from elementary row operations
on the identity, and multiply the column vector on the left by these
matrices, we can manipulate the vector until we obtain me\ where
m > 0 and e\ is the first standard unit vector. Then, if M is the
product of the elementary matrices used, M eΓ. We now have

M\ \ — me\, \—mM e\.

W \cj
Then g.c.d.(tf,c\, ...,cn-\) = 1 => m = 1 and (£) = M~xe\ which is
the first column of M~ι e Γ.

The following will also be useful in future calculations.

LEMMA 3. Let Y = (yij) and for convenience yι — yit. IfYeFn,
then

(1) y\ < yifori= l,...,n
(2) \2yij\ <yifyj.

Proof. With Y as in (4.1): Y eFn^v < v[a + τxc] + W[c] for all
a, c with g . c . d . ( α , c \ , . . . , c Λ _ i ) = 1. Let a = 0, c = ei} i— 1, ...,n- 1.
T h e n v < vxz

2 + v̂ / = yi+λ. N o t e that v = y{. This proves (1).
T o prove (2), let a = 0, c = eι - ej. T h e n

v[a + τxc] + W[c] = v(x/ - Xj)2 + w/ - 2wu + Wj

= Vxf + Wi - 2{vXiXj + Wij) + VXJ + Wj

and so we have

y\ = v < y/+i - 2yi+ϊ j+ϊ + yj+h 2yi+ι j+ι < yi+ι + yj+x -
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Then from (1): 2y/+i 7 + 1 < y/+1, yj+\. Now let a = 0 and c = e, + £/.
Similarly we get

2y/ + 1 i + 1 >

and finally |2y/7 | < yit yj.
Now we proceed to obtain some information about determinants of

Y E Fn. We will use the notation \Y\ for the determinant of Y. For
Y e Mny it is known that \Y\ < y\"yn < cn\Y\ for some constant
cn depending only on n. The first inequality actually holds for Y e
Pn. For more details on the constant cn see Terras [17]. For the
fundamental domain Fn the analogous statement is much simpler to
state and prove as evidenced by the following Theorem.

THEOREM 2. For Y e FΆ)

Then we have

Proof. As already mentioned, the inequality \Y\ < y\--yn is true
for all Y e Pn. To see this, write Y e Pn in the partial Iwasawa
decomposition

γ = ( v ° M 7 x]
V 0 w)[θ l j

for V € Pn-\, w > 0, x eR"~ι. Then proceed by induction:
It is trivial for n = 1, so assume it is true for n — 1. Then

\V\<y\ yn-\, yn

V E PΛ_, =• V[x] >0=>w<yn, \Y\ = \V\w<yι- -yn.

To show y\ yn < (3)" \Y\, again use induction. For n =

X\Y\ = y\y2-y\2-
From Lemma 3, 2yι2< yι,y2 Therefore

and

\Y\>\y\yi or

Assume the inequality for n - 1.
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yi = v, yι = vxf_ι + W|_i for / = 2,..., n

Y eFn=> v < vxj + Wj for j = 2,...,«- 1

Therefore:

w

The last inequality is because \xt \ < \ => xf <

y \ y n y \ y n yi -yn

\Y\ v\W\ \W\ ~ V4/ \W\
y\ yn s (Λn-χ /3\(«-D(«-2)/2 v«(«-i)/2

To prove the last statement of the Theorem, again we appeal to Lemma
3. We have y\ < yt. Since we have just shown

the proof follows directly.

COROLLARY. Let Y e SFn where SFn is the fundamental domain for
SPn/Γ. Recall that SPn = {Y e Pn \ \Y\ = 1}. Then \W\ > ( l )^" 1 )/ 2

where the notation is as in (4.1).

Note that this is consistent with the classical Poincare upper half-
plane theory. Recall the correspondence

For z e D, y > \ft/2 = ( l )^" 1 )/ 2 when n = 2. Also, since v\W\ = 1?

the statment in the corollary is equivalent to v < (^γn~1^2.
We now want to consider the notion of cusps of the fundamental

domain. In the standard version of the fundamental domain D for the
Poincare upper half-plane, there is one cusp in D. This is the point at
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infinity, i.e., the point iy where y —• oo. Due to the inductive nature
of the method used to construct Fn we might expect that Fn should
have n - 1 cusps, which in fact turned out to be the case. However,
we have to stretch the generalization of what we mean by a cusp. To
illustrate, let us consider the case of n = 3. We will actually be looking
at SFn, the fundamental domain for the matrices of determinant 1 in
Pn. If Y e SF3, v\W\ = \Y\ = 1 so \W\ = v"1. Therefore it makes
sense to write

with \W\ = 1. This will mean W e SF2. If
w ° λ \ l u

o
we run into the cusp of SF2 as w —• 0. By Lemma 1,

| v < v~ι/2w, or |v3/2 < w.
Therefore w —• 0 => v —• 0. But v —» 0 does not necessarily imply
that w -> 0, and yet as v —• 0, Y approaches the open boundary of
SF$. This shows that we don't really have a cusp as in a point, but
rather v = 0, a portion of a hyperplane, serves the same purpose. On
the other hand, as the cusp of SF2 is approached, that is w —> 0, then
v —• 0. Thus, v = 0, w = 0 might be called a "second order cusp,"
since it is a cusp of SF3, but also of SF2. To generalize, if Y e SFn+\
(we use n + l instead of n to simplify the notation later) we can write

SFn+\ will then have n cusps, the primary one as v —• 0, and other,
higher order cusps, which can be obtained by reducing Y to its full
Iwasawa decompostion by repeating the process above. As mentioned
previously, the fundamental domain Fn is of interest in obtaining an
explicit generalization of the Maass-Selberg relations to SL3(Z). For it
to be useful, however, it must be shown that the fundamental domain
has the right "shape" as it goes toward the primary cusp, v = 0. In
other words, it is necessary to prove the following:

THEOREM 3. There exists an r > 0 such that for v < r the set S
defined by

S = {Ye SPn+{ I 0 < v < r, W e SFn 0 < JCI < \,

\xj\ < \for j = 2,...9ή\

is contained within SFn+\ where the notation is as in (5.2).
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Proof. To see this, first let W = v~ι/nW, so W1 e Fn. Then recall
that if λ is the smallest eigenvalue of W\ then W'[c] > λl[c] for all
ceZn. Ifr = λ, then for YeS,

v<r< λl[c] < W'[c] < v[a + τxc] + W[c] for c φ 0 and all x.

Thus, for Y e S, condition (1) in the definition of Fn+\ is satisfied.
Conditions (2) and (3) are clearly satisfied by definition of S. There-
fore S C SFn+ϊ.

So far, we have discussed some of the boundaries of Fn. The condi-
tions on the x co-ordinates (condition (3) in the definition) determine
2(n - 1) boundaries, 2 for each co-ordinate in the vector x, all of
which are portions of hyperplanes. Condition (2) of the definition of
Fn tells us that there is a copy of Fn-\ somewhere in Fn. As v —• 0,
the condition v < v[a + τxc] + W[c] becomes W[c] > 0. Since this
holds for all W e Fn-\ (indeed for all W e Pn-\) we have the copy
of the next lower dimension fundamental domain at the cusp v = 0.
If we repeat this process for the fundamental domain Fn-\ and so on,
until we reach F 2 , we obtain a clearer picture of the cusps of Fn. We
see that the fundamental domain Fn has cusps that are dependent on
all the lower dimensional fundamental domains. These fundamental
domains are not compact, but it is always possible to compactify by
adding the cusps. Satake obtained a compactification for the funda-
mental domain for the Siegel modular group in [19], which in many
ways appears to be analogous to what would be done for Fn. If we
denote the Siegel fundamental domain of degree n by Sn, the Sa-
take compactification of Sn is obtained by adding the fundamental
domains of lower degree. Satake denotes this as S* and shows that
S* = Sn U SΛ_i U Sn_2 U * U S\ U So is a compact closure of Sn. Here,
S\ is really the same as D = H/SL2(Z) and so SQ is the usual cusp for
Z), the point at infinity. It should be possible to do the same for Fn,
but this is straying a bit far from the original scope of this paper, and
so the details will have to appear later.

6. A more detailed view of the fundamental domain. In this section

we will examine more closely condition (1) in the definition of Fn.
Specifically, we will determine explicitly the necessary and sufficient
g e Γ that are needed in condition (1) for some small values of n.
More accurately, since condition (1) depends only on the first column
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of g, and it is possible that more than one g eΓ have the same first
column, we will determine the necessary and sufficient a and c.

As before, for simplicity of notation, let Y € Fn+\. Then

°)\ι Tχ

w) Lo in
where v > 0, W eFn, etc. Since F e F n , we can write it as:

Then v[a + τxc] + W[c] = v[a + τxc] + v'[cχ + τx'c'] + W'[c'] where
τc = (c\,...,cn) and V = (c2, ...,cn). If this process is repeated, we
will eventually get to W^n~2^ which is an element of F2. Let M =
W^-2\ Then

v[a+ τxc] + W[c] = v[a + τxc] + ••• + M \Cn-1}, M e F2.
L Cn J

Applying Lemma 1 we know that ni\ > (|)/l~1v where M = ( ^ ^ ι

2

2 ).
What can be gathered from this, is that if M[c;-'] > φn~ιmu then
v[<2+ τxc] + W[c] > v for all x and W, and there is no boundary here.
So, we begin by finding the cw_i and cn such that M[Cn

c~
x} <(i>)

n~λm\
and build up c from there.

As the first example, the boundary conditions for Y e F$ can be
obtained using this procedure. Y = ( Q ^ ) [ O / ^ ]

 where W e F2 and
τx = (xι,x2). Condition (1) says that v < v[a + τxc] + W[c]. From
the above reasoning it can be seen that the necessary c are those with
W[c

c'2] < | w i . Now W[c

c

ι

2] = cfw{ +2cιc2wi2 + c%w2. We know from
Proposition 1 that F2 = M2 and for W e M2, 0 < 2w{2 < w{ < w2.
Therefore

W [^] > wx(cf - \cxc2\ + φ = W l ( ( |d | - |c2 |)
2

It can clearly be seen that for Cj > 2, for either j — 1 or 2, W[c

c

ι

2] >
2w\9 so we need only consider \CJ\ < 1. In other words, each Cj could
be 0 or ±1. This gives nine possible combinations for the vector c.
As always we discount the possibility c = 0. This leaves eight non-
trivial choices. Recall from the discussion in the previous section that
since if a and c form the first column of a g e Γ, then so do -a
and -c , only half of the c need to be looked at further here. Then
there were four. These are as follows: c = (Q), (°ι)> ("/),(}). Finally
W[\] = W\ + 2w12 + w2 > 2w\ > %w\. Thus, the vector c = (|) can
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be thrown out as well. This leaves c = (Q), (j), ("/). To determine
a, consider the inequality v < v(a + C\X\ + C2X2)2 + W\c\ once more.
First,

W [ J ] = wl9 W [ ° ] = w2, W J-j 1] = wx -2wn + w2.

Since 2wχ2 < w2, W["~/] > Wi Also, w2 > W\. Thus, for the choices
of c above, W[c] > w\. Now, Lemma 1 said that W\ > |v . Therefore,
for a such that (a + C\X\ + C2X2)2 ^ | ? the right hand side of the
condition (1) inequality will automatically be greater than v. This
tells us that we can restrict a so that

(a + C{X\ + C2X2)2 < \ or \a

For c = (Q) or (^ a - \ < a + c\X\ + c2X2 <a + \.
If a Φ 0, \a + C\X\ + C2 X2| > 5 so α must be 0.
For c = ("j1) a - 1 < a + C\X\ + C2X2 <a + ^soa could be 0 or 1.
With the above, condition (1) of the definition of Fn can be written

explicitly for n = 3 as follows:

v < v[a + τxc] + W[c] for a = 0; c =

for a total of four inequalities. Conditions (2) and (3) are as before.
If

vvj 0 \ Γl *
0 w2j [0

this can also be written as Fn in the intersection of the following:
(i) v < vx\ + wx

(ii) v < VJC| + wι w2 + W2

(iii) v < v(x{ - x2)
2 + W\(l -X3) 2 + w2

along with the domains defined by conditions (2) and (3).
An equivalent formulation is if v* is the upper left corner of Y[g],

that is v* is the inverse of the height of Y[g]9 then we must have v < v*
for



310 DOUGLAS GRENIER

Of course, this is just one example of a set of g that completely deter-
mine the upper boundary of F 3 . The first columns are the only things
that cannot be changed.

Before proceeding on to n = 4, 5 and beyond let us consider a gen-
eralization of a statement made above. If Y e i v n , is it true that
Y[c] ^ y\ f°Γ all c e ZΛ, c Φ OΊ The answer was yes when w was 2,
above. For any n/\ϊ Y has the usual partial Iwasawa decomposition,
then

Y[c] = v[c! + Γxc'] + WV] where τc = (ch c2,..., c )

and V = (c 2,. . .,cΛ).

By the definition of Fn, v < v[a + ΓΛr'] + W[c'] for all a, c1 forming
the first column of a matrix in Γ. From Lemma 2 we see that if
g.c.d.(Γc) = 1 then c can be the first column of some g eΓ. In any
case let d = g.c.d.(Γc), and let c* = dc. Then Y[c] = d2Y[c*] and
g.c.d.(Γc*) = 1. Therefore Y[c] > Y[c*] >v = yx. It follows directly
from this argument and Lemma 1 that W[c] > |v. We have thus
proved the following.

THEOREM 4. If Y e Fn, Y = ( 5 £ ) [ J Ϊ ] then W\<Λ ^ l v for alί

ceZn~\ c^O.

To find the appropriate conditions for F4, begin by finding all

with Cι and C3 such that M [c

c

2] is not automatically greater than
l6/9m\. Since 16/9 < 2 and c2,^3 G Z the c2 and c3 will have the
same restrictions as in the case of /% namely \c2\ < 1 and |c 3 | < 1,
but c2 and c3 are not both 1 or - 1 . It can also easily be seen that
|ci| < 1, since C\ here acts like the a from the previous example. This
means that there are seven pairs of c2 and c3 and three possible c\ for
a total of 21 possible c. We discard c = 0 as usual and consider half
the remaining c as before. Of the ten left, it is easily seen that

and
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are unnecessary, as the component of 0 reduces the problem to that
of the previous case. This leaves eight choices of c:

Using the Lemma above, it is seen that \a\ < 1 and more explicitly the
fundamental domain F 4 is defined by:

v < v[a + τxc] + W[c]

for

c =

= 0, c=

= 0,±; c=

a total of 16 inequalities, along with the inequalities from conditions
(2) and (3).

By extending this method Y e F5 the necessary and sufficient a and
c are found to be:

a = 0; c = ex.e-y.e^eΛ

c =

= 0,±l; c =
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α = 0,±l ,±2; c =

This method quickly begins to outlive its usefulness when Y e F6.
There are also too many vectors to list, so we will write them in a
shorthand form, although this will cost a little accuracy. We first want
to find the c where τc = (ci,. . .,c 5). Unlike the previous case, it is
possible for \CJ\ > 1. However, this only happens in a few cases for c4

or c5. More specifically, |c4 |, \c$\ = 1 except for the possibilities where
one has absolute value 2 while the other has absolute value 1, and in
addition c4c5 < 0. It is also possible for |c 3 | = 2 but that happens
only when |c 4 | = 1 and \c5\ = 1. Finally l^l < 2 and \c\\ < 3. After
determining c, a is found by the same method as before, employing
the Lemma of this section. In short, \CJ\ < 2 for j = 2, 3,4, 5 and
\cx\ < 3 . Then \a\ < 4.

7. The reduction algorithm. In the preceding sections the funda-
mental domain Fn was defined and described. By the way that Fn was
defined, there is an especially nice algorithm for moving a 7 e Pn into
Fn. A point (or matrix) in Fn is said to be reduced, and the algorithm
is called a reduction algorithm. The reduction algorithm for Fn can
easily be written as a computer program that will actually perform the
operations, as will be seen in the following sections, using F$ as an ex-
ample. For the Minkowski domain, or the similar version of Korkine
and Zolotareίf, it can be shown that a positive matrix, or equivalently
a positive definite quadratic form, can theoretically be reduced, (see
[11] for example) but nobody seems to provide an actual method for
so doing. This is one more advantage of Fn.

As might be expected, the algorithm is built up inductively. For
n — 2, the algorithm is just the standard highest point method for
the fundamental domain for the upper half-plane. In short, take the
starting point, translate until |x| < \, that is act on Y by a matrix
of the form (ι

0\)k, k G Z, then flip if necessary, by using the action
of the matrix (_?Q) RePe&t the process until the point is in the
fundamental domain. It will be seen shortly why this process must
terminate, that is, why repeating this process will eventually yield a
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point in the fundamental domain. For more details on the n = 2 case,
see [17] among many others.

For the general case, assume the algorithm exists for all Fj with

j < n. Write Y — (o £0 [o /Ί a s u s u a l Then the reduction algorithm
consists of the following steps:

Step 1. Put W e Fn-\. The induction hypothesis says that this is
possible, i.e., there is a matrix D e GLw_i(Z) such that W[D] e -FΛ_i,
and there is an algorithm for determining Z). Then act on Y by g =
(hi)- Then

γ[g)=(v ° ) \ ι TχD\.
m Vθ W[D]) [θ / J

Let Y' = Y[g] and V = τxD.
Step 2. Use translation-type matrices to make the x co-ordinates

satisfy condition (1) of the Definition, that is 0 < X\ < j',\Xj\ < \
for j = 2,..., n - 1. These translation-type matrices are of the form
Tj where 7) has diagonal entries 1 and a 1 in the first row, j + 1st
column, all other entries being 0. Write τx' = (x'1,...,x^I_1) and let
ΐj = [̂  - Xj] where [a] denotes the greatest integer in a. Then let

n-\

S' = UTjJ if 0 < xi + rx < 1
7=1

and let

u =

In either case the matrix Yf[g'] satisfies conditions (2) and (3) of the
Definition. This can be seen by observing that

Y'[gf]=(v ° ) \ ι Tχ*
1 5 J \0 W[D]J [O I

where x* = ±(xf + r) with r being the vector with components Vj
and the sign being chosen as to make X\ + r{ non-negative. Note that
the order in which the product is taken is unimportant, as all the Tj
commute, but the matrix U must be multiplied on the right if it occurs.

Step 3. If Y is the matrix obtained after Step 2,

γ _ / v u \ i l Xv 0 \ Γ1 τx
0 WJ Lθ /0

then W € Fn_\ and 0 < xx <\ and |JC,| < \ for j = 2,...,n - 1.
Consider the set of the v[a+ τxc]+ W[c] for all the a and c defining the
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necessary and sufficient inequalities in condition (1) of the Definition.
Choose v* to be the minimal element of that set, and let g* be an
element of GLΛ(Z) with the first column determined by the a and c
from v* = v[α + τxc] + W[c]. Replace Y by Y[g*].

Repeat Steps 1, 2, and 3 until Y e Fn is obtained. To see that
this process must eventually terminate, recall from the proof of The-
orem 1, that if λ is the smallest eigenvalue of Y, then Y[c] > λl[c]
= λ(c\ + + Cfl_i), and this shows that there can be only finitely
many a and c such that v[a + τxc] + W[c] < m for some positive
real number m. If m is chosen to be the v from the original Y, then
Step 3 chooses a v* from this finite set with v* < v. Ifv* = v, then
v < v[a + τxc] + W[c] for all the a and c considered, and so, by
the Definition, the matrix obtained from Step 3 is in Fn. Otherwise,
v* < v, and so the same argument holds with m = v* and a smaller
set. Thus it is seen that the algorithm terminates.

Those readers with an affinity for computers will see that this al-
gorithm easily lends itself to being programmed. In performing the
algorithm for n, one just appeals recursively to the algorithms for the
lower dimensional fundamental domains. This is seen more explicitly
for n = 3 in the following section.

8 A reduction algorithm for P3. It has been shown (§6) that there
are four necessary and sufficient g for condition (1) of the Definition
in the case n = 3. Let these be written

and let

/ I 1 0\ / I 0
Tx = 0 1 0 I, T2 = o 1 0 I, and ί/ =

Vo 0 1 / Vo o
as defined in Step 2 of the algorithm in the preceding section. Let

/I 0 0\ /I 0 0\ /I 0 0\
Af i = 10 1 1 I, M2 = I 0 0 1 , M3 = I 0 - 1 0

Vo o i/ Vo - i o/ Vo o i/
These last three are of the form ( ό ^ ) . ^ € GL2(Z), and are used in
Step 1 of the algorithm.
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The algorithm for placing Y e P$ then can be given explicitly. Let
Y be written in the usual partial Iwasawa form:

)[ ? ] w i t h f *^ and)[θ ?w
Step 1. Since W e P2 it can be written as

wi θ \ Γ l x 3

o w 2 ; L o l
Let r3 = [£ - JC3] and M = Λ/j3. Replace W7 by W[M] if x 3 + r3 > 0
and by W\MM{\ if x 3 + r3 < 0. Then if w{ > wγx^ + w2 replace W
by W[M2]. Repeat until 0 < x 3 < \ and Wj < Wγx^ + w2. Then Y
satisfies condition (2) of the Definition.

Step 2. Let r, = [± - Jcy], 7 = 1,2. Let T = η Γ l Γ2

r2. Replace Y by
7[Γ] if JCI + rx > 0, by Y[TU] if Xi + rj < 0. Then the new Y satisfies
conditions (2) and (3).

Step 3. Let SQ = /, and let vj be the upper left corner of the
positive matrix Y[Sj] for j = 0,1,2, 3,4. Note that v0 = v. Suppose
that vk < vj for all j . Then replace Y by ^[5^].

Now return to Step 1 and repeat until Y € F3.

9 Applications. The reduction algorithm of the preceding sections
is the first example of an application of the new fundamental domain.
This in itself shows some of the value of these fundamental domains
since, as was mentioned earlier, there do not seem to be any satisfac-
tory means for reducing an element of Pn to any of the other types of
fundamental domains. There are also applications that make use of
this reduction algorithm. In [2], the reduction algorithm for n = 3 was
used to obtain information on Hecke operators for GL3(Z) and on the
density of the images in the fundamental domain of Hecke points, that
is, the points used to define the Hecke operators. It may also be pos-
sible to use this reduction algorithm to investigate Fourier coefficients
for automorphic forms for GL3(Z) as Stark does for SL2(Z) in [16].
Another possible application of the reduction algorithm is mentioned
in [17, Vol. II]. There it says that a problem of interest is the search for
a generalization of the theorem that a number is quadratic if and only
if its continued fraction is periodic. The reduction algorithm comes in
because the continued fraction of a can be determined by finding the
element of SL2(Z) that maps the semi-circle joining a and its (alge-
braic) conjugate. A relation between units in real quadratic fields and
hyperbolic elements of SL2(Z) also drops out of this. Minkowski, [9],
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obtained some partial results along the lines of generalizing these ideas
to n > 2, so perhaps with a new fundamental domain further work
of this type can be accomplished. Finally, the reduction algorithm
for positive quadratic forms has applications to various problems in
lattice theory.

Another possibility is to slightly alter the definition of the funda-
mental domain for the Siegel upper half-plane. Recall that one con-
dition in that definition was Y e Mn, where Mn was Minkowski's
fundamental domain for Pn. However, the definition only depended
on Y being in a fundamental domain for Pn, and so it is possible to
replace the condtion Y e Mn with Y e Fn without changing any of
the proof that the domain as defined in § 1 is a fundamental domain
for the Siegel upper half-plane. The advantages of tampering with the
definition in this way would be that both the fundamental domain for
the Siegel upper half-plane and the fundamental domain Fn for Pn

were obtained by generalizing the highest point method and so might
be more compatible. For example, it might be possible to further the
results of Gottschling in [3] by taking advantage of the inductive na-
ture of Fn. There are numerous other possibilities in this area since
the Fn and the fundamental domain for the Siegel upper half-plane
are so intimately connected.

Some of the most interesting applications of Fn are in the study
of automorphic forms on GLΛ(Z) Since one of the original factors
for developing the fundamental domain Fn was to make the task of
generalizing the Maass-Selberg relations easier, it is not surprising that
this is perhaps the most obvious application aside from the reduction
algorithm. Some partial results along these lines, especially for n = 3,
but even for any n, have been obtained in [4]. There it is seen that
the definition of Fn indeed allows one to make use of the Fourier
expansion in the x co-ordinates of automorphic forms on GLΛ(Z).

REFERENCES

[ 1 ] D. Bump, Automorphic Forms on GL(3, R)9 Lecture Notes in Mathematics 1083,
Springer-Verlag, New York, 1984.

[2] D. Gordon, D. Grenier, and A. Terras, Hecke operators and the fundmental
domain for SL(3, Z), Math. Comp., 48 (1987), 159-178.

[3] E. Gottschling, Explizite Bestimmung der Randflaechen des Fundamentalber-
eiches der Modulgruppe zweiten Grades, Math. Ann., 138 (1959), 103-124.

[4] D. Grenier, Fundamental Domains for Pn/ GLn(Z) and Applications in Number
Theory, Ph.D. Thesis, UCSD, 1986.

[5] E. Hecke, Mathematische Werke, Vandenhoeck und Ruprecht, Gottingen, 1970.



FUNDAMENTAL DOMAINS 317

[6] , Lectures on the Theory of Algebraic Numbers, Springer-Verlag, New
York, 1981.

[7] H. Maass, Siegel's Modular Forms and Dirichlet Series, Lecture Notes in Math-
ematics 216, Springer-Verlag, New York, 1971.

[8] , Όber eine neue Art von nichtanalytischen automorphen Funktionen und
die Bestimmung Dirichletscher Reihen durch Funktional gleichung, Math. Ann.,
121 (1949), 141-183.

[9] H. Minkowski, Gesammelte Abhandlungen, Chelsea, New York, 1967.
[10] S. Ryskov, The theory ofΉermite-Minkowski reduction of positive definite qua-

dratic forms, J. Soviet Math., 6 (1976), 651-676.
[11] S. Ryskov and E. Baranovskii, Classical methods of the theory of lattice packings,

Russian Math. Surveys, 34 (1979), 1-68.
[12] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric

Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc,
20 (1956), 47-87.

[13] C. L. Siegel, Gesammelte Abhandlungen, Springer-Verlag, New York, 1979.
[14] , Lectures on Quadratic Forms, Tata Institute of Fundamental Research,

Bombay, 1963.
[15] , Symplectic Geometry, Academic Press, New York, 1964.
[16] H. Stark, Fourier coefficients of Maass wave forms, in Modular Forms, R. A.

Rankin (Ed.), Horwood, Chichester, 1984, pp. 263-269.
[17] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications, Vols. I

and II, Springer-Verlag, New York, 1985.
[18] A Terras, Some simple aspects of the theory of automorphic forms for GL(n.Z),

in The Selberg Trace Formula and Related Topics, D. Hejhal, P. Sarnak, and A.
Terras (Eds.), AMS, Providence, 1986.

[19] I Satake, On the compactification of the Siegel space, J. Indian Math. Soc, 20
(1956), 259-281.

Received October 10, 1986 and in revised form February 18, 1987.

THE UNIVERSITY OF TEXAS AT AUSTIN

AUSTIN, TX 78712






