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DIFFERENTIABILITY PROPERTIES
OF SUBFUNCTIONS FOR SECOND ORDER

ORDINARY DIFFERENTIAL EQUATIONS

H. B. THOMPSON

We obtain sharp differentiability results for subfunctions for sec-
ond order ordinary differential equations y" - f(x,y,yf) on [a, b]. In
the process we show that a subfunction satisfies a second order differ-
ential inequality similar to that satisfied by a lower solution. We show
that a subfunction can be used in maximum principle arguments in
the same way one uses a lower solution. As an application of these re-
sults we give necessary and sufficient conditions on a function in order
that there is a differential equation for which it is a subfunction. We
use our results together with the Perron method to improve on some
existence results for two point boundary value problems obtained by
Jackson, using Perron's method.

1. Introduction. Subfunctions and solutions of differential inequali-
ties have been used for a long time to establish existence theorems and
properties of solutions for both ordinary and partial differential equa-
tions. In 1915, Perron [11] used solutions of differential inequalities
to establish the existence of a solution of the initial-value problem for
the first order equation y' = f{x,y). In 1923 Perron [12] used sub-
harmonic functions to study the Dirichlet problem for Laplace's equa-
tion for bounded plane domains. Perron used local solvability of the
Dirichlet problem for circles and properties of subharmonic functions
to prove the existence of a generalized solution which is harmonic in
the interior of the domain, allowing the question of whether or not it
assumes the specified values at the boundary to be treated separately.
The success of subharmonic functions leads to various extensions of
the concept and a careful study of the properties of these related func-
tions. One early extension was to second order ordinary differential
equations. We consider second order ordinary differential equations
of the form

(i. i ) y" = f(χ,y,yβ)

where / : [a, b] x R2 —• R is continuous.
By a solution of (1.1) on a subinterval / of [a, b], we mean a function

y: / -> R which is twice continuously differentiable on / and satisfies
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(1.1) pointwise on /. We will frequently consider solutions y of (1.1)
defined on / = [xi,X2] a n d satisfying the boundary conditions

(1.2)

In the context of solutions of (1.1) the analogue of a subharmonic
function is a subfunction (see Jackson [9, Definition 3.1]).

A function a is said to be a subfunction for (1.1) on [α, b] if for any
[*i>*2] C [a>b] all solutions y of (1.1) and (1.2) satisfying

(1.3) y(χ\)><*(χι), y(χ2)><*(χ2)

satisfy y(x) > a(x), for all x e [x\9X2] Superfunctions are defined by
reversing these inequalities.

Thus a function a is a subfunction for y" = 0 on [a, b] iff a is
convex.

The present work arose out of an attempt to improve on results
of Jackson [9] concerning the applicability of the Perron method to
establish existence of solutions for the boundary value problem (1.1)
and

(1.4) y(a) = A, y(b) = B.

Some brief comments on Jackson's work are relevant. Following the
Perron method, Jackson assumed there exists a subfunction a and a
superfunction β on [α, b] such that

(1.5) a(x)<β(x)

on [a, b], and

(1.6) a(a) <A< β{a), a(b) <B< β(b).

He set

(1.7) z(x) = sup{Φ(x): α(/) < Φ(ί) < β(t)9 for all t e [a,b],

Φ(a)<A,Φ(b)<B,

Φ a subfunction for (1.1) on [a, b]}

and under additional assumptions on / he showed z was a solution.
To show z was a solution, Jackson first proved that a bounded sub-
function has left and right handed limits at each point, as well as left
and right handed derivatives (see [9, Theorems 4.1 and 4.3]). Assum-
ing that all two point boundary value problems (1.1) and (1.2) have
at most one solution, he then proved the following.

A function w which is simultaneously a subfunction and a su-
perfunction is a solution on an open subset O of full measure and
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= ±oc for xQ *n the complement of O (see [9,
Theorem 4.10]). The function z is simultaneously a subfunction and
a superfunction ([9, Theorem 4.12]).

Under strong assumptions on /, he showed that there exist sub-
functions and superfunctions satisfying (1.5) and (1.6), that two point
boundary value problems have at most one solution and that 3ΓJ?Z(XQ)

= 3&Z(XQ) = ±oo is impossible, so that z is a solution on (α, b) (see,
[9, Theorem 4.17]). Then he constructed barriers at a and b when
A = B = 0, hence solving (1.1) and (1.4) in this case (see [9, Theorem
4.18]).

In this paper we improve on these results. In Theorems 3.6 and
3.7 we obtain sharp differentiability results for an arbitrary bounded
subfunction and show that the uniqueness assumption is not necessary
in [9, Theorem 4.10]. In Theorem 3.9 and Example 4.2 we show that
if the uniqueness assumption in [9, Theorem 4.12] is weakened to a
local uniqueness assumption, then z need not be a superfunction but z
still has the smoothness properties [9, Theorem 4.10] guaranteed when
z is a superfunction. The local uniqueness property is satisfied by a
wide class of equations. The local uniqueness property is satisfied by a
wide class of equations and is often easier to verify. In Theorems 3.12
and 3.13 we use our results to improve on the existence theorems [9,
Theorems 4.17 and 4.18]. A further advantage of the local uniqueness
property is that our results apply in cases where there is more than one
solution.

One of the most striking results of the paper is Theorem 3.2 show-
ing that subfunctions satisfy the differential inequality (3.5) almost
everywhere. A very important consequence of this and Theorem 3.6,
illustrated in Lemma 3.5, is that subfunctions have all the properties
required by a lower solution in order to use maximum principle ar-
guments. We use this observation in Theorem 3.10 to give necessary
and sufficient conditions on a function a in order that there is a differ-
ential equation for which it is a subfunction. It is also used to show
our examples have their required properties.

We will use our results in a subsequent paper to prove further exis-
tence results and also to discuss the relationship between the various
definitions of subfunctions and lower solution (see e.g. [1, 2]).

There is a literature concerned with showing that the properties of
convex functions carry over to subfunctions for more general differen-
tial equations (see e.g. [6, 7, 13, 14]). Most of the papers assume that
all two point boundary value problems are uniquely solvable and show
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that some of the properties of convex functions carry over to subfunc-
tions. In the special case that all two point boundary value problems
are uniquely solvable, we show in Theorem 3.14 that a bounded sub-
function has the same minimal smoothness properties as an arbitrary
convex function.

2. Notation and preliminary results. Let Φ: [α, b] -> R. All limits

below are taken in* the extended reals. If x e [α, b) and lim^x+ Φ(ί)
exists, we denote it by Φ(x+). Similarly if x e (α, b], we define Φ(x~).
Following Jackson [9] we make extensive use of the following modified
left and right handed derivatives. If x e [a,b), Φ(x+) exists in the
reals, and moreover limί_>JC+(Φ(ί) - Φ(x+))/(t - x) exists, then we de-
note it by 33lΦ{x) and say Φ is right differentiate at x. Similarly we
set 3(&Φ(x) = lim^jc-(Φ(ί) - Φ(x~))/(t - x), where the appropriate
limit exists. By 3L&Φ(x+), we mean lim/_JC+ 3fJ?Φ(t) and similarly
for other limits involving 2&Φ{x) and 3f3SΦ{x). As usual D+Φ(x),
D+Φ(x)9 D-Φ(x) and D~Φ(x) denote the Dini derivatives.

We set ^r±Φ(;c) = limsuρ ί^±(Φ(O-Φ(x±))/(^-x) and«@±Φ(jc) =
liminf/_x±(Φ(/) - Φ(x±))/(t - x) when these limits exist. If Φ is
differentiable at x in the extended reals, we denote the derivative by
3fΦ(x) or Φ'(x). For a set S c R, \S\ denotes its Lebesgue measure.
Our other notation such as Cι[a,b] is standard and needs no further
comment.

To simplify the wording of statements and proofs of a number of
results we adopt the convention that for a function Φ defined on [α, b]
φ(fl-) = φ( f l), φ(£>+) = φφ) and S&Φ(ά) = 3&lΦ(ά)9 &3ZΦ{b) =
3&Φ(b)9 when these latter derivatives exist.

For background results on boundary value problems, including some
discussion of subfunctions, see [4].

The following well-known results are used frequently; their state-
ments are included for clarity of presentation.

THEOREM 2.1 ([9, Theorem 2.1]). Let M > 0 and N > 0 be given
and let q be the maximum of\f(x,y,y')\ on the compact set

{{x,y,y'Y.a<x<b, \y\<2M, \y'\ < 2N}.

Ifγ = Min[(8M/q)1/2,2N/q], then each boundary-value problem y" =

f{χ,y,y')> y(χ\) = y\> y(χ2) = yi with [χ\9χ2] c [a9b], o < x2 -
x\ < 7, \y\\ < M, \y2\ < M, \(y2 -y\)l{xi - x\)\ < N has a solution
y(x) e C2[xux2]. Ifε > 0, η(M,N,ε) = Min[(&ε/q)1/2, 2ε/q, 1, γ]/2,
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w(x) = y{(x-x2)/(xι -x2)+y2{x-x\)l{x2-x\) andx2-xx < η
then \y(x) -w(x)\ < e and \y'{x) - w'{x)\ < e on [x\,x2].

See Jackson [9] for a proof.

THEOREM 2.2. Let M > 0 and N > 0 be given and let Q be the
maximum of\f(x,y,y')\ on the compact set {(x,y,y'): a < x < b,
\y\ < M + 1, I/I < N + 1}. Let c e [a,b]> \yo\ < M, \y'0\ < N and
ε > 0 be given. Ifκ(M9N,e) = min{l,e}(iV + Q + I)" 1 there exists
a solution y of the initial-value problem y" = f(x9y,y'), y(c) = yo,
y'(c) = yf

0 which is defined on Iκ = [c -κ,c + κ]n [a, b] and satisfies

(2.1) \y(x)-yo\<e and | / ( x ) - ^ | < ε

there. Furthermore every solution of this initial value problem is defined
and satisfies (2.1) on Iκ.

The following lemmas will be used to simplify the proofs of the
later results.

COROLLARY 2.3. Let a be a subfunction for y" = f(x,y9y
f) on [a, b].

Let M > 0, N > 0, andε > 0, a < xx < x2 < b andx2-X\ < η{M, N, e)
where \a(xf)\ < Mf \a{x2)\ < M and \(a(x2) - a(xf))/(x2 - X\)\
< N. There is a solution y on [x\,x2] with y(x\) = a(xf) and
y(x2) = a(x2) satisfying y{x) > a(x), for all x e (x\,x2]. Moreover
\y'{x) - (a(x2) - a(xf))/(x2 - *i) | < β, for all x e [x\,x2]

Proof. Choose n > 0 such that

i<Af-|α(ΛΓ+)| and ±(x2 -xx) < N-\(a(x2)-a(x+))/(x2 -

then let yf be a solution on [xi,JC2] with yi(x\) = a(x+) + l/(n + i)9

yι(x2) = OL{X2), for / = 1,2, The existence of yι follows from
Theorem 2.1. Moreover from the proof of that theorem it follows that
a subsequence converges in C1 [x\, x2] to a solution y satisfying y(x) >
a(x) on [xi,X2] By Theorem 2.1, y has the required properties.

As mentioned earlier subfunctions for y" = 0 are convex functions.
The next four results are needed to show that a subfunction restricted
to a suitable open subset of full measure has the same minimal smooth-
ness properties as an arbitrary convex function.

REMARK. Left handed and right handed limit results are inter-
changeable as are subfunction and superfunction results using suitable
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reflections. Moreover, using translation and rotation we need consider
only results at x = 0 and we may prescribe limits including 3&a(0)9

for example, provided they exist and are finite.
The following result may be found in Jackson [9, Theorems 4.1 and

4.3, Corollary 4.2]. We include a proof for the sake of completeness
and the convenience of the reader.

T H E O R E M 2.4. Let a be a bounded subfunction on [α, b]. If a <c<b

then α(c + ) exists and 3ί3Za{c) exists in the extended reals. Moreover

a{c) < max{α(c~),α(c+)}.

Proof. First we show that α(c+) exists. Assume that

/ = lim infa(x) < lim supα(x) = m.
x—>c+ x—>c+

Then, by Theorem 2.2, choosing ε > 0, yr

0 = 0, and yo G (Λw)>
there is K > 0 and a solution y of the initial-value problem (1.1) with
y(c) =yo, and y'(c) =y'o on Iκ. Thus there exists X\ e (c,c + κ)n[α9 b]
such that α(xi) < y(x\), xi G (c,xi) such that α(x2) > yfe)? and
*2 ^ (^^2) such that α{xι) < y(xi). This contradicts the assumption
that α is a subfunction on [α, b] and thus α(c+) exists.

We show now that 3&α(c) exists. Assume that

/ = 3t+α(c) < 3f+α(c) = m.

By the above remark we may assume that α(c+) = 0 and I < -ε < ε <
m for some ε > 0. Again by Theorem 2.2, choosing yQ = 0 = y'Q, there
is K > 0 and a solution of the initial value problem (1.1), y(0) = 0 =
y(0) such that | / ( x ) | < ε in 7 .̂ Thus there is xx e (c, c+/c)n[α, έ] such
that α(xi) < -εx\ < y(x\), xi G (c,X\) such that y(x2) < £*2 < ^(^2)?
and X3 G (c,*2) s u c h that o:(x3) < -εx^ < y(x$). Again we have a
contradiction, and the result follows.

The last part follows by an argument similar to the above and its
proof is omitted.

THEOREM 2.5. Let α be α bounded subfunction for y" = f(x,y9y
f)

on [α,b]. If min{α(c),α(c~)} < α(c+), then 23?α{c) = 00. If
min{α(c),α(c+)} < α(c"), then 3f£?α(c) = -00. If3&α(c) = 00,

(c),α(c+)} > α{c~) and 3&α(c) = 00. If23Za{c) = -00,
(c),α(c~)} > α(c+) and3ί<S?a{c) = -00.

Proof. Assume that min{o;(c), o:(c~)} < α(c+) and that
ex). By the above remark we may assume that c = 0 = α(0+)
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and SSfα(O) < - 1 . Choose γ e (0,min{l,ι/(l, 1,1)}) such that
min{α(0~),α(0)} < a(γ) - γ. By Corollary 2.3 the boundary value
problem (1.1), y(0) = a(γ) = y(γ) has a solution y satisfying a(x) <
y(x) on (0,y] and \yf(x)\ < 1 on [0,γ]. Thus 0 > y(0) > α(0+), a
contradiction, and <@^α(c) = oo.

As the other results follow by similar arguments, we omit their
proofs.

In the special case f{x9y9y') is such that all solutions of boundary-
value problems, when they exist, are unique, the results of Theorem
2.5 may be found in Jackson [9] following the proof of his Theorem
4.10.

THEOREM 2.6. If a is a bounded subfunction for y" = f(x9y9y') on
[α, b] then 331 a{c) > 3&a(c), for all c e {a, b).

Proof. Assume that a is continuous at c and m = 331 a{c) <
3&a(c) = /. By the above remark we may assume that c = 0,
α(0) = 0 and m < —e < ε < I for some e e (0,1). There ex-
ists K e (0,*/(l,l,e)/2) such that a(±κ) < -ε\κ\. By Theorem 2.1
the boundary-value problem (1.1) with y(±κ) = —e\κ\ has a solu-
tion y satisfying \y'(x)\ < e on [-κ,κ]. Thus y(±κ) > a(±κ) while
y(0) < 0 = α(0), a contradiction. Thus the result follows for a con-
tinuous at c.

If a is discontinuous at c e (a, b) the result follows from Theorem
2.5.

THEOREM 2.7. If a is a bounded subfunction for y" = f(x,y9y') on
[a, b] then a1 exists in the extended reals except for a countable set of
points N c [a, b]. Moreover, a! is real valued almost everywhere in

Proof. From Theorem 2.4 it follows that a is continuous except
at a countable set of points M c [a9b]. For c e {{a,b)\M} (\N,
&Jϊ?a(c) < 33?a(c)9 thus there exists a rational number q e (3S?a{c)9

33ίa(c)). Thus Φ(JC) = α(jc) - qx satisfies 3&Φ{c) < 0 < 33ίΦ(c)9

so Φ has a strict local minimum at c. As a function can have at most
a countable number of strict minima, it follows that N is countable.

As noted in [9, Corollary 4.4] the second assertion follows from
Theorem 2.4 and classical results of Denjoy-Young-Saks (see [15] p.
17) in the theory of functions of a real variable.
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REMARK. If a is an arbitrary subfunction for y" = f(x9y,y') on
[α, b], then the conclusions of Theorems 2.4, 2.6 and 2.7 hold except
that 3l&a{c) and 3ίJϊ?a{c) are not defined if a(c+) = ±oo and a(c~) —
±oo, respectively.

To see this note that a(x+) and a(x~) exist in the extended reals
by the proof of Theorem 2.4. Thus a has at most a countable number
of discontinuities. The result follows from the Denjoy-Young-Saks
theorem (see [15, p. 17]) and the proofs of Theorems 2.4, 2.5 and 2.7.

We will restrict our attention to bounded subfunctions; however the
above remark can be used to extend a number of our results to the
unbounded case.

REMARK. If a is a subfunction on [α, b], c e [α, b] and

then Ψ need not be a subfunction as the following example shows.

EXAMPLE 2.8. Consider y" = —y on [0, π], and set α(0) = 1 and
a(x) = 0 if 0 < x < π. It is easy to check that a is a subfunction
on [0, π]. Now let X\ = 0, Xι = π and y(x) = - sinx on [0, π]. Thus
y(0) = 0 = α(0+) and y(π) = α(π); however y(x) < a(x) on (0, π).

If solutions of two point boundary value problems for (1.1) are
unique when they exist then Ψ is a subfunction as can be seen from
Klassen [10, Corollary 7] and a simple limiting argument. If c < b, a
is bounded and 2J&OL{C) is finite then ψ is a subfunction on [c, d] for
0 < d - c sufficiently small, by Corollary 2.3.

3. The main results. The following theorem on the continuity of
3!&OL{X) is the key result needed in the proof of the differentiability
almost everywhere

THEOREM 3.1. Let a be a bounded subfunction for y" = f{x,y,yf)
on [a,b]. Ifce [a,b) and -oo < 3}9ίa{c) < oo then 3f£fa(c+) =

. If c e (a,b] and -oo < 3SΌL{C) < oo then

Proof We consider the right continuity of 2JMa{x) at x = c. The
proof of left continuity of 2JSfa{x) is similar.

Assume first that 9J&a{c) = oo. Suppose l iminf x ^ c + S^α(.x) =
L < oo. As indicated we may assume that c = 0 = α(0+) and L < - 1 .
Choose γ e (O,min{//(1,1,1), l}/2) such that γ < α(y+) < 1 and
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ζ e (y,2y) such that (α(C) - a(ϊ+))/(ζ - γ) < - 1 and a(ζ) > 0. By
Theorem 2.1 the boundary value problem (1.1) with j (O) = a(ζ) =
y(ζ) has a solution with \y'(x)\ < 1 on [0, £]. Thus y(γ) < α(y+).
Since y(0) > α(0+) it follows from Corollary 2.3 that y(x) > a(x)
on (0, £], a contradiction. In the case liminfx_>o+ 3&?a(x) = L < - 1
choose y E (0,min{τ/(l,1, 1), 1}) such that γ < a(γ~~) < 1 and let y
be a solution of (1.1), y(0) = a(γ~) = y(γ) such that y{x) > a(x) on
(0, γ) and | / ( J C ) | < 1 on [0, γ]. Again we have a contradiction and the
result follows.

Consider the case \9tt%a{c)\ < oo. As indicated we may assume that
c = 0 = α(0+) = 3fSla{0). Since ^ l^a(x) < 331CL{X\ it suffices to
show that

(3.1) limsup^^α(jc) < 0 <

Given ε > 0 choose δ = δ(e) > 0 such that <5 < b and

(3.2) |α(jc)| < εx, for all JC G (0,5).

Assume the left hand inequality in (3.1) does not hold. Then there
exists e > 0 such that ε < \ and

(3.3) l imsup^^α(x) > 4ε.

Let K = min(J,;/), where η = >/(l, l,e). Choose *2 ^ (0,A") and let
y2 = α(x2) By (3.2) there is θ such that 0 < θ < x-i and

ί 3 4 ) α(x2) ~ <*(x)
x2-x

Choose xι € (0, θ) such that

<2ε for all x e (0,0).

= a(x+) so that |(y2 — Ĵ i)/(-̂ 2 — ̂ i ) | < 2ε, by(3.4). By Corollary
2.3 there is a solution y on [xi,X2] such that y(x\) = y\, y{xi) =
yi, y{x) > <*(x) and \y'(x) - (y2 - y\)/(x2 - X\)\ < ε on (xχ9x2).
Thus \y'(x)\ < 3ε on [x\,x2], but a(xf) = y{x{) and y'{x\) < 3ε <
9ί3la(x\)9 a contradiction.

Suppose now that the right hand inequality does not hold in (3.1).
Choose ε such that \ > ε > 0 and

liminf«S^α:(.x) < -3ε.

Choose η = η(\,\9ε) and x2 such that 0 < x2 < min(/;5J) and
2) < ~3β. Let JCI = 0, y{ = α^j1") = 0 and y2 = α( c^).
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Thus \(y2 - yi)/C*2 - * i) | < ε so by an extension of the argument in
Corollary 2.3 there exists a solution y on [x\, x2] satisfyingy(x) > a{x)
and \y'{x) - (y2 - y\)l{xi - X\)\ < e on (xux2). Thus y'(x2) > -2ε >

), a contradiction. Thus (3.1) holds and the proof is complete.

THEOREM 3.2. Let a be a bounded subfunctίon for y" = f(x,y,yf)
on [a,b], Ifc e [a,b) and \Sl&a(c)\ < oo, then

(3.5) D+23ίa(c) > f(c9a(c+)923ga(c)).

Proof. By Theorem 3.1 and Theorem 2.5 there is δ > 0 such that a
is continuous and Sf^a(c) + 1 > 231 a{x) > 23ΌL(X) > Sf^a{c) - 1
on (c, c + δ). Thus it suffices to show that

x-+c+ X — C

As \23ίa{c)\ < oo we see from the proof of Theorem 3.1 that given
ε > 0 there is δ > 0 such that for any t e (c, c + δ) there is a solution
y on [c,ί] satisfying y(c) = α(c+), y(0 = <*(t)9 y(x) > a(x)9 and
\y'(x) - S^α(c) | < e on (c, ί]. For these solutions we have

y'(t)-y'(c)

t-c " t-c
= y"{ζ) some

Noting that these solutions satisfy (ξ, y(ξ)9y'(ξ)) converges to (c, α(c+),
S^α(c)) as ε converges to zero the result follows.

REMARK. A similar argument to the above yields the following. If
c e (a,b] and \2&a(c)\ < oo, then

(3.6) D-2&a(c) > f(x,a(c-)92&a(c)).

LEMMA 3.3. Let Φ: (c,d] -• R satisfy \iminft_>x

2f3ZΦ(x) and D+2f3ZΦ(x) > 0 on (c9d). Then 3f3ZΦ(x) is non-
decreasing on (c, d] and hence differentiate almost everywhere on (c9 d).

Proof. Suppose 23ZΦ(x) is not non-decreasing on (c, d]. Then there
exist w, v with c> u> v <d and 23ZΦ{μ) > 231 Φ{v). Let

t = snp{s e [u9v]: 23ίΦ(x) > 2&Φ(u) for all x e [u,s]}.

If u < t < v then 23lΦ(t) > liminf^^^- 231 Φ{x) > 231 Φ(u). Thus
u<t <v and 231 Φ{t) > 2&Φ(u). From the definition of t it follows
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that D+33lΦ(t) < 0, a contradiction, and hence 33lΦ{μ) < 2J3lΦ(v)
for all c < u < v < d, as required.

The following lemma is needed in Theorems 3.1' and 3.10 and the
examples in the next section. It is of interest in its own right and
will be used in a forthcoming paper where we will use subfunctions
and superfunctions to prove existence of solutions, and discuss the
relationship between the various definitions of subfunctions and lower
solutions.

Let a: [a,b] -> R. Recall that a(cr) = a(a) and α(Z>+) = a(b). We
will make the following assumption about a.

ASSUMPTION 3.4. The function α satisfies the following:
(i) a(xτ) exist in the reals for all x e [<z, b];

(ii) a(x) < max{a(x+),o;(x~)};
(iii) 33ίa{x) and &Jϊ?a(x) exist in the extended reals for all x e

[α, b) and (α, b], respectively;
(iv) 2&a{x) > 3^fa{x) if a is continuous at x G (a, b)\ and
(v) 3&a(x) = -oo, if a(χ-) > min{a(x),a(x+)} while 9ϊ3la(x) =

ex), if a{x*) > min{α(x),α(x~)}, for all x e (a, b] and [a, b), respec-
tively.

LEMMA 3.5. Let a: [a,b] —• R be bounded and satisfy Assumption
3.4. If[xux2] c [a9b], y e Cι[a,b], y{xt) > a{xt) for i = 1,2, and
I = sup{α(x) -y(x): X\ < x < x2) > 0, then there exists c e {xx.xi)
such that a(c) - y(c) = /, a'(c) exists and a'(c) = yf{c).

Proof. Let c e [x\,X2] satisfy

/ = sup{a(x) - y(x): xx < x < x2, \x-c\< δ},

for all δ > 0. If c = X\ then a(xf) > a(xχ) since y(x\) > a(x\) and / >
0. In view of (v) of Assumption 3.4, 2Jdia{x{) = oo contradicting the
definition of c. Thus X\ < c and similarly c < x2. A similar argument
shows that c is a point of continuity of a. Since 331 a(c) > 3&a(c),
X\ < c < x2, and y'(c) exists, then a!{c) exists with y'(c) = a'(c).

REMARK. Let a satisfy Assumption 3.4, (x\,x2) be a subinterval of
[a,b], y e Cι[x\,x2] and / = sup{α(x) -y(x): x\ < x < x2} > 0.
The other assumptions in Lemma 3.5 serve to guarantee that / =
sup{a(x) - y(x): d < x < e} for some d,e e (x\,x2). From this ob-
servation we can obtain variants of Lemma 3.5. For example, assume
instead of these other assumptions that a(x2) = y(x2), a!(x2) exists,
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af(x2) < y'{xi) and 3t32a{x\) = oo. Then there exists c e {x\,x2) such
that a(c) - y(c) = /, a!(c) exists and a'{c) = y'{c). We need such a
variant in the proof of Theorem 3.12.

Now we have the background to extend Theorem 3.1.

THEOREM 3.1'. Under the assumptions of Theorem 3.1, 3&a(c+) =
331 a(c) = 3r&a(c+), for all c e [a,b) and 9J3ίa{c~) =

-), for all c e {a, b].

Proof We prove that 33la{cr) = 33ϋa(c) = 33Ό.{cr\ for c e
(a, b]; the proof of the other part is similar. In view of Theorem 3.1 it
suffices to consider the case 3&a(c) = oo. Since 3&a(t+) = 331 a{t)
when3&a(t) > -oo, by Theorem 3.1, ihciϊ3Sfa(c) = 3&a(c) = oo
\i33la{cr) = 3&a(c) = cx>. Thus it suffices to show this latter equal-
ity. From Theorem 3.2 there is a nonincreasing function b: [0,oo) -+
(-oo,0) such that D+33la(x) > b(n) whenever \33la(x)\ < n and
xe[a9b).

First we show the following. If xx e [a,b), 33la(x\) > n and
κ = \b(n)\~ι thenS^α(x) > n- 1, for x e [x\,xi + κ]n[a,b). To see
this we suppose that 331 a{s) < n-1, for some s G [x\,x\ +κ]n[x\,b),
choose [X2,xi] C [x\9X\ +κ]Π [a,b) such that 3&a(x) < n, for all
x e [X2>xτ>]> 33la{x) > n - 1, for all x e [xuxi], 33la(xi) = n and
33la(x$) = n - 1, and show that x3 -x2 > K. We choose x2 and x3 as
follows. Let x3 = inf{t e [x\,s]: 331 a{t) < n - 1}. Thus 3&a(t) >
n - 1, for all ί e [x\,X3). As 33la{xf) = 33la{x{) > n, then x3 > xx.
If 331 otto) < n - 1, then 331 a(x^) = 3&a(xi) < 33ίo{x{) < n - 1
and there exists t e [x\,X3) such that 33Z<x(i) < n - 1, a contradiction.
If SS?α(^3) > /i - 1 then there is A/ > 0 such that 331 a{f) > n - 1,
for all / E [x3,x3 + //], a contradiction to the definition of x3. Thus
3&a(x3) = n - 1. Let x2 = sup{ί e [xi,x3]: SS?α(ί) > n}. By a
similar argument to the above we see that 33ίa{xi) = n. We see that
K < X3-X2 < x$-x\ as follows. We note that^^fa(x) < 3@a(x) < n
and then 3t3Όί{x) > -00, for all x e (xi,X3], otherwise 3&a(x~~) =
3&a(x) = -00 and 331 a{t) < n - 1, some x2 < t < x < x3. Thus
a is continuous on [ X2> *3] and D+33Za(x) > b{n) on (JC2,JC3]. By
Lemma 3.3, 331 a(x) - b{n)x is strictly increasing on {x2,X3\ and
since 33?a(x2) = 331 a{x^) it follows that \b(n)\(xi - x2) > 1, the
required contradiction.

Given ε > 0 and £ e [a, b) we show that there exists ξ e [t, c) such
> k(ε) where k(e) = (α(c")-α(ί))/(c-ί)-e To see this
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lety( c) = a(t)+k(ε)(x-t). Thus y(t) = a(t) andy(c) < α(c"). Either
33Za(t) > k(ε) and we may set ξ = t or 0 < / = sup{α(x) - y(x): t <
x < c}. Assume / > 0. By Lemma 3.5, there exists ξ e (ί, c) such that
a'(ζ) = /(£) = k(ε), as required.

From the above results given n > 0 choosing ε = 1 and t e
(c - \b(n + l ) ! " 1 ^ ) such that (a(c~) - a(t))/(c - t) > n + 2 there
is £ e [/,c) such that 331 a(ξ) > n + 1 and ̂ ^ α ( x ) > Λ, for all
* 6 K,c), as required.

The next result gives sharp smoothness results for a subfunction.
We remind the reader of the convention by which z(a~) = z(a),

z(6+) = z(b), 33>z{ά) = 331 z{ά) and 331 z(b) = 3J3>z{b). This will
be used in the next few results.

THEOREM 3.6. Let a be a bounded subfunction for y" = f(x,y,yr)
on [a, b]. There exists a relatively open set O of [α, b] with measure
0 = b - a such that on O, a is continuous, a1 exists in the reals, except
possibly for a countable number of points, SίS?a < 2$3%a exist in the
reals everywhere and are differentίable almost everywhere.

Proof. From Theorem 2.7 setting k(x) = max{\3@a(x)|, \3&a(x)\}
and M = {x e [a,b]: k(x) = oo} it follows that \M\ = 0. If c e
(a, b)\M, then it follows from Theorems 2.5 and 3.1 and Lemma 2.7
that there is δ > 0 such that

(3.7) -k{c) - 1 < 3&a{x) < 331 a(x) < k{c) + 1

and a is continuous on (c - δ, c + δ) c (a, b). Thus there is a relatively
open set O c [a,b] such that |[fl,6]\O| = 0, a is continuous on 0, a'
exists in the reals except possibly for a countable set of points N c
0, and k(x) = oo, for all x e [a,b]\O. Let [c,rf] c O\ then by
compactness and (3.7) it follows that there is n > 0 such that k(x) <
n on [c9d]. As in the proof of Theorem 3.1', D+331OL(X) > b(n)
on [c,d]. Since \immϊt_>x-3ί^a(t) = ^ ^ α ( x ) < «S^α(x), setting
φ( c) = α(χ) - b(n)x2/2 in Lemma 3.3 we see that 331Φ and hence
S ^ α is differentiate almost everywhere in (c, d). The differentiability
almost everywhere of 32"a follows by a similar argument.

We show in Example 4.3 that Theorem 3.6 gives the best possible
smoothness properties.

We now consider the smoothness properties of a function which is
simultaneously a subfunction and a superfunction. We show that the
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assumption that two point boundary value problems have at most one
solution can be deleted from [9, Theorem 4.10].

THEOREM 3.7. Let z be bounded and simultaneously a subfunction
and a superfunction for y" = f{x,y,y') on [a,b]. Then there is a
relatively open subset O of [a, b] of full measure such that, on each
component *g of O, z is a solution on its maximal interval of exis-
tence. Let c £ [a,b]\O. If c is a point of continuity of z then either
zf(c) = oo or z'(c) = -oo. If z(c~) > z(c+) then &£?z(c) = -oo =
331 z{c). If z[c~) < z(c+) then 3&z(c) = oo = 331 z{c). Moreover
min{z(c~),z(c+)} < z{c) < max{z(.x~), z(c+)}.

Proof. Let k(x)9 M, and O be as given in the proof of Theorem 3.6.
Let c e M = [a, b]\0. Thus k(c) = oo. If c is a point of continuity
of z we see from Lemma 2.6 and its analogue for superfunctions that
z'{c) exists and \z'{c)\ = k{c) = oo. If a < c < b and z(c~) > z(c+)
we see from Theorem 2.5 that 3&z(c) = -oo and from its analogue
for superfunctions that 3&z(c) = -oo. Similarly if a < c < b and
z(c~) < z(c+) then 3&z(c) = oo = 2J3ίz{c). The cases c e {a,b} is
a point of discontinuity follow similarly.

From Theorem 3.6 and its analogue for superfunctions we see that
z'{x) exists and is real valued for all x e O. From Theorem 3.1', z1

is continuous on O and by Theorem 3.2, (3.5), and the corresponding
results for superfunctions z" = f(x,z,z'), almost everywhere in O.
From the continuity of f{x9 z, z ;), z" = f(x, z, z'), for all x e O. Let
% be a component of O with Ψ = [d, e]. Ifd$&, then \33lz{d)\ = oo
and z'(rf+) = 33lz{d)9 by Theorem 3.1;. If d e &, then d = a,
\33lz(a)\ < oo, and z G C2[a,e). A similar argument applies at e.
Thus W is a maximal interval of existence for the solution z. (See
[8].) The last part follows from Theorem 2.4 and its analogue for
superfunctions.

Example 4.1 shows that Theorem 3.7 gives the best smoothness
for z.

We now introduce the definition of the local unique boundary value
property and use it to show that the function z given by (1.7) is a solu-
tion on an open set of full measure. We also give sufficient conditions
on / in order that (1.1) has this property.

DEFINITION 3.8. We say (1.1) has the local unique boundary value
property on [a, b] if to each c e (α, b), M > 0 and N > 0 there exists



PROPERTIES OF SUBFUNCTIONS 195

δ = δ{c9M9N) > 0 such that there is at most one solution of (1.1)
and (1.2) satisfying \(y2 -j>i)/(*2 - * i ) | < N and \y(x)\ < M for all
a<c-δ<X\<x2<c + δ<b.

To require that (1.1) has the local unique boundary value property
is weaker than requiring / is such that all two point boundary value
problems have at most one solution.

The local unique boundary value property will be satisfied if / is
continuous on [a,b] x R2 and locally lipschitz with respect to {y9y').
This can be seen from the following observations. If y is any solution
satisfying \(y2 - yi)l{x2 - X\)\ < N and \y{x)\ < M on [x\,x2] there
is ξ G (xι,x2) with 1/(4;)I < N, \y(ξ)\ < M. By Theorem 2.2, setting
K = κ(M9 N,l) = (Q + N + I ) " 1 , y exists and satisfies | / ( * ) | < N + 1
on [ξ - κ,ζ + K] n [α, b]. Suppose that

\f(x,yι,Pi)-f(x,y2,P2)\<K(M,N)\yι -y2\ + L(M,N)\Pι -p2\

for l^iU^I < Af, I P I U ^ I < Λ^+ 1 and all x e [a,b] then choosing
δ(c,M,N) = min{?c, l/(fc + L)}/2 there is at most one solution satis-
fying | / ( * ) | < iV+ 1, \y(x)\ < M and \(y2 - y{)/(x2 - xx)\ < N on
[*b *2] This follows immediately from well-known results. See, for
example, Bailey, Waltman and Shampine [3].

From the above / has the local unique boundary value property if
it has continuous partial derivatives.

Example 4.2 of the next section shows that the local uniqueness
property is not sufficient for the proof [9, Theorem 4.12]; that is, to
prove that z given by (1.7) is a superfunction.

THEOREM 3.9. Let a and β be bounded subfunctions and superfunc-
tions, respectively, for y" = f(x,y,yf) on [α, b] satisfying a(x) < β{x)
on [α, by Let f have the local unique boundary value property and z
be given by (1.7). Then there is a relatively open subset O of [a, b] of
full measure such that on each component WofO, z is a solution on
its maximal interval of existence. Ifc € [α, b]\O is a point of continu-
ity of z then either z'(c) = oo or z'(c) = -oo. If z(c~) > z(c+) then
3f<S?z{c) = -oo = Sf^z(c). If z{c+) > z{c~) then &^fz{c) = oo =
3!3lz{c). Moreover min{z(c~), z(c+)} < z(c) < max{z(c~),z(c+)}.

Proof. By [9, Theorem 4.6], z is a subfunction. Let O and k(x) be as
given in the proof of Theorem 3.6. Then oo > 331 z{x) > 2f^fz{x) >
~oo, for all x eθ.

First we show that z is a solution on O. Let c eθn(a,b). Consider
the boundary value problem y" = f(x9y,y')9 y{c±δ) = z(c±δ)9 where
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0 < δ < min{b-c, c-ά) is chosen below. Any solution v of these prob-
lems will satisfy a(x) < z(x) < v{x) < β(x) and hence |^(JC)| <M =
sup{|α(x)|, \β{x)\ :a<x<b}. Setting N = \2J3$z{c)\ + \3f^fz(c)\ + 1

and ε = 1 in Theorem 2.1, N = \Sf^z(c)\ + \Sf^fz(c)\ + 2 in Definition
3.8 and choosing δ < min{γ,δ(c,M,N)}/2 there is a unique solution
u to the above problem. Moreover u is the unique solution of y" =
f(x>y,y')> y(χi) = w(*/)> f o r * = !> 2> and any [x\,x2] C [c - δ,c + δ].
Set

ίz(jc), ifxe[a,b]\[c-δ,c + δ],
W } { M(JC), if x G [c - δ, c + δ].

As u is a subfunction on [c - δ,c + δ] and u(c ±δ) > z(c ± ^), by
[9, Theorem 4.7] w is a subfunction on [a,b]. Thus r/;(x) = z(x)
on [α,6] and z is a solution on (c — δ,c + δ). In the case c = a, a
simple modification of the above argument shows that z is a solution
on [α, a + δ). The case c = b is similar. Thus z is a solution on O.

We consider now the behaviour of z at points in [α, i
Let c G [<z, 6]\0 be a point of continuity of z; then

3f&z(c) and fc(c) = oo. Either z'{c) exists and \z'(c)\ = oo or oo >
3f&z(c) > 9&z\c) = -oo or oo = S^z(c) > 3f&z(c) > -oo. Sup-
pose oo > 3!&z(c) > 3f&z{c) — -oo; then given δ > 0 sufficiently
small there is k > 0 such that /: < <J and

|(z(c + 5) - z(c - fc))/(<5 + k)- 3f&z{c)\ < 1.

Let u be a solution on [c - /:, c + δ] satisfying u(c - k) = z(c - k) and
u(c + δ) = z(c + δ) and construct w as in the first part of the proof to
obtain the contradiction that z'{c) G R exists. Similarly we may show
oo = 2!3Zz(c) > 3&z{c) > -oo is impossible. Hence z'(c) exists and
|z'(c)| = oo.

Let c G [a, b]\0 be a point of discontinuity of z. First we show
that min{z(c-),z(c+)} < z(c) < max{z(c-),z(c+)}. Now z(c) <
max{z(c+), z(c~)}since z is a subfunction. If z(c)< min{z(c"), z(c+)}
then define Φ by

ΓΦO, ϋxφc,
v ; I min{z(c-),z(c+)}, if JC = c.

Thus Φ is a subfunction and Φ(JC) < β{x), for all x € [a,b] since
β{c) > min{β(c-),β(c+)} and β(x) > z(x), for all x e [a,b]. This is
a contradiction so z(c) > mm{z(c~), z(c+)}, as required.

Assume that z(c+) > z{c~). We show that aiSfzic) = 00 = 2i3ίz(c).
By Theorem 2.5, &%z(c) = 00. If ^(c^) = z(c~) then ^(c~) <
z{c+) < β(c+) so 2!2'β{c) = 00 = SL27z(c), as required. Assume that
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β{c~) > z{c~)\ then β(c) > min{β{c-)9 β{c+)} > min{z((r), z(c+)} -
z(c~). If -oo < 9ί&z(c) < oo then given δ > 0 sufficiently small there
is k > 0 such that 0 < (z(c") + fc- z(c-δ))/δ < max{^2 ί?z(c),0}+ 1,
and z(c") + /c < /?(<:). Let u be a solution on [c - <5, c] satisfying
u(c-δ) = z(c-<5), w(c) = z(c~)+/c and construct ?/; as in the first part
of the proof to obtain the contradiction w(x) ψ z(x). Thus 2$£?z(c) =
cχ3. A similar argument shows that 231 z{c) = -oo = 3fJ?z(c) when
z(c-) > z(c+).

Let ^ be a component of O such that ^ = [d, ^]. If J G & then /̂ =
α and z G c2[α, ̂ ) is a solution on [α, e). lϊ d <£W then \3ί3lz(d)\ — oo
and by Theorem 3.1', z'(d+) = 3f3Zz{d) so (rf,^) is a left maximal
interval of existence (see [8]). A similar argument applies at e.

REMARKS. If Φ is a subfunction for (1.1) satisfying Φ(a) < A then

l[X)~ \ Φ(ΛΓ), iΐa<x<), b

is a subfunction; hence z(a) = A.
In the proof of Theorem 3.9 local uniqueness of boundary value

problems is only required when a{xi) < yι < β(Xi), for / = 1,2.

THEOREM 3.10. Let a: [a,b] —> R be bounded. There exists a con-
tinuous function f: [a,b] x R2 —• R such that a is a subfunction for
y" = f(x,y9y

f) on [a,b] iff a satisfies Assumption 3.4 and there exists
a nonincreasing function b: [0,oo) —> (-oo,0] such that D+23ίa{x) >
b(s) for all x e (a, b) and s e (0, oo) such that a is continuous at x and

?a(x)\ <s.

Proof. The necessity follows from earlier results so we prove suf-
ficiency. Assume that |α(jc)| < k, for all x e [a9b]. For / I G Z , the
integers, set

An = {(x,y,yf) e [a9b] x R2: In < a'(x) <2n + l, \y\ < k9

2n <yf < 2n+ 1}

and

Bn = {(x,y,yf)e[a,b]xR2: 2n+ 1 <a'(x) <2n + 2, \y\ <k9

2n + 1 < yr < 2n + 2}.

Clearly

An n \ \jAm\=0 = Bnn\ (J Bm
mφn
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for all n G_Z. For all n e Z, let fι(x,y,y') = b(2n + l),_for all
(x,y,y') € An, and f2{x,y,y') = b(2n + 2), for all (x,y,y') e Bn. Ex-
tend fi as continuous functions independent of y to [a,b]x[-k,k]xR
and let f{x,y,y') = min{fι(x,y,y'),f2(x,y,y')}. Extend / to [a,b] x
R2 as follows. Set

f(χ,k,y'), if y>k,
f{x,-k,y>)+y + k, iΐy<-k.

Clearly / is continuous on [a, b]xR2. To see that a is a subfunction
we proceed as follows. Let a < X\ < x2 < b and y be a solution of
y" = f{x,y,y') on [xux2] satisfying y(x() > α(x, ), for / = 1,2, and
assume that y(xo) < a(xo), for some XQ G (XI,X2) By Lemma 3.5,
there is x 4 e (^1,^2) s u c h that

f

a(x4) - y(x4) = sup{a(x) - y(x) :xx<x<x2}

and
a'{x4)=y'(x4).

We see that D+3J3l{a - y)(x4) < 0 as follows. Either there is x5

such that (a - y)(x) = (α - y)(^4) for x 4 < x < x5 < x2 and
D+33l{a. - y)(^4) = 0 or there is a strictly decreasing sequence qn

convergent to x4 such that (a - y){qn) < (α - yXx*). Moreover, since
(a - y)'{x4) = 0 we may choose qn such that

((a - y){qn) -(a- y)(x4))/(qn - XA) = Pn,

say, is strictly increasing. Set wn(x) = (a - y)(x4) + {x - ^4)p« and
apply Lemma 3.5 on [x4, qn] with α replaced by a—y and y replaced by
wn. Thus there is cn such that x 4 < cn < qn and (α-y)'(cw) = wf

n(cn) =
pn < 0. Thus D+3ffl(a-y)(x4) < 0. Thus (x4,a(x4),a'(x4)) e AnUBn

for some n eZ and

>f(χ4,y(χ4),y'(χ4))=y"(χ4),

a contradiction. Thus α is a subfunction as required.

In view of the Theorem 3.9 we immediately obtain the following
existence result.

THEOREM 3.11. Let the assumptions of Theorem 3.9 hold and as-
sume that solutions of initial value problems y" = f(x9 y9 y'), y{c) = y$,
y'[c) = yf

0, where c e [a,b] and a(c) < yo < β(c) can be extended to
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solutions on [a, b]. Ifa(a) <A< β(a) and a(b) < B < β{b), then the
two point boundary value problem (1.1) and (1.4) has a solution.

We now apply Perron's method to obtain two existence theorems
generalizing [9, Theorems 4.17 and 4.18].

THEOREM 3.12. Let f, g and h be continuous on [a,b] x R2 and
f be such that (1.1) has the local unique boundary property on [a, b].
Assume that g(x,y,p) and h(x,y,p) are nondecreasing functions ofy
and that all solutions of the initial value problems y(c) = y$, yf(c) = yf

0,
ce[a,b]

(3.8) / ' = *(*,)>,/)

and

(3.9) y" = h(x,yyy')

exist on [a, b]. Assume also that for all y < 0

(3.10) f(x,y,p)<h(x,y,p)

and

(3.11) f(x, -y,p) > g(x, -y,p).

Then the boundary value problem (1.1) and (1.4) has a generalized
solution for each A and B.

Proof. Let u and υ be solutions of the initial value problems u(a) =
u'(a) = 0 = υ(a) = v'(ά)9 (3.8) and (3.9), respectively. Choose M > 0
sufficiently large that

(3.12) α(jc) = v(x) - M < 0 < u(x) + M = β(x),

on [a, b] and

(3.13) α(α) < A < β(a), a(b) <B< β(b).

Thus by (3.8) to (3.12) it follows that

a">h(x,a,a')>f(x,a,af)

and

β"<g{x,β,β;)<f(x,β,β').

Now let f\: [a, b] x R2 be defined by

f(χ,β(χ),p) + y-β(χ), Xy>β(χ),

A(χ,y,p) = { f{χ,y>p), if Φ ) <y <
f(x9a(x),p) +y- a(x), if y < a(x).
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By the standard maximum principle argument a and β are a subfunc-
tion and a superfunction, respectively, for

(3.14) / ' = /!(*, }>,/).

Now let z be given by

z(x) = sup{Φ(;c): α(ί) < Φ(ί) < jί(ί), for all t e [<z,6],

Φ(α) < i4,Φ(ft) < 5 , Φ a subfunction for (3.14)}.

As /i = / for α(x) < y < β(x) and / has the local uniqueness property
we see from the remarks following Theorem 3.9 that the conclusions
of that theorem hold.

Let c e (a,b)\O. Thus \2&z{c)\ = oo.
Suppose 29ίz(c) = oo. Then 3ί&z(c) = oo and z(c~) < z(c+) so

either z(c+) > 0 or z(c~) < 0. Suppose z(c+) > 0. As 331 z{c) = oo it
follows from Theorem 3.9 and Lemma 3.5 that there is X\ e (c, b] such
that z(x) > 0 for all x e (c,x\] and z'{xx) < {z{xx) - z(c+))/(xi - c).
Now let w be a solution of (3.8) satisfying

w{xx) = z(*0, ^'(xO = (z(x{) - z(c+))l(xλ - c).

Since 3f3lz(c) — oo, w'(x\) > z'{xχ) and z is a subfunction for (3.14)
on [a,b], from an argument similar to that in Lemma 3.5, 0 < / =
sup{z(x) - w(x): c < x < X\} = z(x2) - wfa) and z'fa) = wf(x2),
for some x2 G (c,X\). Thus x2 € O, w(x2) < z(x2), z(x2) > 0 and

(3.15) w"{x2) = g(x2,w{x2\w'{x2)) < g(x2,z(x2),w'(x2))

since a(x2) < z(x2) < β(x2), a contradiction.
Suppose z(c~) < 0. By Theorem 3.9, Assumptions 3.4 applies

to —z. Since 3lS?a(c) = oo, by an argument similar to that of
Lemma 3.5 applied to —z, there is X\ e (α,c) such that z'(x\) <
(z(c~) - z{xγ))/{c - x\) and z{x) < z{cr\ for all x e [x\9c).
Let w be a solution of (3.9) satisfying w(x\) = z(xi) and w'(xχ) =
(z(c~) - z(x\))/(c - X\). Since ^27z(c) = oo again by a variant of
Lemma 3.5 applied to -z - (—w)

0 < / = sup{w(.x) - z(x): X\ < x < c} = w(x2) - z(x2)

and w'(x2) = z'(x2), some x2 e (x\,c). Thus x2 e O, w(x2) > z(x2),
z(x2) < 0 and

w"{x2) = h(x2,w(x2),w'{x2)) > h{x2,z(x2),z'{x2))

since a(x2) < z(x2) < β(x2), a contradiction.
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A similar argument to the above shows that 3fdlz{c) = — oo is im-
possible. Thus O D (a,b) and z is a generalized solution of (3.15)
and (1.4). Since a(x) < z(x) < β(x) it follows that z is a generalized
solution of (1.1) and (1.4).

THEOREM 3.13. Let the assumptions of Theorem 3.12 hold and A =
B = 0. Then problem (1.1) and (1.4) has a solution.

Proof. From Theorem 3.12 it suffices to consider z at the end points
a and b. We consider* = a. From Theorem 3.9 either z(a+) > z(a) =
0 and Sf^z(a) = oo or z(α+) < z(α) = 0 and Sf^ίz(a) = -oo or z e
C2[a, b). Now the first two cases lead to a contradiction by arguments
similar to those in the proof of Theorem 3.12, so z e C2[a,b). By
a similar argument at x = b we see that z e C2[a,b] is the required
solution.

The assumptions in [9, Theorem 4.17] guarantee all two point bound-
ary value problems (1.1) and (1.2) have at most one solution so (1.1)
has the local unique boundary value property. Setting g(x,y,p) =
-k\p\ + M and h(x,y,p) = k\p\ + M we see that [9, Theorem 4.17]
follows from our Theorem 3.12.

From an examination of the proof of Theorem 3.12 it is clear that
the assumption that the initial value problems for g and h exist on
[α, b] can be varied. What is needed in order to produce a and β is
that (3.8) and (3.9) have at least one solution existing on [α, b], and
have solutions w to certain boundary value problems. Under these
assumptions it is not clear, for example, that all solutions of the initial
value problems (1.1) extend to solutions on [a9b].

REMARK. In Theorem 3.13 we may delete the assumption that /
has the local unique boundary value property if we assume that (3.10)
and (3.11) hold for all y. This may be seen as follows.

Let

En = {{x,y,p) e[a,b]xR2: n - 1 <y2 + p2 < n + 1}

for n > 0. Let

cn = inf{h(x,y,p) - f{x,y,p),f(x,y,p) - g{x,y,p): (x,y,p) e En}.

Given m > 0, using a suitable partition of unity based on the En*s
and Weierstrass's theorem we may approximate / by a continuously
differentiate function fm such that \f - fm\ < l / m everywhere and
\f—fm\ < Cn on En. Replacing / b y fm, (3.10) and (3.11) are satisfied
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so by Theorem 3.13 there is a solution zm of (1.1) with zm(a) = 0 =
zm(b). By the mean value theorem there is xm e [a,b] such that
z'm{xm) = 0. Since the zm are bounded and fm converges uniformly
to /, by standard theory for initial value problems (see [8, Lemma
3.1]) the zm have a subsequence convergent to a solution z of (1.1) on
some maximal subinterval / of [a, b]. Either / = [a, b] and z is the
required solution or z' is unbounded on /.

Suppose z' is unbounded on / . By the theory of initial value prob-
lems there is c e [a,b] and δ > 0 such that either J D (c9c + δ) and
|z'(c+) | = oo or / D (c - δ,c) and |z'(c~)| = oo. Consider the case
J D (c9c + δ) and z(c+) = -oo. The proof is a variation on part of the
proof of Theorem 3.12. Now α(jc) < z(x) < β(x), for all x e (c9c+δ)
and z(c+) exists. By the Mean Value Theorem 331 z(c) = -oo and
there is x{ e (c9c + δ) such that z'(xχ) > (z(x{) - z(c+))/{x\ -c). Let
w be the solution of (3.9) satisfying

w(xχ) = z(xχ)9 w'(xχ) = (z(xι) - z{c+))/{xχ - c).

As 331 z{c) = —oo, z'(x\) > wf(xχ) and z is a solution on (c9c + δ)9

0 < sup{w(x)-z(x): c < x < X\} = w(x2)-z(x2) and^ '(x 2 ) =
for some x2 € (c9x\). Thus z(x2) < w(x2) so

w"{x2) = h(x2,w(x2),w'(x2)) > h(x2,z(x2),w'(x2))

since (3.10) holds for all y. This is a contradiction hence z'(c+) φ — cx>.
Using (3.8), (3.11) and a similar variation on another part of the

proof of Theorem 3.12, the case z'(c+) = oo leads to the inequalities
(3.15), a contradiction. Thus z'(c+) φ oo.

The other cases / D (c - δ9c) and |z'(c~)| = oo follow similarly.
Thus z is the required solution.

Indeed, if (3.10) and (3.11) hold for all y9 then (1.1) and (1.4) has
a solution for all A and B as can be seen from the above arguments.

The following result is an easy consequence of Theorem 3.6.

THEOREM 3.14. Let a be a bounded sub function for y" = f(x9y9y')
on [a9b]. Assume that for all [x\9x2] c [a,b] andyi > α(x, ), / = 1,2,
the boundary value problem (1.1) and (1.2) has at least one solution,
then a is continuous on (a, b), a! exists in the reals except possibly
for a countable number of points x e N at which oo > 331 a{x) >
3&a(x) > -oo.

4. Examples. In the following example we construct a function z on
[0,1] which is simultaneously a subfunction and a superfunction on
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[0,1] for a function / e C^ (R3) which we construct. The function z
has a denumerable number of discontinuities and satisfies zf(x) = oo,
for all J C G P , the Cantor ternary set. This shows that Theorem 3.7 is
sharp.

EXAMPLE 4.1. Let [a,b] = [0,1], P be the Cantor ternary set, and
[0, l]\P = \Jnj Inj- = /, where Inj = (anj, bnj) are the components of
/ of length 3~π. Set xnJ = (anJ + bnJ)/2 and define ΦnJ: R -+ R by

0, if x<anJ,

n(x - anj) + (1 + n~larc sin{2(x - xnj)3n}),

if anJ <x<bnJ,

n3~n + 2, if x>bnJ.

Set w(x) = Σnj(τ)~nφnj(x) Arguing as in [5, pp. 138-139] we
see that w is a monotonic, nondecreasing continuous function with
w'(x) = oo, for all xeP. Let

H = {(x,u,p)eR3: xel, u = w(x), \p-w\x)\ < 1}.

Since w' is continuous in / and l i m * ^ w'(x) = oc, for all c e P we see
that H is a closed set. Define g: H —• Rby g(x,u>(x),/?) = w"(x). Let
F = {(x, w?jp) G R 3: (x,u + v,p) e H somev e R } . Thusi 7 is a closed
set. Extend # to F by setting ^(x, w,^) = w"{x) + u- w(x). Now let
gu{x,u,p) = 1, gp(x,u9p) = 0 and gx(x,u,p) = w'"(x) -wf(x). Then
g G C^CF) SO by the Whitney extension procedure (see [16, p. 176])
we may extend g to R3 so that g E ̂ ^ ( R 3 ) . We show that w is a
superfunction. The idea of the proof is similar to part of the proof
of Theorem 3.10 and to the proof that w is a subfunction, which we
omit. Now w satisfies the Assumption 3.4' obtained from Assumption
3.4 by reversing all inequalities and interchanging max and min. Let
[xi,X2] C [0,1] and let y e C2\x\,Xj\ be a solution of y" = g(x,y,y')
on [xi,X2] with y{xϊ) < w{x{) for / = 1,2 and y(xo) > w(x0) some
Xo E(X\,X2). From the analogue of Lemma 3.5 for superfunctions we
see that

0 < / = suρ{y(x) — w(x):x\ <x< xι) = y(x*) - w(x4)

some X4 E (x\9X2) and y'{x^) = wf(x4). As ̂ / (x 4 ) exists X4 e / and
y"(x4) - w"(x4) < 0. Now

= W"{X4),
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since g is strictly increasing with respect to u on F, x'(x4) = w'(x4)
and y{x4) > w(x4). This is a contradiction so that w is a superfunc-
tion.

Thus we have constructed g e ^^([O,1] x R3) and a continuous
function w with w'(x) = oo on P which is simultaneously a sub-
function and a superfunction for g. To construct / and the function
z proceed as follows. Let xm = 1 - 3~m for m = 1,2,... and let
Ψ:R-»R be defined by

Σ 3~2m, forjof,
m\xm<x

0, for JC < §

and let Φ: [0,1] -> R be defined by Φ(x) = (Ψ(x+) + Ψ(*-))/2. It
is easy to check that Φ is nondecreasing with discontinuities at xm,
for all m = 1,2,..., that Φ'(JC) = 0, for all x e [<U)\Um=i {*/*},
that 3!&Φ(x) exists for all x e [0,1), and that 9f&Φ{x) exists for
all x e (0,1]; indeed, SSPΦ(l) = 0. Set z(x) = w(x) + Φ(x) and
f(x, u,p) = ̂ (x, w - Φ(x),p) for all (JC, u,p) e F. Arguing as before
we may extend / to R3 such that / e C^(R3) and may show that z
has the required properties.

Now we construct / G C^^R3) and a function z\ on [0,1] which is
given by(1.7) but is not a superfunction for / on [0,1]. The function
z\ has a denumerable number of discontinuities and z\(x) = oo, for
all x e P, the Cantor ternary set. As / has the local unique boundary
value property Theorem 3.9 applies. This shows that Theorem 3.9 is
sharp.

EXAMPLE 4.2. Let z be given by Example 4.1. Let y\{x) = z{x)
and y2{x) = z(x) + 1 on [0,1]. Let h{x) = 243(x - 4/9)(5/9 - x),
vι(x) = yι(x) + h{x) and υ2(x) = y2(x) - h(x) on [4/9,5/9] = /.
Thus y{(l/2) < t;2(l/2) < ^(1/2) < t;2(l/2), v{(ψ) = yx(ψ) and
J;J(X) < Vi(x) < y2(x) on / , for ij = 1,2. Let

(?/ = {(x,u,p):xeJ,u = Vi(x),p = vfa)} for / = 1,2.

Let ^ = / n {[0,7/18] U [11/18,1]} and

G3 = {{x,u,p): xeK, p =y[{x) =y'2{x), y\(x) < u<y2(x)}.

Let
G4 = {(x,u9p): xel, p= y\{x) = y'2{x), y2(x) < u}

and

G5 = {(x,u,p):xel, p= y[(x) = yf

2(x), u<yx(x)}.
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Thus Gt is a closed set for 1 < / < 5. Define / on G\ U G2 by
f(x, Vi(x)9 υftx)) = v'/(x), for i = 1,2. Define / on G3 u <74 U G5 by

ί
), if (x,u,p)eG5,

0, if (x, n,/>) €G3,

), if (x,u,p) = G4.
Thus / is locally lipschitz on \J5

i=ι G7 and / can be extended by the
Whitney procedure to a locally lipschitz function on R3. The proof
that y2 is a superfunction for / is similar to that in Example 4.1. A
similar argument shows y\ is a subfunction for /. Set

zχ(x) = sup{Φ(x): yx(x) < Φ(x) < y2(x)

and Φ a subfunction for / on [0,1]}.

Since / e C,̂ 1 (R3) it has the local unique boundary value property so
Theorem 3.9 applies. To see that z\ is not a superfunction we observe
that since z\ is a subfunction and υ2 is a solution on [4/9,5/9] with
v2(4/9) = y2{4/9) > Z!(4/9) and v2(5/9) = y2(S/9) > zx(S/9) then
zi(l/2) < ^2(1/2). If zi is a superfunction a similar argument shows
that zi(l/2) > Vi(l/2), but v2(\/2) < vx(\/2), a contradiction, so zx

is not a superfunction. To see that z\ has the required smoothness
properties we show that z\{x) = 1 + Z(JC), for all x G (2/3,1]. To
prove this we show that

φf^ = / Λ W ) tf*e (2/3,1],
1 l y i ( x ) , if xe [0,2/3]

is a subfunction. Suppose Φ is not a subfunction. Let [xi,X2] c
[0,1] and y be a solution of y" = f(x,y9y'), y{Xi) > Φ(xi), for / =
1,2,y(xo) < Φ( *o) some xo e (x\,x2). Since Φ satisfies the conditions
of Assumption 3.4, Lemma 3.5 shows that

0 < / = sup{Φ(x) - y(x): x\ < x < x2} = Φ{x4) -

some X4 e {x\, x2) and Φ 7 ^ ) = /(JC4). Now since Φ ^ ) exists x4 e I.
Now y(x4) < z(x4) is impossible since z is a subfunction on [0,1].
TI1USX4 e /Λj C (2/3,1], some «, 7, z(x4) < y(x4) < \+z{x4) = Φ(x4)
and yf(x4) = z'(x4). Since / e C^ίR 3) the initial value problem
y» = f(x,y,y')9 y (x4) = z'(x4), y(x4) fixed, has a unique solution
and this is z(x) + y(x4) - z(x4) on 7rtJ, by the construction of /.
Thus Inj c [̂ 1,̂ 2] but y G C2[x\,x2], a contradiction. Thus Φ is a
subfunction and the result follows.
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Now we construct a function fa 6 C^1 ([0,1] x R2) and a function a
on [0,1] which is a subfunction for fa on [0,1]. The function a has a
denumerable number of discontinuities, a'(x) = oo, for all x e P, the
Cantor ternary set and i2£$Pα(jc) > 3L2?a(x) at a dense set of points.
This shows that Theorem 3.6 is sharp.

EXAMPLE 4.3. Let /, P, /, and z be as given in Example 4.1. Let
{Qm € / : ra = 1,2,...} be the rationals in / . Let Ψ: R —• R be given
by ψ(χ) = Σmqm<x 2 " m ( * - q m ) . It is easy to see that \Ψ(x) -Ψ(ί)| <
| * - ί | for all x, \ e R, ihaA&&Ψ(qm)-3r&Ψ(qm) = 2~m > OandΨ'(x)
exists for all x φ {qm: m = 1,2,...}. As 3ffi!Ψ(x) is nondecreasing
D+S&!Ψ(x) > 0 for all X G R . Set <*(*) = z(x) + Ψ(x) on [0,1] so
\&&α(x) - 33lz{x)\ < 1, for all JC G /. Define f2: [0,1] x R2 ^ R by
/2(x, w,/?) = /(x, u - Ψ(x)9p). Since / e ςJ^(R 3 ) and ^ is lipschitz
it follows that /2 e C^([0,1] x R2). Also

Z ) S ( ) > /(JC, z,

)), for all x e I.

It follows from the proof of Theorem 3.10 that α is a subfunction for
fι on [0,1]. Clearly α has the required properties.
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