THE ISOMORPHISM PROBLEM FOR ORTHODOX SEMIGROUPS

T. E. HALL

The author's structure theorem for orthodox semigroups produced an orthodox semigroup $\mathcal{H}(E,T,\psi)$ from a band E, an inverse semigroup T and a morphism ψ between two inverse semigroups, namely T and W_E/γ , an inverse semigroup constructed from E. Here, we solve the isomorphism problem: when are two such orthodox semigroups isomorphic? This leads to a way of producing all orthodox semigroups, up to isomorphism, with prescribed band E and maximum inverse semigroup morphic image T.

1. Preliminaries. A semigroup S is called regular (in the sense of von Neumann for rings) if for each $a \in S$ there exists $x \in S$ such that axa = a; and S is called an inverse semigroup if for each $a \in S$ there is a unique $x \in S$ such that axa = a and xax = x. A band is a semigroup in which each element is idempotent, and an orthodox semigroup is a regular semigroup in which the idempotents form a subsemigroup (that is, a band).

We follow the notation and conventions of Howie [4].

Result 1 [3, Theorem 5]. The maximum congruence contained in Green's relation \mathcal{H} on any regular semigroup S, $\mu = \mu(S)$ say, is given by $\mu = \{(a,b) \in \mathcal{H}: \text{ for some [for each pair of] } \mathcal{H}\text{-related inverses a'} \text{ of a and b' of b, a'ea} = b'eb \text{ for each idempotent } e \leq aa'\}.$

A regular semigroup S is called *fundamental* if μ is the identity relation on S. For each band E, the semigroup W_E is fundamental, orthodox, has its band isomorphic to E, and contains, for each orthodox semigroup S with band E, a copy of S/μ as a subsemigroup: see the author [1] (or [3] with $E = \langle E \rangle$ and $W_E = T_{\langle E \rangle}$) or Howie [4, $\S VI.2$].

Now take any inverse semigroup T, and, if such exist, any idempotent-separating morphism $\psi: T \to W_E/\gamma$ whose range contains the semilattice of all idempotents of W_E/γ , where γ denotes the least inverse semigroup congruence on W_E . A semigroup $\mathcal{H}(E, T, \psi)$ (see

T. E. HALL

 $S(E, T, \psi)$ in the author [2], or see Howie [4, §VI.4]) is defined by

$$\mathscr{H}(E, T, \psi) = \{(w, t) \in W_E \times T : w\gamma^{\natural} = t\psi\};$$

that is, $\mathcal{H}(E, T, \psi)$ occurs in the pullback diagram

$$egin{aligned} \mathscr{H}(E,T,\psi) & \stackrel{p_2}{\longrightarrow} & T \ & \downarrow^{p_1} & \downarrow^{\psi} & . \ & W_E & \stackrel{\gamma^{th}}{\longrightarrow} & W_E/\gamma \end{aligned}$$

Here, p_1 and p_2 are projections.

The semigroup $\mathcal{H}(E, T, \psi)$ is orthodox, has band isomorphic to E, and has its maximum inverse semigroup morphic image isomorphic to T; conversely every such semigroup is obtained in this way (the author [2], or Howie [4, $\S VI.4$]).

2. The isomorphism problem.

LEMMA 1. Take any two morphisms φ , ψ from a regular semigroup T to a regular semigroup S such that the range of each of φ and ψ contains the set E(S) of all the idempotents of S. If $\varphi|E(T)=\psi|E(T)$ then $(t\varphi,t\psi)\in\mu$, for all $t\in T$; in particular, if also S is fundamental, then $\varphi=\psi$.

Proof. Take any $t \in T$ and any inverse t' of t in T. Of course, in S, $t'\varphi$ and $t'\psi$ are inverses of $t\varphi$ and $t\psi$ respectively and $(t'\varphi)(t\varphi) = (t't)\varphi = (t't)\psi = (t'\psi)(t\psi)$. Likewise $(t\varphi)(t'\varphi) = (t\psi)(t'\psi)$, so $(t\varphi)\mathcal{H}(t\psi)$ and $(t'\varphi)\mathcal{H}(t'\psi)$. Take any idempotent e of S such that $e \leq (tt')\varphi$ and any $x \in T$ such that $x\varphi = e$: then $(tt'xtt')\varphi = [(tt')\varphi]e[(tt')\varphi] = e$, so $e \in \text{range}(\varphi|tt'Ttt')$. Now tt'Ttt' is a regular semigroup, so by Lallement's Lemma [4, Lemma II.4.7] there is an idempotent $f \in tt'Ttt'$ such that $f\varphi = e$. Since t'ft is idempotent, we have

$$(t'\varphi)e(t\varphi) = (t'\varphi)(f\varphi)(t\varphi) = (t'ft)\varphi = (t'ft)\psi$$
$$= (t'\psi)(f\psi)(t\psi) = (t'\psi)e(t\psi).$$

Thus $(t\varphi, t\psi) \in \mu$, as required, completing the proof.

Take any isomorphism $\alpha \colon E \to E'$ from a band E to a band E'. Consider W_E and $W_{E'}$ and, as usual, identify E and E' with the bands of

 W_E and $W_{E'}$ respectively. Since $W_{E'}$ is constructed from E' precisely as W_E is constructed from E, there is an isomorphism from W_E to $W_{E'}$ extending α , say α^* (in fact, there is a unique such isomorphism, by Lemma 1). Denote by γ and γ' the least inverse semigroup congruences on W_E and $W_{E'}$ respectively: then the map $\alpha^{**}\colon W_E/\gamma \to W_{E'}/\gamma'$, given by $w\gamma\alpha^{**} = w\alpha^*\gamma'$, for all $w \in W_E$, is an isomorphism such that $\gamma^{\natural}\alpha^{**} = \alpha^*\gamma'^{\natural}$, and is the unique such isomorphism. Summarizing, we have that the following diagram commutes, and α^* , α^{**} are the unique morphisms making the diagram commute.

Theorem 2. Take any bands E, E', inverse semigroups T, T' and idempotent-separating morphisms $\psi \colon T \to W_E/\gamma$ and $\psi' \colon T' \to W_{E'}/\gamma'$ whose ranges contain the idempotents of W_E/γ and $W_{E'}/\gamma'$ respectively. Then $\mathscr{H}(E,T,\psi)$ is isomorphic to $\mathscr{H}(E',T',\psi')$ if and only if there exist isomorphisms $\alpha \colon E \to E'$ and $\beta \colon T \to T'$ such that the following diagram commutes

$$T \xrightarrow{\beta} T'$$
 $\psi \downarrow \qquad \qquad \downarrow \psi' ;$
 $W_E/\gamma \xrightarrow{\alpha^{**}} W_{E'}/\gamma'$

that is, such that $\psi' = \beta^{-1} \psi \alpha^{**}$.

Proof. (a) if statement. Suppose such α , β exist. Informally we could say that E', T', ψ' are a renaming of E, T, ψ respectively, obtained by renaming each $e \in E$ by $e\alpha$ and each $t \in T$ by $t\beta$, and so $\mathscr{H}(E', T', \psi')$ is isomorphic to $\mathscr{H}(E, T, \psi)$. More formally, we consider the isomorphism $(\alpha^*, \beta) : W_E \times T \to W_{E'} \times T'$ given by $(w, t)(\alpha^*, \beta) = (w\alpha^*, t\beta)$ for all $(w, t) \in W_E \times T$, and we show that $\mathscr{H}(E, T, \psi)(\alpha^*, \beta) = \mathscr{H}(E', T', \psi')$.

126 T. E. HALL

Take any $(w, t) \in \mathcal{H}(E, T, \psi)$: then $w\gamma^{\natural} = t\psi$, and so

$$t\beta\psi' = t\beta\beta^{-1}\psi\alpha^{**} = t\psi\alpha^{**} = w\gamma^{\dagger}\alpha^{**} = w\alpha^*\gamma'^{\dagger},$$

so $(w, t)(\alpha^*, \beta) = (w\alpha^*, t\beta) \in \mathcal{H}(E', T', \psi')$ and hence $\mathcal{H}(E, T, \psi)(\alpha^*, \beta) \subseteq \mathcal{H}(E', T', \psi')$.

From symmetry, we deduce that

$$\mathcal{H}(E',T',\psi')(\alpha^*,\beta)^{-1} = \mathcal{H}(E',T',\psi')(\alpha^{*-1},\beta^{-1}) \subseteq \mathcal{H}(E,T,\psi),$$

whence $\mathcal{H}(E, T, \psi)(\alpha^*, \beta) = \mathcal{H}(E', T', \psi')$, as required.

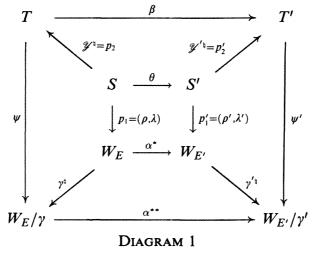
(b) only if statement. Informally, we could say that, for any orthodox semigroup S with band E and least inverse semigroup congruence \mathcal{Y} , there is a unique morphism ψ making the following diagram commute:

Hence E, S/\mathcal{Y} , ψ are all determined to within isomorphisms (or renamings) by S. Formally, we proceed as follows.

Take any isomorphism $\theta \colon S \to S'$, where $S = \mathcal{H}(E, T, \psi)$ and $S' = \mathcal{H}(E', T', \psi')$. Put $\theta | E = \alpha$, an isomorphism of E upon E', by Lallement's Lemma [4, Lemma II.4.7]. Let \mathcal{Y} and \mathcal{Y}' denote the least inverse semigroup congruences on S and S' respectively. Clearly there is a unique isomorphism $\beta \colon S/\mathcal{Y} \to S'/\mathcal{Y}'$ making the following diagram commute:

Now $T \cong S/\mathscr{Y}$ and $T' \cong S'/\mathscr{Y}'$ ([2, Theorem 1] or [4, Theorem VI.4.6]), so we assume without loss of generality that $T = S/\mathscr{Y}$ and $T' = S'/\mathscr{Y}'$; it remains to show that $\psi' = \beta^{-1}\psi\alpha^{**}$.

We shall see that Diagram 1 commutes (p_1, p_2, p'_1, p'_2) are projections).



We have seen already that each of the four outer faces is a commuting diagram: we consider the central face. Now $\theta p_1'$ and $p_1\alpha^*$ are morphisms which agree on E (with $\alpha = \theta | E$), and which map E (isomorphically) onto E', the band of $W_{E'}$. Hence, by Lemma 1, $\theta p_1' = p_1\alpha^*$; that is, the central face commutes.

Consideration of the external face leads us to the following diagram.

$$S \xrightarrow{p_1=(
ho,\lambda)} W_E$$
 $\mathcal{Y}^{\natural}=p_2 \downarrow \qquad \qquad \downarrow^{\gamma^{\natural}}$
 $T \xrightarrow{\beta \psi' lpha^{**-1}} W_E/\gamma$

The commuting of the five internal faces of Diagram 1 gives us that $p_1\gamma^{\natural}=p_2\beta\psi'\alpha^{**-1}$. But the mapping $s\mathscr{Y}\mapsto (\rho_S,\lambda_S)\gamma$ (for all $s\in S$), namely ψ , is the unique morphism from T to W_E/γ making this diagram commute, and hence $\psi=\beta\psi'\alpha^{**-1}$ (that is, the external face commutes) and so $\psi'=\beta^{-1}\psi\alpha^{**}$ as required.

3. Orthodox semigroups, up to isomorphism. Consider the following problem: given a band E and an inverse semigroup T, find, up to isomorphism, the orthodox semigroups with band E and with maximum inverse semigroup morphic image isomorphic to T.

The author's structure theorem ([2, Theorem 1] or [4, Theorem VI.4.6]) and Theorem 2 above together immediately yield a solution as follows.

T. E. HALL

Denote by $\operatorname{Aut}(S)$ the group of automorphisms of any semigroup S. From Lemma 1, for any $\varphi \in \operatorname{Aut}(W_E)$, we see that $\varphi = (\varphi|E)^*$, so we have that $\operatorname{Aut}(E) \cong \operatorname{Aut}(W_E)$ under the map $\alpha \mapsto \alpha^*$ for each $\alpha \in \operatorname{Aut}(E)$. The map $\operatorname{Aut}(W_E) \to \operatorname{Aut}(W_E/\gamma)$, $\alpha^* \mapsto \alpha^{**}$ (for each $\alpha \in \operatorname{Aut}(E)$), is a morphism; we denote its image by $[\operatorname{Aut}(E)]^{**}$; then $[\operatorname{Aut}(E)]^{**} = \{\alpha^{**} : \alpha \in \operatorname{Aut}(E)\}$.

Denote by M the set of idempotent-separating morphisms from T into W_E/γ whose ranges each contain the idempotents of W_E/γ . By [2, Corollary 1] or [4, Theorem VI.4.6], there exists an orthodox semigroup with band E and with maximum inverse semigroup morphic image isomorphic to T, if and only if M is nonempty. Assume henceforth that M is nonempty. Define an action on M by the group $\operatorname{Aut}(T) \times [\operatorname{Aut}(E)]^{**}$ as follows:

$$\psi(\beta,\alpha^{**})=\beta^{-1}\psi\alpha^{**},$$

for all $\psi \in M$, $\beta \in Aut(T)$, $\alpha \in Aut(E)$.

The orbits of M under $Aut(T) \times [Aut(E)]^{**}$ are the sets

$$\psi(\operatorname{Aut}(T) \times [\operatorname{Aut}(E)]^{**}) = \{\beta^{-1}\psi\alpha^{**} \colon \beta \in \operatorname{Aut}(T), \alpha \in \operatorname{Aut}(E)\},$$

for each $\psi \in M$ (thus these sets partition M). By Theorem 2, we have, for all $\psi, \psi' \in M$, $\mathcal{H}(E, T, \psi) \cong \mathcal{H}(E, T, \psi')$ if and only if ψ and ψ' are in the same orbit. Thus, if $\{\psi_i : i \in I\}$ is a transversal of the set of orbits (that is, a selection of precisely one morphism from each orbit) then $\mathcal{H}(E, T, \psi_i)$, $i \in I$, is a list of all the orthodox semigroups with band E and maximum inverse semigroup morphic image isomorphic to T, and the semigroups are pairwise nonisomorphic.

REFERENCES

- [1] T. E. Hall, On orthodox semigroups and uniform and antiuniform bands, J. Algebra, 16 (1970), 204-217.
- [2] _____, Orthodox semigroups, Pacific J. Math., 39 (1971), 677-686.
- [3] _____, On regular semigroups, J. Algebra, 24 (1973), 1-24.
- [4] J. M. Howie, An Introduction to Semigroup Theory, L.M.S. Monographs, No. 7, Academic Press, London, New York, 1976.

Received July 21, 1987.

Monash University Clayton, Victoria 3168 Australia