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NONCOINCIDENCE INDEX, FREE GROUP ACTIONS,
AND THE FIXED POINT PROPERTY FOR MANIFOLDS

MICHAEL HOFFMAN

Let M be a compact oriented connected topological manifold. We
show that if the Euler characteristic χ{M) Φ 0 and M admits no de-
gree zero self-maps without fixed points, then there is a finite number
r such that any set of r or more fixed-point-free self-maps of M has
a coincidence (i.e. for two of the maps / and g there exists x e M so
that f(x) - g(x)). We call r the noncoincidence index of M. More
generally, for any manifold M with χ(M) Φ 0 there is a finite number
r (called the restricted noncoincidence index of M) so that any set
of r or more fixed-point-free nonzero degree self-maps of M has a
coincidence. We investigate how these indices change as one passes
from a space to its orbit space under a free action. We compute the
restricted noncoincidence index for certain products and for the ho-
mogeneous spaces SUn/K, K a closed connected subgroup of maximal
rank; in some cases these computations also give the noncoincidence
index of the space.

1. Introduction. Let M be a connected topological manifold. In an
earlier paper [10] the author introduced the noncoincidence index, de-
fined as 1 + m if the maximum cardinality m of a set of noncoincident
fixed-point-free self-maps of M is finite, and as oo otherwise. We shall
denote the noncoincidence index of M by NI(M). Two immediate
consequences of the definition are:

1. If NI(M) < oo, then any self-map of M has a periodic point of
period at most NI{M)\

2. If a group G acts freely on M, then |G| < NI(M).
In [10] the author established some sufficient conditions for NI{M)

to be oc and did explicit calculations of NI(M) in some cases where
NI(M) is finite. The first major result of this paper characterizes the
compact oriented manifolds of finite noncoincidence index.

THEOREM 1.1. If M is a compact oriented manifold, then NI(M) <
oo if and only ifχ(M) Φ 0 and M admits no fixed-point-free self maps
of degree zero. In this case

(1)

where β\,βi,-..,βn are theBetti numbers ofM.
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REMARK. The bound (1) may be compared to similar bounds for
periodic points and free group actions. If X is a compact polyhedron
with χ(X) ψ 0 and / is a map from X to itself that induces an au-
tomorphism of H*(X;Q), then / has a periodic point of period at
most

max (Σ A. Σ A) .
\/even i odd /

where βt is the /th Betti number of X (see [3] or [8]). Also, any group
acting freely on such a polyhedron X has order at most | / ( ^ ) | , since
it must divide χ(X).

It follows immediately from the definition that NI(M) = 1 if and
only if M has the fixed point property. If NI(M) is finite but not 1,
there may be a free action by a group G so that the orbit space M/G
has the fixed point property. In §3 we prove some results of this type:
the simplest is the following one.

THEOREM 1.2. Let M be a compact oriented simply connected man-
ifold, and suppose a finite group G acts freely on M. Then NI(M/G) <
NI(M)I\G\. (In particular, M/G has the fixed point property if\G\ =

The usefulness of the noncoincidence index is limited by the fact
that NI(M) = oo for so many manifolds M. For example, the nonco-
incidence index of a product is oo unless both factors have the fixed
point property. In §4 we discuss the restricted noncoincidence index,
which is always equal to the noncoincidence index when the latter is
finite, but which is finite for a larger class of manifolds. We have the
following result about products.

THEOREM 1.3. Let M be a product of even-dimensional spheres, com-
plex projective spaces, and quaternionic projective spaces HPn with n
even. Then the restricted noncoincidence index ofM is the product of
the noncoincidence indices of its indecomposable factors.

In §5 we compute the restricted noncoincidence of any generalized
complex flag manifold (i.e. homogeneous space G/K, where G is a
compact simple Lie group of type An and K is a closed connected
subgroup of maximal rank). This can be improved to a computation
of the noncoincidence index for some classes of such flag manifolds.
In particular, we prove the following result.
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THEOREM 1.4. Let M be a generalized complex flag manifold: then
M is homeomorphic to SUn/K, where K is a subgroup of the form
SUnnUnιX'"xUnk withni < n2 < - < nk, n\ + — \ - n k = n. Suppose
n is even or no more than one odd number occurs in the sequence
n\,n2,... ,nk with odd multiplicity. Then there is a free action by a
finite group G on M so that M/G has the fixed point property provided
one of the following conditions holds:

1. k = 2 and n\ < 3 or n2 > 2n\ - n\ - 1;
2. k = 3, nx = 1, and n3 > 2n\ - 1;
3. nx =n2 = '- = nk_ι = 1.

2. The noncoincidence index. In this section we establish some gen-
eral results on the noncoincidence index of a compact oriented n-
manifold M. We also prove some results helpful in computing the
noncoincidence index from information about the automoφhisms of

For any self-map / of M, the diagram

where if{x) = (xff(x)) and pv{ is projection onto the first factor, is
a microbundle in the sense of Milnor [15]. In fact it is the pullback
microbundle f*tM, where tM is the tangent microbundle of M. The
'zero section' of f*tM (i.e., the image of if) is gr/, the graph of / .
By a theorem of Kister [13], any sufficiently small neighborhood of
gr/ in M x M is an Rn-bundle over M (where R" is thought of as
having a distinguished origin but no linear structure). We use this fact
in proving the next result.

THEOREM 2.1. For any sufficiently small neighborhood U ofgrf in
M x M, pv{: U - gr/ -+ M is an (R" - 0)-bundle and the obstruction
to sectioning it is degfχ(M).

Proof Take U sufficiently small so that U - ^ M is an Rn -bundle.
Since M is oriented, so is any bundle realization of tM or /*W
Then the obstruction to sectioning U - gr/ -^ M is an element
of Hn(M;Z). For / = id, this obstruction is the Euler class e(M):
by naturality, the obstruction in the general case is f*e(M) (cf. [17]).
Since (f*e(M), [M]) = deg/χ(M), the conclusion follows.

THEOREM 2.2. IfM admits a fixed-point-free self map of degree zero,
then NI(M) = oo.
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Proof. Let / : M —• M be a fixed-point-free map with deg/ = 0.
Then gr/ n Δ(Af) = 0, where Δ(Af) c M x Λf is the diagonal. Take
a neighborhood U\ of gr/ small enough so that C/i nΔ(Af) = 0 and
C/i -^+ Λf is an Rn -bundle: then the previous result implies that
there is a section of U\ - gr/ - ^ Λf. Such a section gives a map
f\: M -> M which is fixed-point-free and noncoincident with / . Now
repeat this procedure: take a neighborhood Ui c C/i of gr/ with
ί̂ 2 Πgr/i = 0. Sectioning C/2 — gr/ - ^ Af gives a map f2: M -+ M
which is fixed-point-free and noncoincident with / and f\. In this
way we get NI(M) > k for any k.

REMARK. A similar argument (taking neighborhoods of Δ(M))
shows that NI(M) = 00 when χ(M) = 0. This is proved without
assuming orientability in [10].

Let LZ{M) = {/*: H*(M;Q) -> H*(M;Q)\f is fixed-point-free}.
(This is a slight modification of the definition used in [10].) By the
Lefschetz fixed point theorem L(φ) = 0 for any φ e LZ(M), where
L(φ) is the Lefschetz number

L(Φ) =

If LZ(M) consists of automorphisms of H*(M;Q) (i.e. endomor-
phisms of nonzero degree) and χ{M) Φ 0, we call M L-rigid. By
Theorem 2.2 (and the subsequent remark), NI(M) — 00 unless M is
L-rigid.

We call automorphisms φ, ψ of H*(M Q) compatible if L(φψ~ι) =
0. (Note that L(μ) = degμl^μ" 1 ), so the relation is symmetric; it
need not be reflexive or transitive.) If M is L-rigid, every element
of LZ(M) is compatible with the identity. From [10] we have the
following result, which is proved by using the Lefschetz coincidence
theorem.

THEOREM 2.3. If M is L-rigid and NI(M) > k, then LZ(M)' =
LZ(M) u {id} contains a set ofk pairwise compatible elements that
includes the identity.

Theorem 2.3 has an immediate corollary in the case where H*(M; Q)
is a truncated polynomial algebra on an even-dimensional generator.
Suppose H*(M;Q) is the polynomial algebra o n x G H2d(M;Q) mod-
ulo the relation xh+ι = 0: we call h the height of x. Then any en-
domorphism φ of H*(M;Q) has the form φ(x) — ax, and by direct
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computation its Lefschetz number is

L(φ) = l+a + a2 + -' + ah.

If we denote the right-hand side by Pk(a), then Ph{\) = h + 1 and

if a Φ 1. It follows that /^(fl) = 0 if and only if h is odd and a = - 1 .

The rational cohomology algebras of an even-dimensional sphere
S2n, complex projective space CPn, and quaternionic projective space
HPn are truncated polynomial algebras on even-dimensional genera-
tors of heights 2, n, and n respectively. Then NI(S2n) < 2 by Theorem
2.3, and in fact NI(S2n) = 2 since the antipodal map is fixed-point-
free. Similarly NI{CPn) = 2 if n is odd, and we have NI(CPn) = 1 if
n is even. The case for quaternionic projective space is a bit more com-
plicated: we have NI(UPn) = 1, for n even, but also NI(HPn) = 1
for odd n Φ \. This is because there is no self-map of HPn which
induces the endomorphism of H*(HPn;Z) that sends the generator x
to -x for odd nφ 1, as can be seen from mod 3 Steenrod operations
[2]. We shall return to these examples in §4.

The next result completes the proof of Theorem 1.1 by putting an
upper bound on the noncoincidence index of an L-rigid manifold.

THEOREM 2.4. If M is L-rigid, then NI{M) < β\ + β\ + + β2,
where β\, βι>..., βn cire the Betti numbers ofM.

Proof. As in [1] we can find a class U G Hn(M x Λf Q) so that
d*(U) e Hn{M\Q) is the Euler class of M, i.e.

(d*(n),[M])=χ(M),

where d: M -> M x M is the diagonal map. Further, if we choose a

basis p\,P2*. >PkfoτH*(M;Q) and let qx,q2i...,q^ be a dual basis
(so{PiUqj,[M]) = δu), then

Then for any endomorphism φ of 7/*(M;Q), the element

ί = l

has the property {d*((φ x id)(Q)), [M]) = L(φ) (cf. [1]).
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Now suppose NI{M) > βj + β\ + + β\ = rankHn(Af x Af Q).
Then there is a set S = {Φo>Φ\>- >Φr} of pairwise compatible ele-
ments of LZ(M), where φ0 = id and r = τankHn(M x Af Q). The
set {(φ x id)(ΰ)\φ G S] is linearly dependent: let

(1) cou + cι(φι xid)(U) + '" + cr(φr xid)(8) = 0

be a relation of linear dependence. If CQ Φ 0, then we can apply the
operator (d*(-),[M]) to (1) to obtain coχ(M) = 0, contradicting the
hypothesis. Otherwise, first choose c, Φ 0 and apply φ~ι x id to (1).

REMARK. The argument used here is essentially that of Fuller [3].
If S is a set of pairwise compatible automorphisms of if* (Af Q)

that includes the identity, we call S a compatible set for Λf. In view
of Theorem 2.3, we can bound NI(M) by bounding the cardinality of
compatible sets for Af. The following results will be used in §§4-5.

PROPOSITION 2.5. Let S be α compatible set for M contained in a
subgroup G of AutH*(M;Q), and suppose H is a subgroup of finite
index in G such that L(h)φO for all heH. Then \S\ < [G: H].

Proof. Let S be a compatible set for Af. The conclusion follows
if the cosets Hφ and Hψ are distinct for any two distinct elements
φ,ψ € S. Suppose otherwise: then φ = hψ for some heH, and
L{h) = L(φψ~ι) = 0, contradicting the hypothesis.

PROPOSITION 2.6. Suppose S is a compatible set for M contained in
a finite subgroup G ofA\xtH*(M;Q), and let R be a subset ofG such
that id eR and L{p~xσ) φOfor any p,σ eR. Then \S\ < \G\/\R\.

Proof. It suffices to show that pS Π σS = 0 for distinct elements p,
σ of R. Suppose otherwise: then there are distinct elements S\,S2 of
S so that ps\ = σ$2. But then L ^ s J 1 ) = L(p~ισ) Φ 0 contradicting
the compatibility of S.

3. Free group actions and the fixed point property. If Af is a sim-

ply connected, compact oriented manifold that admits a free action
by a finite group G, information about the relationship between the
noncoincidence index of the orbit space M/G and that of Af can be
obtained by studying the finite covering Af —• M/G. In this section
we prove a number of theorems about this situation.
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Suppose now that G is a fintie group that acts freely on M, a com-
pact oriented manifold. Then H*(M/G;Q) = H*(M;Q)G, the subal-
gebra of G-invariants. (Note that M/G is a manifold, but need not be
orientable since we are not assuming that the elements of G preserve
orientation.) We can assume χ{M) Φ 0, since otherwise M and M/G
have noncoincidence index oo. Let LZ(M)r = LZ(M) U {id}, and
define LZ(M)G to be the set of elements of LZ(M)1 that preserve
H*(M;Q)G.

If M is simply connected, then M is the universal cover of the
manifold M/G. Given any map / : M/G —• M/G, there is a 'lift'
f:M-^Mso that the diagram

M -^—> M

(1)

M/G -^—+ M/G

commutes. If / , g are lifts of noncoincident self-maps / , g of M/G,
then f(x) and g(x) are in different G-orbits for every x EM. Apply-
ing //*(•; Q) to the diagram (1), we see that /* takes the subalgebra
H*(M;Q)G into itself. In fact we have the following result.

THEOREM 3.1. Let M be a compact oriented simply connected man-
ifold of nonzero Euler characteristic. If a finite group G acts freely on
M and NI(M/G) > k, then LZ(M)G contains a compatible subset of
k\G\ elements that includes G

Proof. Let {f\,f2,- ->fk} be a set of noncoincident self-maps of
M/G with f\ = id. For each f choose a lift /)•: M —• M. Then the set
{gfi\g € G, 1 < i < k} has the properties required by the conclusion.

Theorem 1.2 follows immediately from this result and Theorem 2.3.
We give two other corollaries: in each M satisfies the hypotheses of
Theorem 3.1 and G acts freely on M. (Note that G can be regarded
as a subset of LZ(M)f.)

COROLLARY 3.2. IfGc LZ(M)1 is maximal as a set of pairwise
compatible elements of LZ(M)G

f then M/G has the fixed point prop-
erty.

COROLLARY 3.3. IfLZ(M)1 is a group and N(G) (the normalizer of
G in LZ(M)f) acts freely on Mf then NI{M/G) = \N(G)/G\.
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It is interesting to compare the preceding results to the following
one, which does not use the idea of noncoincidence index.

THEOREM 3.4. Suppose H*(M;Q) is concentrated in even dimen-
sions and a group G of order χ(M) acts freely on M. Then M/G has
the fixed point property.

Proof Since χ(M/G) = χ(M)/\G\ = 1, the reduced rational co-
homology H*(M/G;Q) is trivial. But then the Lefschetz fixed point
theorem implies M/G has the fixed point property.

Both Theorem 1.2 and Theorem 3.4 can be used to prove that RPn

has the fixed point property for n even, since in that case NI(Sn) =
χ(Sn) = 2. But Theorem 1.2 shows that the orbit space of CPn,
n > 3 odd, has the fixed point property for any free Z2-action, while
Theorem 3.4 does not apply since χ(CPn) = n + 1 > 4.

4. Products and the restricted noncoincidence index. A difficulty
with the noncoincidence index is that it is so often infinite. In fact,
we have the following result.

PROPOSITION 4.1. Let M be a compact manifold with NI(M) < oo.
Then any retract ofM {other than M itself) has the fixed point property.

Proof. Suppose L c M is a retract admitting a fixed-point-free map
/ . Let /: L —• M be the inclusion, r: M —• L a retraction. If L Φ M,
then ifr: M —• M is a nonsurjective fixed-point-free map. But then
NI(M) = oc by Theorem 2.2 of [10].

Thus, any product M x N has noncoincidence index oo unless both
M and JV have the fixed point property. If ¥ is a compact ori-
ented manifold, we define the restricted noncoincidence index of M,
RNI(M), by putting RNI(M) > k + 1 whenever M admits k self-
maps of nonzero degree, each of which is fixed-point-free and no two
of which have a coincidence. Evidently RNI(M) < NI(M). We have
the following results from the proofs of Theorems 2.3, 2.4 and 3.1,
respectively.

PROPOSITION 4.2. If M is a compact oriented manifold with χ{M) Φ
0 andRNI(M) > k, then LZ(M)1 contains a compatible set for M with
k elements.

PROPOSITION 4.3. For any compact oriented manifold M, RNI(M)
= NI{M) whenever the latter is finite. Further, RNI(M) < oo if and
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only ifχ(M) Φ 0, in which case

where β\,βi>...,βn are theBetti numbers ofM.

PROPOSITION 4.4. Let M be a compact oriented simply connected
manifold on which a group G acts freely by orientation-preserving home-
omorphisms. Then RNI(M/G) < RNI{M)/\G\.

We note that any group G acting freely on M has order \G\ <
RNI(M), and that, if χ(M) Φ 0, any self-map of M of nonzero degree
has a periodic point of period at most RNI(M). Also, RNI(M) = 1
if and only if M has the fixed point property for maps of nonzero
degree.

It is evident that RNI(M x N) > RNI(M)RNI(N) for any two
manifolds M and N. Equality holds in many cases (Theorem 1.3), but
the inequality can be strict even for products of spheres and projective
spaces (Proposition 4.7).

For many manifolds M, it is possible to classify the automorphisms
of H*(M;Q) and use Proposition 2.5 or 2.6 together with Proposition
4.2 to compute RNI(M). Let A be a graded algebra that is a tensor
product of truncated polynomial algebras, with even dimensional gen-
erators x\,...,xn. Then from [11] we have the following results (htx/
denotes the height of c/).

THEOREM 4.5. Any automorphism φ of A has the form φ(xi) =
βiXσ{i)> where a is an element of the symmetric group Σn such that
dirnxj = dimxj and htx/ = \Λxj whenever σ(i) = j .

THEOREM 4.6. Let φ be the automorphism of A given by φ{x{) =
aiXσ{iy Then

1=1

where {l,2,...,/i} = 5ΊU U*S)t is the partition corresponding to σ,

hi = hίXj for j E Si, and P^ is the polynomial introduced in §2.

As noted in §2, the cohomology algebras of even-dimensional
spheres and complex and quaternionic projective spaces are truncated
polynomial algebras on even-dimensional generators. We can use the
algebraic results above to prove Theorem 1.3.
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Proof of 13. The hypothesis insures that H*(M;Q) is a tensor prod-
uct of truncated polynomial algebras on even-dimensional generators
X\,.t..,xn. Suppose first that the JC/ all have the same height and
dimension. Then by Theorem 4.5 any automorphism of H*(M;Q)
can be represented by (a\,...,an

m

9σ)9 where the αz are nonzero ra-
tional numbers and σ e Σn. In fact, the automorphism group of
H*(M; Q) is the semidirect product (Q*)n x ΣΛ, where Q* is the group
of nonzero rational numbers and Σn acts on (Q*)Λ by permuting its
factors. Now from Theorem 4.6 it follows that the Lefschetz number
of (a\,..., an\ σ) is always nonzero if the common height of the X\ is
even, and zero exactly when the product of the α, over some cycle of
σ is - 1 if the height is odd. In the first case RNI(M) = 1. In the
second case there is a subgroup of index 2n in Q* x Σn given by the
elements (a\,...,an

m

9σ) with all the αz positive (a complete set of coset
representatives is given by those elements with σ = id and ax? = ±1 for
each /); every element of this subgroup has nonzero Lefschetz num-
ber. But then we can apply Propositions 2.5 and 4.2 to conclude that
RNI(M) < 2n.

For the general case, let {1,2,..., n} = S\ U u S^ be the coarsest
partition such that all generators labelled by elements of a set S/ have
the same dimension and height. Then H*(M;Q) = A\ <g> ® A^
where A\ is the subalgebra generated by {Xj\j e Si}. Theorem 4.4
implies that the automorphisms of H*(M; Q) leave the subalgebras A\
invariant, and the automorphism group of H*(M;Q) is just the direct
product of those for A\,..., A^. By the argument of the preceding
paragraph, RNI(M) is bounded by the product of the numbers 2^
(for each / such that the generators of At have odd height) and 1
(for each / such that the generators of A\ have even height). But (by
the remarks following 2.3) this is the product of the noncoincidence
indices of the factors of M.

PROPOSITION 4.7. RNI(S2 x H P 3 ) = 3.

Proof. By Theorem 4.5, all automorphisms of the cohomology of
S2xHP3 can be written as φ®ψ for automorphisms φ, ψ ofH*(S2;Q)
and //*(KP3;Q) respectively. Since L(φ®ψ) = L(φ)L(ψ) andL(^) φ
0 for every automorphism ψ induced by a self-map of H P 3 , the el-
ements of LZ(S2 x H P 3 ) all have the form a* ® ψ, where a is the
antipodal map of S2. For two such maps to be noncoincident it is
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necessary for their Lefschetz coincidence number to be zero, i.e.

0 = L(a* ®φ\,a*® ψi) = —L((a* ® ψ\)~ιa* ® ψi)

Now the only automoφhism of //*(HP 3;Q) with Lefschetz number
zero is the one that multiplies the generator by — 1. This is not in-
duced by any self-map of H P 3 , but it can be obtained as ψ^xψi for
ψ\, ψ2 induced by self-maps of H P 3 : for example, we can choose ψ\
to multiply the generator by 360, and ψ2 to multiply it by -360 (see
[14]). Then the maps corresponding to ψ\ and ψ2 have Lefschetz co-
incidence number zero, and can be deformed to noncoincident maps
f\ > fi [1]> s o f l x / l 5 f l x / 2 are fixed-point-free noncoincident maps of
the product: clearly this is the largest possible such set.

5. Complex flag manifolds. Manifolds of finite noncoincidence in-
dex occur 'naturally' as homogeneous spaces of the form G/K, where
G is a simple compact connected Lie group and K is a closed con-
nected subgroup of maximal rank. The simplest situation is when
K = Γ, a maximal torus. Papadima [16], generalizing an earlier result
of the author [9], has recently shown that G/T has noncoincidence
index equal to the order of the Weyl group W(G) = NGT/T (NGT is
the normalizer of T in G). Since W(G) also acts freely on G/T, the or-
bit space G/NGT has the fixed point property by Theorem 1.2. (One
can also use Theorem 3.4, since χ(G/T) = \W(G)\ and the rational
cohomology of G/T is concentrated in even dimensions.)

It appears that similar results hold if K has maximal rank but is not
a torus. But even for the class of homogeneous spaces studied in [10],
there were cases where the noncoincidence index was infinite. Here
we study the case where G is of type An, where the most results on the
cohomology endomorphisms of G/K seem to be available.

We consider homogeneous spaces of the form SUn/K, where K
is a closed subgroup of maximal rank: it is well-known that K is
conjugate to a subgroup of the form SUn Γ\UnιxUn2X'-xUnk, where
π\-\ hπ^ = n. Henceforth we shall assume without loss of generality
that K = SUn Π Unι x x Unk with rt\ < n2 < < n^. The space
SUn/K can be regarded as the space of orthogonal decompositions

(1) Cn = p i θ Θ Pk> dim/?/= π;.

The 'Weyl group9 for this situation is NGK/K, which is

NW{G)W(K)/W{K):
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it can be identified with the group of permutations a e Σk such that
m = rij whenever σ(i) = j . This group acts on decompositions (1) by
sending /?; to pσ(i)9 and this action is evidently free.

The cohomology of SUn/K is generated by elements Xij e
H2J(SUn/K;Q), 1 < i < k, 1 < j < nh subject to the relations

The action of the group NGK/K on cohomology is easily described:
σ e NQK/K sends x^ to xσ(iy. More generally, for any rational num-
ber λ Φ 0 and σ e NgK/K we can define an automorphism Φσ

λ of
H*(SUn/K;Q) by ΦJC*//) = λjxσ(<iy: we call such an automoφhism
a permutation automorphism. Recently Shiga and Tezuka [18] have
proved that every automoφhism of H*(SUn/K;Q) has this form. In
order to find the restricted noncoincidence index of SUn/K, we first
compute the Lefschetz number of a permutation automoφhism.

THEOREM 5.1. Let λ be a rational number, σ e NGK/K a permu-
tation, and {1,2, ...,/:} = S\ U u Sr the partition associated to σ.
Then

n(Sp)

p=\ 7=1

where n(Sp) is nι for any {and thus every) i e Sp.

Proof. This calculation is a straightforward generalization of those
done in [9] and [10]. First note SUn/K is homeomoφhic to Un/Kf,
where K1 = Unι x x Unk9 so we have a fibration

(2) SUn/K ^BUnιx x BUnk ^ BUn.

Now let

P = H * ( B U n ι x x B U n k ; Q ) = Q[Xij\l < i < k 9 \ < j < m l

where xy is in dimension 2j. Then NGK/K acts on P by sending x / ;

to xσ(i)j9 and we have an invariant decomposition

r n(Sp)

p=l 7=1

where Apj — Q[X(j\i €SP]. Now

,
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so the multiplicative property of trace on tensor products gives

(3) Σ /' Tr(σ : P2i - P2i) =
r n(Sp)

J
/>0 p=l 7=1

Now the spectral sequence of the fibration (2) collapses for degree
reasons, so

P = H*(SUn/K;Q)<g>H*(BUn;Q)

additively. Together with (3) and the fact

( 1 f ) ( | ( )

this implies

: H2i(SUn/K;Q) -> H2i(SUn/K;Q))

r Λ(5 P ) 1

-(•-«)-(i-«")ΠΠr=ϊ?
/ 7 1 7 1 r ϊ ? κ
/7=1 7 = 1

from which the conclusion follows by putting t = λ.
It will be convenient to introduce some further notation. For each

positive integer q, let Mq = {/|w, = #} and m^ = \Mq\. We can now
give the restricted noncoincidence index of SUn/K as follows.

THEOREM 5.2. Let M = SUn/K be a complex flag manifold Then

\NQK/K\, if at most one ofmx, ra3, m 5 , . . . is odd;

2\NGK/K\, otherwise.
RNI(M) = I

Proof. First we use 5.1 to determine the automorphisms Φσ

λ for
which L(Φσ

λ) = 0. Evidently this only happens if λ = ± 1 , so it follows
at once that RNI(M) < 2\NGK/K\. Since the automorphisms Φ^ are
induced by the free action of NGK/K on SUn/K, we have L(Φ[) = 0
for all σ Φ id. For λ = - 1 , we consider the limit in 5.1 as λ —• —1.
This limit will be zero unless there are as many factors 1 —λ\ i even, in
the denominator as there are in the numerator. There are [n/2] such
factors in the numerator, where brackets indicate the greatest integer
function, while the denominator has

(4) Σ «W)+ Σ
|5?|even |5p|odd L

γ-Λ£_
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Since the Λ, sum to n, (4) can equal [n/2] only if | ^ | < 2 for all p
and, with perhaps one exception if n is odd, n(Sp) is even whenever
\SP\ = 1. Since each set Sp must be contained in some Mq, there exists
a σ whose partition {Sp} satisfies these conditions only if at most one
of {ra^ltfodd} is odd. In this case, there exists σ with Φ°_{ ^ 0, and
we can use Proposition 2.6 (with R = {id,Φ^j}) to conclude that
RNI(M) < \NGK/K\.

To complete the proof we need only show that RNI(M) > 2\NGK/K\
in the case where two or more of {mq\qodd} are odd: we do this by
explicit construction. First we define a map / : Cn —• Cn as follows.
If n = 2p is even, regard Cn as the quaternionic vector space Hp

and define / to be multiplication by the quaternion j \ if n = 2p + 1
is odd, think of Cn as Up Θ C and let J(v, z) = (jυ, z). Then / is
a conjugate-linear automoφhism of Cn that preserves orthogonality,
and Cn cannot have two orthogonal /-invariant subspaces of odd di-
mension (cf. Theorem 1 of [6]). Now regard SUn/K as the space of
decompositions of form (1), and define 2\NGK/K\ self-maps oΐSUn/K
by

(5) (Pi,. ., Pk) -* (Pσ(\). - Pσ(k)). σ e NGK/K\

(6) (Pl,...,Pk)-+ (JPσ(l)>- - > JPσ(k))> <* € 7VG^/ϋ:.

Clearly there are no coincidences among the maps in (5) or those in
(6). Now suppose there is a coincidence between a map in (5) and
one in (6): then there is an element (p\,..., pk) of SUn/K with

Pσ(i) = JPπ(i)> 1 < i < k,

for some σ, π e NGK/K. Then the subspaces

are /-invariant and have dimension zmz. Since at least two of nt\9

mi,... are odd, this contradicts the properties of / . The conclusion
then follows.

REMARK. If n is even, / has period 2 as a self-map of SUn/K, and
the group NGK/K x Z2 acts on SUn/K via

(σ, ε) (pχ,...,pk) = {Jεpσ{i),..., JεPσ{k))

By the argument above, this action is free if two or more of m\, m^,...
are odd. It is in general not orientation-preserving, however, since



FIXED POINT PROPERTY FOR MANIFOLDS 143

(σ, e) has degree ( - \ ) ε d sgnσ, where

is the complex dimension of SUn/K and σ is the restriction of σ to
{i\rii is odd} (as follows from Theorem 2.3 of [12]).

If n\ = 1, H*(SUn/K;Q) may have nontrivial endomorphisms that
factor through the cohomology of CPn~ι. These 'projective' endo-
morphisms are classified in [5] as follows. Let

l-tn = Pι(t)P2(t) Pk(t)

be a factorization in Z[t] with Pf(t) a polynomial of degree Λ, and
Pr{t) = 1 — t for some r with nr = 1. Then

Ψ(l + x/i + + xini) = /> (-/U r l ), 1 < i < k,

defines a projective endomorphism Ψ, and all projective endomor-
phisms have this form. We call λ the multiplier of Ψ.

THEOREM 5.3. Let M = SUn/K be a complex flag manifold with no
cohomology endomorphisms except permutation automorphisms and
projective endomorphisms. Then NI(M) = RNI(M) unless k = 3,
m = nι = 1, and n?> is even.

Proof. It is shown in [10] that SUn/K has noncoincidence index oo
when k = 3, n\ = n2 = 1, and n^ is even, so we can exclude this case.
In view of the preceding result, it is enough to show that LZ(SUn/K)
contains no projective endomorphisms when k > 2. Now Theorem
3 of [7] requires that any projective endomorphism of H*(SUn/K;Q)
induced by a self-map have multiplier divisible by 2 or 3. But Proposi-
tion 5 of [6] says that a projective endomorphism of Lefschetz number
zero has multiplier - 1 .

At present there is no known flag manifold SUn/K that fails to sat-
isfy the hypothesis of Theorem 5.3. It seems reasonable to conjecture
that this is always the case, but the existing evidence is somewhat lim-
ited. Full classifications of the endomorphisms of H*(SUn/K;Q) are
available only in the following cases:

1. k = 2 and nx < 3 or n2 >2n\-nx-\ [4];
2. k = 3, n{ = 1, and «3 >2n\-\ [5];
3. m =n1 = -=nk_l = 1 [10].
In cases covered by 1-3 we can use Theorem 5.3 to conclude that

NI(SUn/K) = RNI(SUn/K), except when k = 3, nx = n2 = 1, and n3
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is even. Theorem 1.4 now follows from 1.2 and the remark following
5.2, except in the latter case. In this case there are fixed-point-free self-
maps of degree zero, but they do not preserve the subring of NGK/K-
invariants in H*(SUn/K\Q) (cf. Theorem 4.1 of [10]). Thus the orbit
space has the fixed point property by 3.1.
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