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THREE QUAVERS ON UNITARY
ELEMENTS IN C*-ALGEBRAS

GERT K. PEDERSEN

Henry Dye in memoriam

Unitary polar decomposition of elements in C*-algebras is dis-
cussed in relation to the theory of unitary rank; and characterizations
of algebras admitting weak or unitary polar decomposition of every
element are given.

Introduction. Let A be a unital C*-algebra, and denote by GL(A)
and f/(A) the groups of invertible and unitary elements in A, respec-
tively. The set

consists of those elements that admit a unitary polar decomposition in
A. The formulae x = (JCIJCI"1))^! a n d * = u\x\ = limwd^l + n" 1 ) show
that GL{A) c &>(A) and that GL(A) is dense in &(A). Moreover, it
was shown in [12] and [16] that each element in A has a canonical
approximant in &>(A)=.

We know from Mazur's theorem that GL(^4) = A\{0} only if A = C.
The corresponding question, when &(A) = A,is more subtle, and will
be addressed in the third of these short notes. In the first two we shall
study certain phenomena in the unit ball A1 of A. In particular we
shall be concerned with the set

(As usual we write Sι for S Π A1, for any subset S of A.) It is quite
easy to see that

GL(A)1 C &>(A)1 C \{W(A) + &(A)),

and that these sets are dense in one another. By [16, Proposition
3.16] their common closure (^(A)ι)= consists of those elements x in
A such that for every ε > 0 there are unitary elements U\, uι and w3

with x = j(l - e)u\ + \(l - e)u2 +

1. Unitary rank revisited. Based on the Russo-Dye theorem [17], the
theory of unitary rank is the discussion of the least number of unitaries
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170 GERT K. PEDERSEN

needed to express an element in Ax as an element in conv(&(A))9 cf.
[7], [8], [16]. The point of departure is L. T. Gardner's observation,
[2], that

(*) (A1)0 + &(A) C &(A) + fί{A).

Replacing the open unit ball (A1)0 with Aι

9 above, is usually not possi-
ble (unless A is a von Neumann algebra, see [8, Lemma 2.1]). Recently
U. Haagerup [5] found that

(**) A1 + 2&>(A)X C%S(A) + 2&>(A)X,

and used this to verify the conjecture, [8, 3.5], that the unitary rank of
an element x in A with ||JC|| < 1 - 2/n cannot exceed n. We shall now
show how the result (**) may replace (*), to give a slightly stronger
theory.

PROPOSITION 1.1. For each x in A, let a = dist(;c, GL(^)). Then

di s tOr ,-^) 1 ) = max{α, ||JC|| - 1}.

Moreover, if x = v\x\ is the polar decomposition of x in A", and
/o(ί) = 1 Λ (ί - α)+, then x0 = vfo(\x\) e (&>(A)ι)=, with \\x - xo\\ =

Proof Put β = άxsX{x9&>(A)x). Since GL(^) 1 c GL(^) it is clear
that β > a. Since moreover GL(^) 1 c A1, it is also clear that β >
\\x\\ - 1. To show the inequality β < max{α, \\x\\ - 1} take e > 0 and
define fe(t) = 1 Λ (t - (a + ε))+. By [12, Theorem 5] there is a uε in

such that

and clearly this element belongs to &>{A)X. It follows that XQ =
υM\x\)e(&(A)ιr. Finally,

\\x - xo\\ = \\v\x\ - vfo(\x\)\\ = II |AΓ| - /o(|x|)||

= max{t - /o(ί)|O < t < \\x\\) = max{α, \\x\\ - 1}.

THEOREM 1.2. Given x in A1, assume that

\\βx-2p\\<β-2

for some p in ^(A)1 and some β > 2. Then with n the natural number
such that n - I < β < n, there are unitaries U\,..., un in &(A), such
that

x = β-χ(ux + - + M Π _0 + β~x(β + 1 - n)un.
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Proof. The case β = 2 easily reduces to the classical Murray-von
Neumann result that x = \(u + u*) for every x in A\a. If /? > 2, put
y = 0» - 2)-1(jtoc - 2p). Then ||y|| < 1 and βx = (β - 2)y + 2p. By
repeated application of Haagerup's result (**) we obtain unitaries u^
in W(A) and elements p^ in 3d(A)1 for I < k < n - 3, such that

βx = u{+ 2Pι +{β- 3)y = Uι+u2 + 2p2 + (β- A)y

= . = Uχ + + ww_3 + 2pn_3(β + 1 - rt)y.

Since 0 < j S + l ~ w < l w e can apply [8, Lemma 2.3] to obtain vn^
and un in f/(A) with

Wrt_3 + (β + 1 - /|)y = ̂ _ 3 + (jί + 1 - ri)Un.

Finally, by the classical case, 2/?Λ_3 = ww_2 + wΛ-i for some unitaries
in ^(^4), and thus (relabeling vn-^ as wΛ_3) we have the desired ex-
pression

βx = (Ml + ... + W Λ _ 3 ) + (un-2 + «Λ-i) + (j? + 1 - /i)«Λ.

REMARK 1.3. Note that we actually obtain a slightly stronger de-
composition

x = β-i(Uι + ... + un_3) + β~ι(β + l- n)un + 2β~ιp0

for some po in 1

PROPOSITION 1.4. The infimum of those β for which Theorem 1.2
can hold is 2(1 - α ) " 1 , >vAer̂  a = dist(x,

Proof. By Proposition 1.1 we have

= 2max {$#*, ^ | | x | | - 1} = max{^α, \̂\x\\ - 2}.

This maximum is < β - 2 precisely when βa < β - 2, i.e. β >
2 ( 1 - o ) - 1 .

REMARK 1.5. Theorem 1.2 is closely patterned after [8, Proposition
3.1], with 3°{A)X replacing ίί{A). The improvement is clear: even
though 11/fat - w|| < β - 1 for some uin%ί(A)we cannot conclude that
βx = Mi H hMw_i + (jff + l~A2)Mrt, simply because Gardner's result
does not hold for the closed, but only for the open unit ball. Note also
from Remark 1.3 that the result is best possible, because

\\βx - 2po\\ = \\u{ + • + MW_3 + (β + 1 - n)un\\ <β-2.
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2. Uniqueness of unitary means. Any non-zero complex number in
the unit disk is the midpoint of a unique pair of unitary numbers. We
show that the same fact is valid to a large extent, when C is replaced
by an arbitrary unital C*-algebra. This principle lies behind the ar-
guments in [7, Remark 19] and [13]. Corollary 2.4 was obtained by
R. V. Kadison and the author simultaneously (it rained a lot in War-
wick this summer), and Proposition 2.7 was pointed out to me by M.
Rordam.

LEMMA 2.1. If x e A and x — au + βv for some unitaries u and υ
in %f(A) and 0 < a, β < 1, a + β = 1, then with γ = α1/2/?"1/2 we have
u = x + iγ~ιy, v = x — iyy, where y £ A satisfying

(i) x*x + y*y = 1, xx* + yy* — 1;

(ii) i(x*y - y*x) = (y - γ~ι)y*y, -i(xy* - yx*) = (γ - γ~~ι)yy*.
Conversely, if y satisfies (i) and (ii), then with u = x + ίγ~xy and
v = x - iγy we have unitaries such that x = au + βv.

Proof. The four equations expressing the unitarity of u and v are

x*x + γ~2y*y + iγ~ι(x*y - y*x) = 1,

xx* + γ~2yy* - iγ~ι(xy* - yx*) = 1,

x*x + γ2y*y - iγ(x*y - y*x) = 1,

xx* + γ2yy* + iy{χy* - yx*) = 1.

These are easily seen to be equivalent with the four equations con-
tained in (i) and (ii).

PROPOSITION 2.2 (cf. [7, Remark 7]). If x = w\x\ for some w in
ίί{A) and \a-β\<x<\, then with

y = \{aβ)-χl2w\x\-\\ - |x | 2 ) 1 / 2 [( |x | 2 - (a - β)2)1!2

- i(a - β)(l - \x\ψ2]

we obtain unitaries u and v as in Lemmas 2.1 such that x = au + βv.

Proof. By straightforward computations we verify that y satisfies
the conditions (i) and (ii) of Lemma 2.1 Note that when a — β — \
we are back at the classical case y = w(\ - l^
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THEOREM 2.3. Ifx = au + βv for some x in GL(A), where u, v are
in ^(A) and 0 < a, β < 1, a + β = 1, then with y as in Lemma 2.1
we have

y = \{aβ)-χ/2w\x\-ιz.

Here w\x\ = x is the unitary polar decomposition ofx, and z = h + ik
is a normal element of A, commuting with \x\, such that

\h\ = (1 - |x | 2 ) 1 / 2 (M 2 - (o - β)ψ2, k = (β-a)(l- \x\2).

Proof. We define

z = 2{aβ)χl2\x\w*y = 2{aβγ'2x*y

(as we must), and compute, using (i), that

z*z = 4aβy*xx*y = 4aβy*(l - yy*)y

= Aaβy*y{\ - y*y) = Aaβ{\ - x*x)x*x,

zz* = 4aβx*yy*x = 4α#t*(l - xx*)x

= 4aβx*x{l-x*x).

Thus z is normal; and if z = h + ik, with h and k in Asa, we have
h2 + k2 = z*z = 4aβ\x\2(ί - \x\2).

From condition (ii) in Lemma 2.1 we have

k = \ί{z - z*) = {aβ)χl2i{x*y - y*x)

= {aβ)χl2{γ - γ-ι)y*y = (a-β)(l- \x\2).

With a = 1 - \x\2 we then solve the equation for h2:

h2 = \z\2 -k2 = 4aβ(l - a)a -{a- β)2a2

= 4aβa - {a + β)2a2 = (1 - |x | 2 ) (W - 1 + M2)

= ( l- |x | 2 ) ( |x | 2 -(α-/?) 2 ) .

To show, finally, that h, and therefore also z, commutes with |JC|, we
use the second part of (ii) to get

(γ - γ-ι)\x\2(l - \x\2) = (γ- 7~l)x*(l - xx*)x

= (γ - γ~ι)x*yy*χ = -ix*(xy* — yχ*)x

= \i{aβ)-χl2{zx*x - x*xz*).

Multiplying with 2(α/?)1/2 and inserting z = h + ik gives

2(α - β)\x\2{\ - \x\2) = i(h\x\2 - \x\2h) - 2k\x\2.



174 GERT K. PEDERSEN

Since -k\x\2 = (α - β)\x\2{\ - \x\2) it follows that h\x\2 - \x\2h = 0,
as desired.

COROLLARY 2.4. If x = \{u + v) and x e GL(A), then u = x + iy,
v = x - iy and y = w{\ - |JC|2)

 1/2

4s
ι. Here x = w\x\ is the polar

decomposition, and s is a symmetry in A'1 commuting with \x\ and
multiplying 1 - |JC|2 into A.

Proof, By Theorem 2.3 we have y = w\x\~ιh, and we let e be
the range projection of /*+ in A". Then s = 2e - 1 is a symmetry
commuting with |JC| and s\h\ = £(/*+ + Λ_) = λ+ — λ_ = Λ. Since
|/r| = (l - pel2)1/2!*! the result follows.

COROLLARY 2.5. Ifx e GL(A) such that \x\ is multiplicity-free {i.e.
generates a maximal commutative C*-subalgebra of A) and has con-
nected spectrum, then for each α, β there is at most one pair in %f(A)
such that x = au + βv.

Proof. Put B = C*(|JC|, 1), so that B - C(sp(|*|)). If x = au + βυ9

let y and z = h + ik be as in Theorem 2.3. It suffices to show that h
is uniquely determined, up to a change of sign; because then the pair
w, v will be unique. But

heB'nA = B,

so that A = f(\x\) for some real function / in C(sp(pc|)). We see that
f(λ)2 = (1 - A2)(A2 - (α - /?)2), whence

= ±(1 - A 2 ) 1 / 2 ^ 2 - (α - Z?)2)1/2, λ e sp(|x|).

Since the spectrum is connected, exactly one of the signs must hold
for all λ.

COROLLARY 2.6. If x e &*(A) with \a - β\ < \x\ < 1, and if the
commutant of\x\ in A contains no non-trivial projections, then x =
au + βv for a unique pair ofunitaries in

Proof. As in the previous corollary it suffices to show uniqueness
(modulo sign) of h. As |α - β\ < \x\ < 1 we see that \h\ e GL(A) and
thus h = s\h\ for some self-adjoint unitary s (= h\h\~ι) in the relative
commutant of \x\. As s = 2p - 1 for some projection p, we see that
s = 1 or s = —1.
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PROPOSITION 2.7. An element x in A with \\x\\ < 1 belongs to \

+ fa (A) if and only ifx = wa for some w in 2f(A) and some a in A\a.

Proof. Since a = \{u + u*) with u = a + /(I - α 2 ) 1 / 2 , the sufficiency
is clear. To prove necessity, assume that x = \{u + v) and take y as
in Lemma 2.1 (with a = β = 5). Since ||x|| < 1 we see from (i) that
both y*y and yy* are invertible, so that y e GL(>4) with y = w\y\ for
some w in 2^4). Put a = w*x and compute by (ii)

|y|# = |J;|U>*JC = y*χ = χ*y = χ*w\y\ = a*\y\.

Thus \y\a is self-adjoint. On the other hand,

\y\a = y*x = tt;*|y*|x = tϋ*(l - x

by (i), so that a and |y| commute. Therefore

3. Unitary polar decomposition. We say that an element x in A ad-
mits a wraΛ: polar decomposition iϊ x = V|JC| for some υ in A with
IMI < 1. Note that v is not assumed to be a partial isometry and,
in particular, no uniqueness properties of the decomposition are ex-
pected. If a decomposition exists for every element we say that A
has weak polar decomposition. Similarly we say that A has unitary
polar decomposition if for every x in A there is a u in W(A) such that
JC = iφr|, i.e. A =&>(A).

Recall from [11] that a unital C*-algebra A is a SAW*-algebra if for
each pair x, y of orthogonal elements in A+ there is an element e in
Asa (which can then be assumed to satisfy 0 < e < 1), such that xe = 0
and (1 - e)y = 0. We now say that A is an n-SAW*-algebra if Mn(A)
is a SAW*-algebra. Clearly then Mm(A) is also a SAW*-algebra for
each m <n. If the situation is stable, i.e. A is an rc-SAW*-algebra for
every n, we shall refer to A as a SSAW*-algebra.

One of the main difficulties with SAW*-algebras is that the defini-
tion, like the corresponding AW*-condition, only involves the commu-
tative subalgebras of A. Therefore there is no compelling reason to
believe that the SAW*-condition implies «-SAW* for n > 1. On the
other hand, R. R. Smith and D. P. Williams show in [20, Theorem 3.4]
that if A is a commutative SAW*-algebra (which means that A = C{X)
for some sub-Stonean space), then A is also SSAW*. The same hap-
pens when we investigate the natural source of SAW*-algebras: the
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corona algebras. These have the form A = C(B), where B is a non-
unital, but σ-unital C*-algebra, and C(B) = M(B)/B. Clearly

Mn(C(B)) = M(Mn(B))/Mn(B) = C(Mn(B)),

so that all corona C*-algebras are SSAW*.

PROPOSITION 3.1. ̂ 4 C*-algebra A is a SAW*-algebra if and only if
every self-adjoint element x admits a weak polar decomposition x =
v\x\ with v = υ*.

Proof. If A is a SAW*-algebra and x G Asa, consider the decom-
position x = x+ - X-. Since x+x- = 0, there is an element e in A,
0 < e < 1, such that ex- = 0 and (1 - e)x+ = 0. Put υ = 2e - 1 and
note that v = v* and - 1 < v < 1. Moreover,

Conversely, if A has weak polar decomposition in Asa, consider an
orthogonal pair x, y in A+. By assumption

X- y z=v\χ- y\= y(χ + y)

for some υ in Asa with ||?;|| < 1. Let e = j(l + v), so that 1 - e —

\(\ - v), and use the facts (1 - i?)x = (1 + v)y = 0 to verify that

PROPOSITION 3.2. If A is a 2-SAW*-algebra, it has weak polar de-
composition.

Proof. We apply Proposition 3.1 to the self-adjoint element (£ x*)
in M2(^4), to obtain a self-adjoint matrix w = (ζv*), satisfying the
decomposition equation

(0 x*\ _(y v*\ (0 x*\
\x θ)-{v z)\x O)

= \ v V z ) { θ \x*\J
Direct computation shows that x = υ\x\, and clearly \\v\\ < 1 since

PROPOSITION 3.3. If A is a 4-SAW*-algebra, there is for each pair
x, y in A such that x*x < y*y an element w in A, with \\w\\ < 1, such
that x = wy.
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Proof. Consider the elements

a_({\y\2-\χ\2Ϋ12 o\ (\y\ o\
V x o)' ΰ~\o o)

in M2(A), and note that a*a = b2, i.e. |α| = b. Since M2(v4) is a 2-
SAW*-algebra there is by Proposition 3.2 a matrix c = (c/,) in M2(A),
with | |c| | < 1, such that a = cb. Multiplying the matrices we get

x = a2\ = c2ϊ\y\.

Since by the previous result, y = u\y\ for some u in A with ||κ|| < 1,
we have \y\ = w*w|y| = u*y; and thus with w = C21W* we get the
desired result.

PROPOSITION 3.4. If an element x in a C*-algebra A admits a weak
polar decomposition x = v\x\, such that

then x has a unitary polar decomposition.

Proof Put a = di$t(υ,GL(A)). By [12, Corollary 8] we see that if
/ G C(R), such that f(t) = 0 for all/ < α + e for some £ > 0, then

vf(\v\) = u\v\f(\v\)

for some u in ^(^4). As a < 1 we may choose / such that / ( I ) = 1.
Since v*v\x\ = |ΛΓ|, we have (1 - |V|)|JC| = 0, so that (1 -/( | v | ) ) | x | = 0.
Consequently

u\x\ = u\v\f(\υ\)\x\ = vf(\v\)\x\ = v\x\ = x.

THEOREM 3.5. If a C*-algebra A has unitary polar decomposition,
then GL(A) is dense in A which is a SAW-algebra. Conversely, if
A is a 2-SAW*-algebra with GL(A) dense, then A has unitary polar
decomposition.

Proof. The first half of the theorem follows from Proposition 3.1
plus the fact that each element u\x\ in &>(A) is the limit of u(\x\+e) in
GL(A) as e -* 0. The second half follows by combining Propositions
3.2 and 3.4.

COROLLARY 3.6. A corona C* -algebra has unitary polar decomposi-
tion if and only if the invertible elements are dense.

Proof. As noted in the beginning of this section, corona algebras are
SSAW*-algebras, so Theorem 3.5 takes on this simple form.
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REMARK 3.7. In [1], [6] and [14] M. J. Canfell, D. Handelman
and A. G. Robertson prove (independently) that a compact Hausdorff
space X is sub-Stonean (our terminology [3], they talk about F-spaces)
with άivaX < 1 if and only if C(X) has unitary polar decomposition.
Since dimX < 1 is equivalent with GL(C(X)) being dense in C(X),
the previous theorem represents a generalization to non-commutative
C*-algebras of their result.

Robertson also shows that the conditions above are equivalent with
the equality

Presumably this also generalizes. At least Proposition 2.7 shows that
if

for some C*-algebra A, then each element x in A has the form ua
with u in ^(A) and a = a*. The problem is, of course, that a is not
assumed to commute with |JC|, so that we do not immediately obtain
unitary polar decomposition.
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