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THE ISOMORPHISM PROBLEM FOR
ORTHODOX SEMIGROUPS

T. E. HALL

The author’s structure theorem for orthodox semigroups produced
an orthodox semigroup /7 (E, T, y) from a band E, an inverse semi-
group 7 and a morphism y between two inverse semigroups, namely
T and Wg/y, an inverse semigroup constructed from E. Here, we
solve the isomorphism problem: when are two such orthodox semi-
groups isomorphic? This leads to a way of producing all orthodox
semigroups, up to isomorphism, with prescribed band £ and maxi-
mum inverse semigroup morphic image 7.

1. Preliminaries. A semigroup S is called regular (in the sense of
von Neumann for rings) if for each a € S there exists x € S such
that axa = a; and S 1is called an inverse semigroup if for each a € S
there is'a unique x € S such that axa = a and xax = x. A band is
a semigroup in which each element is idempotent, and an orthodox
semigroup is a regular semigroup in which the idempotents form a
subsemigroup (that is, a band).

We follow the notation and conventions of Howie [4].

Result 1 [3, Theorem 5). The maximum congruence contained in
Green’s relation # on any regular semigroup S, u = u(S) say, is given
by u = {(a,b) € #: for some [for each pair of | #-related inverses a
of a and b' of b, a'ea = b'eb for each idempotent e < aa'}.

A regular semigroup S is called fundamental if u is the identity
relation on S. For each band E, the semigroup Wy is fundamental,
orthodox, has its band isomorphic to E, and contains, for each or-
thodox semigroup S with band E, a copy of S/u as a subsemigroup:
see the author [1] (or [3] with E = (E) and Wg = T(g)) or Howie [4,
§VIL.2].

Now take any inverse semigroup 7', and, if such exist, any idempo-
tent-separating morphism y: T — Wg/y whose range contains the
semilattice of all idempotents of Wy /y, where y denotes the least
inverse semigroup congruence on Wg. A semigroup Z(E, T, y) (see
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S(E, T, v) in the author [2], or see Howie [4, §V1.4]) is defined by
Z(E, T y)={(w,t)e Wg x T: wyl = ty};
that is, #Z(FE, T, y) occurs in the pullback diagram

Z(E, T y) 2

| v

WEg — Wg/y

Here, p; and p, are projections.

The semigroup #(E, T, y) is orthodox, has band isomorphic to E,
and has its maximum inverse semigroup morphic image isomorphic
to T'; conversely every such semigroup is obtained in this way (the
author [2], or Howie [4, §V1.4]).

2. The isomorphism problem.

LEMMA 1. Take any two morphisms @, y from a regular semigroup
T to a regular semigroup S such that the range of each of ¢ and y
contains the set E(S) of all the idempotents of S. If o|E(T) = w|E(T)
then (tp,ty) € u, for all t € T, in particular, if also S is fundamental,
then ¢ = y.

Proof. Take any ¢t € T and any inverse ¢’ of ¢ in T. Of course, in
S, t'p and t'y are inverses of t¢ and ty respectively and (¢'¢)(tp) =
(') = (')y = (y)(ty). Likewise (t9)('9) = (ty)('y), so
(to)#(ty) and (t'9)#(t'y). Take any idempotent e of .S such that
e < (tt)p and any x € T such that xp = e: then (t//xtt')p =
[(¢t)ple[(tt')p] = e, so e € range(p|tt'Ttt'). Now tt'Ttt' is a regu-
lar semigroup, so by Lallement’s Lemma [4, Lemma I1.4.7] there is an
idempotent f € tt'Ttt' such that fp = e. Since ¢ ft is idempotent, we
have

(I'ple(tp) = (F'p)(fo)(tp) = (t' ft)p = (I fi)y
= (['w)(fw)(ty) = (Fy)e(ty).

Thus (t¢, ty) € u, as required, completing the proof.

Take any isomorphism a: £ — E’ from a band E to aband E’. Con-
sider W and W, and, as usual, identify £ and E’ with the bands of
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Wg and Wg. respectively. Since Wp. is constructed from E’ precisely
as Wg is constructed from E, there is an isomorphism from W to W,
extending a, say o* (in fact, there is a unique such isomorphism, by
Lemma 1). Denote by y and )’ the least inverse semigroup congruences
on Wg and Wy respectively: then the map o*™*: Wg/y — Wg//y,
given by wyao** = wa*y’, for all w € Wg, is an isomorphism such that
yla** = o*y't, and is the unique such isomorphism. Summarizing, we
have that the following diagram commutes, and o*, o** are the unique
morphisms making the diagram commute.

E —=2*5 FE

E B

WE '—C‘!‘——* WE/

ok

Wely - Wg /]y

THEOREM 2. Take any bands E, E', inverse semigroups T, T' and
idempotent-separating morphisms y: T — Wg/yandy': T' — Wg. [y’
whose ranges contain the idempotents of W |y and Wg: [y respectively.
Then #(E, T, y) is isomorphic to # (E', T', y') if and only if there ex-
ist isomorphisms a: E — E' and B: T — T' such that the following
diagram commutes

T 2.,

wl lw’ 5
Wgly —— Wg /[y

that is, such that y' = B~ 'ya**.

Proof. (a) if statement. Suppose such «, B exist. Informally we
could say that E’, T', y' are a renaming of E, T, y respectively,
obtained by renaming each ¢ € E by ea and each ¢t € T by 18,
and so Z(E',T',y') is isomorphic to #(E, T, ¥). More formally,
we consider the isomorphism (a*, 8): Wg x T — Wg: x T’ given by
(w, t)(a*, B) = (wa*,tP) for all (w,t) € Wg x T, and we show that
Z(E . Ty)(e*,B)=ZE" T, y).
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Take any (w, t) € Z(E, T, y): then wy® = ty, and so
tﬂwl — tﬁﬁ—IWa** — tl//a** — wyha** — wa*y’”,

so (w, t)(a*, B)=(wa*,tB)e Z(E',T', y') and hence Z(E, T, y)(a*, B)
CHE, T, y.
From symmetry, we deduce that

ZE. T y) " B =Z(E T ¢y« B~ ) CH(E.Ty),

whence Z(E, T, y)(a*, B) = Z(E', T', '), as required.

(b) only if statement. Informally, we could say that, for any ortho-
dox semigroup S with band E and least inverse semigroup congruence
%, there is a unique morphism y making the following diagram com-
mute:

S (p.A) Wi

A

S|y —t— Wg/y

Hence E, S/%, v are all determined to within isomorphisms (or re-
namings) by S. Formally, we proceed as follows.

Take any isomorphism 6: S — S’, where S = Z(FE,T,y) and
S' =X T, y'). Put 0|E = o, an isomorphism of E upon E’,
by Lallement’s Lemma [4, Lemma I1.4.7]. Let Z and %’ denote the
least inverse semigroup congruences on S and S’ respectively. Clearly
there is a unique isomorphism f: S/% — S’/%’ making the following
diagram commute:

s 2 5
| [ESR
siy - sy

Now T = S/% and T' = S'/%" ([2, Theorem 1] or [4, Theorem
V1.4.6]), so we assume without loss of generality that 7 = S/% and
T' = S'/%’; it remains to show that y' = S~ 1ya**.
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We shall see that Diagram 1 commutes (p;, p2, pj, P, are projec-
tions).

T B - T

Ynzm e V

s 4. 5

v lp.=(p,x) lp,'=(p'w> v
Wg -2 Wg

P N‘:
Y Y

Wg/y o’ > Wg/ [y
DIAGRAM 1

We have seen already that each of the four outer faces is a commuting
diagram: we consider the central face. Now 6p] and p,a* are mor-
phisms which agree on E (with a = 6|E), and which map E (isomor-
phically) onto E’, the band of Wg.. Hence, by Lemma 1, 6p] = p;a*;
that is, the central face commutes.

Consideration of the external face leads us to the following diagram.

S D =(p')') WE

?"‘—‘le l}"‘

T —2— Wg/y
Bylas=—}

The commuting of the five internal faces of Diagram 1 gives us
that p;y' = p,By'a**~!. But the mapping s% — (ps,4is)y (for all
s € S), namely y, is the unique morphism from 7" to Wg/y making
this diagram commute, and hence ¥ = By'a**~! (that is, the external
face commutes) and so ¥’ = B~ 1ya** as required.

3. Orthodox semigroups, up to isomorphism. Consider the following
problem: given a band E and an inverse semigroup 7, find, up to iso-
morphism, the orthodox semigroups with band E and with maximum
inverse semigroup morphic image isomorphic to 7.

The author’s structure theorem ([2, Theorem 1] or [4, Theorem
VI1.4.6]) and Theorem 2 above together immediately yield a solution
as follows.
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Denote by Aut(S) the group of automorphisms of any semigroup
S. From Lemma 1, for any ¢ € Aut(Wg), we see that ¢ = (¢|E)*,
so we have that Aut(F) = Aut(Wg) under the map a — o* for each
a € Aut(E). The map Aut(Wg) — Aut(Wg/7),a* — a** (for each
a € Aut(FE)), is a morphism; we denote its image by [Aut(E)]**; then
[Aut(E)]** = {a**: a € Aut(E)}.

Denote by M the set of idempotent-separating morphisms from
T into Wg/y whose ranges each contain the idempotents of Wg/y.
By [2, Corollary 1] or [4, Theorem VI.4.6], there exists an orthodox
semigroup with band E and with maximum inverse semigroup mor-
phic image isomorphic to T, if and only if M is nonempty. Assume
henceforth that M is nonempty. Define an action on M by the group
Aut(T') x [Aut(E)]** as follows:

w(B. a*) = B ya,

forall y € M, p € Aut(T), a € Aut(E).
The orbits of M under Aut(7") x [Aut(E)]** are the sets

w(Aut(T) x [Aut(E)]**) = {8 'wa**: B € Aut(T), a € Aut(E)},

for each y € M (thus these sets partition M). By Theorem 2, we have,
forall y,w' e M, #(E, T,y) = #(E, T, y') if and only if y and v’
are in the same orbit. Thus, if {y;: i € I'} is a transversal of the set of
orbits (that is, a selection of precisely one morphism from each orbit)
then #Z(E, T, y;), i € I, is a list of all the orthodox semigroups with
band E and maximum inverse semigroup morphic image isomorphic
to T, and the semigroups are pairwise nonisomorphic.
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