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SOLVABILITY OF INVARIANT DIFFERENTIAL
OPERATORS ON METABELIAN GROUPS

PETER OHRING

In this work we use non-commutative harmonic analysis in the
study of differential operators on a certain class of solvable Lie groups.
A left invariant differential (a differential operator that commutes
with left translations on the group) can be synthesized in terms of
differential operators on lower dimensional spaces. This synthesis
is easily described for a certain class of simply connected solvable
Lie groups, those arising as semi-direct products of simply connected
abelian groups.

We derive sufficient conditions for the semiglobal solvability of
left invariant differential operators on such groups in terms of the
lower dimensional differential operators. These conditions are seen
to be satisfied for certain classes of second order differential operators,
thus yielding semiglobal solvability. Specifically elliptic, sub-elliptic,
transversally elliptic and parabolic operators are investigated.

1. Introduction. In the mid 1970's the study of differential opera-
tors with polynomial coefficients that arise as invariant operators on
nilpotent Lie groups began. Group representation theoretic criteria
for hypo-ellipticity and solvability of such operators were found.
Rothschild [11] gave such criteria for the local solvability of homo-
geneous left invariant differential operators on the Heisenberg group
based on some ideas of Rockland [10]. These ideas were extended to
all simply connected nilpotent Lie groups by Corwin in [1]. In recent
years these ideas and methods have been extended to type I solvable
Lie groups. Lipsman [6] gave criteria for local solvability of left invari-
ant differential operators on type I solvable Lie groups, thus extending
the horizon of study to differential operators with more general (tran-
scendental) coefficients.

In the work done so far on one sided invariant operators, non-
commutative harmonic analysis plays an important role. Specifically
the Plancherel theory is an essential ingredient. In this work we
demonstrate an alternative approach, one which doesn't use the
Plancherel theory. One advantage is that we obtain solvability results
for operators on non-type I groups for which there is no reasonable
Plancherel theory. In addition our approach is successful in obtaining
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results on type I groups for which the Plancherel theory approach is
not.

Let L be a left invariant differential operator on a solvable Lie group
G where G is the semi-direct product of 2 abelian groups S and N,
where dim S = 1 and N is normal in G. L can be thought of as a
linear operator on L2(G) with D{L) = Q°°(G).

We can put L in block form by taking the partial Euclidean Fourier
transform over N. Each block is a differential operator acting on a
copy of L2(R). This is analogous to the diagonalization of a constant
coefficient differential operator on Rn.

In group representation theoretic terms we decompose the right reg-
ular representation of G as a direct integral of representations induced
from the normal subgroup N. This decomposition yields a decompo-
sition of L into a direct integral of differential operators, πζ(L), ξ e N
acting on L2(R). (N = dual of N = characters on N.)

The underlying philosophy here is to give criteria for the solvability
of L in terms of the solvability of its Fourier transforms, the π^(L)'s.
These operators are acting on a lower dimensional space and in theory
should be easier to investigate. In practice there are many obstacles.
The most natural way of proving solvability of the π^(L)'s is to show
that they are boundedly invertible on L2(R). In Lipsman [6] there are
many concrete examples of operators investigated in this manner, and
in Theorem 3.2 we also give examples of such operators. For those
operators whose Fourier transforms are not invertible on L2(R), alter-
native methods must be used. In Lipsman [7], Lipsman has relaxed his
condition of bounded invertibility on L2(R) to bounded invertibility
with respect to some Sobolev norm.

One of our approaches has been to use weighted Hubert spaces. In
the proof of Theorem (3.1), where we investigate sub-laplacians, we
deduce the solvability of the π^(L)'s from the invertibility of certain
associated operators, Aξ, as operators from L 2(R 2,ωi) to L2(R2,o>2)
where co\, a>2 are appropriate weights on the plane. In §4 we examine
operators whose Fourier transforms are first order ordinary differen-
tial operators and we deduce solvability by the classical method of
introducing an integrating factor.

To solve Lu = /, / e C£°(G), for w, we examine the associated
equations π^(L)Uξ = fξ where fξ denotes the partial Fourier transform
of / over N. Though we may be able to solve this equation for Uξ,
Uξ may not be in L2(R). Worse yet we may not be able to invert the
Fourier transform to obtain a solution u to the original problem.
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Theorem 2.1 deals with these obstacles and gives criteria for semi-
global solvability. This is the main result of §2 which also contains
some background material and definitions. (Throughout we adopt the
notation used in Lipsman [6].)

In §§3 and 4 we look at examples of certain classes of second order
differential operators which are seen to satisfy the hypotheses of The-
orem 2.1. Let T be the generator of S, and let Xo,..., Xn- I be a basis
for N. In §3 we investigate operators of the form L = T2 + ΣieI Xf,
I c {0,..., n - 1} and Lx = L + X, X e n. Semiglobal solvability
of these operators is seen to follow from Theorem 2.1. Examples of
differential operators with transcendental coefficients which arise as
left invariant operators having the above form are given in §3.

In §4 we prove global solvability for certain "heat" operators as an
application of Theorem 2.1. In the above notation these are operators
of the form L=T- Σiei

 xf

2. Solvability criteria. In this section we will state and prove a the-
orem which gives sufficient conditions for solvability of left invariant
operators on solvable Lie groups which arise as semi-direct products
of simply connected abelian Lie groups. In later sections we will apply
this theorem to prove solvability results of specific classes of second
order operators. First we introduce some notation and quickly recount
some of the background theory we shall need:

Let G be a Lie group, with right Haar measure dg. We write g for
the Lie algebra, t/(g) for the universal enveloping algebra and Z(g)
for its center. We identify g with the algebra of left invariant vector
fields on G by:

X 6 g => (Xf)(g) = £-tf(g exp tX)t=θ9 feC™, g eG.

The element XY e C/(g), X,Y eg, acts on C°°(G) by XY(f){g) =
X(Yf)(g). In this way U(g) is identified with the algebra of left in-
variant operators on G.

If π is a unitary representation of G, acting on a Hubert space H,
then it lifts to g by the formula

π(X)v = ^ (π(exp tX)υ)t=0, X e g, υ e C°°(π).

It follows that

π[X, Y] = π(X)π(Y) = π{Y)π(X).

Thus π extends naturally to U(g).



138 PETER OHRING

Let p denote the right regular representation of G. p acts on L2{G)
and is given by the formula p(g)f(h) = f(hg)9 g,heG, f e L2(G).
For X e g and / e C°°(G) we have

p(X)f(h) = ^t(p(exptX)f(h))t=0 = ^/(A expίX)ί=0 = Xf(h).

Thus we can identify X e g with p(X). This identification naturally
extends to C/(g). L e C/(g) is identified with />(£). This identifica-
tion is useful in arriving at representation theoretic criteria for the
solvability of L.

Now let G be the semi-direct product of two simply connected
abelian groups. Let G = N S, N « Rn, S « R, TV normal in G.
Fix Γ G S , T φθ. The multiplication law for the group is given by

(expX,exp tT) (exp 7,expsT) = (exp(X + e*άtτY),exp(s + t)T).

As TV is a vector group we can identify n* with N. ξ e n* is identified
with the character defined by < (̂expX) = e^χsι for X en. For ξ en*
let π^ denote i n d ^ . We can realize π^ as acting on L2(R):

(2.1) πζ(cxpX,s)f(t) = e^^Vfit + s),

l G n , ί G n * , feL2(R).

Let pf denote the unitary representation of G acting on L2(n* R)
defined by the direct integral

P'(g)= ί n*(g)dξ.
Jn*

If px denotes the right regular representation of N9 then PN(H) ~
fn*ζ(n)dξ where the equivalence is given by Fourier transform on the
vector group N.

Now p ~ ind^ /?#. Since inducing commutes with direct integrals
we can conclude that p(g) ~ p'(g) = /n. π

ξ(g) dζ, g eG. The equiv-
alence is given by the Fourier transform over N, denoted by F:

feL2(G).

This gives us an explicit decomposition of p as a direct integral of
induced representations from the normal subgroup N.

REMARK. πζ need not be irreducible. For example if G = R2,
thought of as R R, then πξ acts on L2(R) while all the irreducible
unitary representations of G are characters.
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We will use primes to denote the objects on n* x R corresponding to
objects on G, i.e. functions by u' — u!(ξ9 t), operators by A'. We will
write Uξ(t) for the function of / defined by Uξ = uf(ξ, t). In particular
for L e U(g), L = F~ι -L' F where 1/ = / n . πϊ(L)Dξ. Thus L ~

DEFINITION 2.1. A differential operator L on a Lie group G is semi-
globally solvable if for every / e C£°(G), and for every relatively
compact open set U there exists u e C°°{G) such that Lu = / on U.

THEOREM 2.1. Let Le U(g). Suppose that there exists an n variable
polynomial p such that for every f e C£°(G), πζ{L)Uξ = fξ is solvable
with ξ -• p(ξ)Uξ(t) a tempered distribution for a.e. t e R. Then L is
semiglobally solvable.

REMARK. This theorem is analogous to Theorem 2.1 in Lipsman [6].
The major differences are that we do not use the Plancherel Theorem
and do not require invertibility of n^

Proof of Theorem 2.1. Let U be a relatively compact open set in
G and let / e CC°°(G). It follows from the hypotheses of the the-
orem that there exist functions Uξ which satisfy π^(L)Uζ = fξ. Let
u'(ξ9t) = Uξ(t). p(ξ) commutes with U from which it follows that
L'p(ξ)u!(ξ, t) = p(ξ)L'u'(ζ, t) = p{ξ)f(ξ, t). Since p(ξ)u!(ξ, t) is tem-
pered in ξ for a.e. t we can take its inverse Fourier transform. Let u =
F~~ι(p - u1). u is a distributional solution of Lu = p(D)f where p(D)
denotes the constant coefficient differential operator whose Fourier
transform is p(ζ).

From this point on the proof follows along the same lines as the
proof of Theorem 2.1 in Lipsman [5]. For the sake of completeness
we include this portion of the proof.

Let heC°°(G). By the Dixmier Malliavin factorization ([2, Theo-
rem 3.1]) we can factorize h:

gi*ki where ghkt<e C?{G)9\ <i<I.
ι = l

It follows from the global solvability of p{D) [3, 7] that there exist
fi e C°°{G) such that p{D)f = kt. Let ω e Q°(G) with ω = 1 on U
and let fi = fr ω. Thus f e Q°(G), 1 < i < I and p(D)f = kt on U.
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By the above argument there exist distributions «, such that
p{D)fi = hi on U. Let

ι = l

u e C°°(G) since g, e C°°(G). From the left invariance of L it follows
that

o n

3. Elliptic and sub-elliptic Operators. In the following two sections
we apply Theorem 2.1 to prove solvability for certain specific classes
of second order differential operators. In this section we investigate
differential operators which are sums of squares of left invariant vector
fields and sums of squares plus a linear term.

Under the representations π^ which were discussed in §2 these op-
erators are taken to Schrόdinger operators. Thus a large proportion
of what follows is analysis of Schrόdinger operators with polynomial,
trigonometric and exponential potentials.

Let T e s, T Φ 0. Let {Xo,...,Xn-\} be a basis for n with respect
to which adr is in real Jordan form. It follows from (2.1) that

(3.1) π«(Γ) = ^ , π*(X/) = fce^Xi), ξ e n*.

If Xi corresponds to a generalized eigenspace with real eigenvalue
then we havea

Thus

A t*-J
(3.2) fiTfi

j=0 ^ J h

Similarly for X2/ corresponding to a generalized eigenspace with com-
plex eigenvalue a + ib we have

(3.3) πHXn) = ieat£ T^jγ&jcos bt - ξ2j+x sin bt).
j_Q \ J)

((ξ2j sin bt + ξ2j+ι cos bt) for X2i+ι).
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Let L = - (T2 + Σi€i X?),Ic{O,l,...,,n-l}.lf follows that

^rXiγ = ~
iei

where Pξ{t) is the sum of non-negative terms of one of the following
forms:

K ^κ-k \ 2

(3.5) e2at πr(£^kγ.{ξ2kcosbt"ξlk+ιsinbt)) -

Below are some examples of operators covered in this section.

EXAMPLE (1). G is the "ax+b" group: S = R,N = R and the bracket
of the two generators is [T,X] = X. With the global coordinates
g = (expxX) - (exp tT) e G we have:

— U It U - C7 Ίt O t U
τ - -e2t—^, I r = - ^ - f 2 ( ^ + e'τr-.W e dχ2

Semiglobal solvability of these operators follows from Theorem 3.1.

EXAMPLE (2). G is N S where N = R2, S = R and the bracket
relations are

[T9XX] = aXi + bX2, [T,X2] = -bXx + aX2.

With the above coordinates we have for L = - ( Γ 2 + X2)

sin ί>ί^— + cos bt-— )-— ).

Again semiglobal solvability of these operators follows from Theorem
3.1.

EXAMPLE (3). G is the Mautner Group: N = R4, S = R. The bracket
relations between the generators are

[T,Xι]=X2, [T,X2] = -Xι,
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With the above coordinates we have for L = -(T2 + X\ + ΛΓ|),

a2 ( a . a2 \
L= - —j - cos t- sm t-—

dt2 V dx\ dx2j

( a . a \
+ cos πt- SIP πt i

V dχ3
dxi dX4/

a2 ( a ύn{ a y

Semiglobal solvability for these operators follows from Theorem 3.1.
This is an example of a non-type I group for which our approach
works.

Before we state and prove the main results of this chapter we present
some lemmas and propositions on Schrόdinger operators which will
be used in the proof of these results.

LEMMA 3.1. Let Vh{t) = (£0cos bt + ξ{ sin bή2, b φ 0, £0,£i e R.
The zeros of Vb are

and

KΛ -Γ tan H-ίn/ίi) + -r- + ί 1 = (in + ί i ) smz 6ί.

LEMMA 3.2. L ^

2

P(t) =
tK~k

c o s bt+^2k+ι s i n

ζo> >£2Λ:+I € R, b > 0. G/ven 0 < δ < π/b there exist T > 0, e > 0
swcA that for \t\> T and outside symmetric intervals of length δ around
the points

I £ tan x (-£o/£i ) + -^-:k an integer \

we have

(3.6) P(t)>e(ξ2+ξ2).
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We omit the proofs of these lemmas which are elementary in nature.
We note that Lemma 3.2 follows from Lemma 3.1 together with some
straightforward estimates.

PROPOSITION 3.1. Let V: R2 -> R+u{0}, V radial and V e Lfoc(R2).
Suppose there exist positive numbers R > 1, p, λ such that [R,oo) is
a countable union of disjoint intervals, ln — [an,βn), n el, with the
following property:

For every positive integer n there exists an interval Jn, Jn c (an + p,
βn - p)> with (/(/„) + p)/an < I, such that V(r) >λforreln- Jn.

Let A = -Δ + V(r), where A represents the radial part of the
Laplacian on R2. Define two weights on the plane by:

0<r<R,

~2, r > R,
0<r<R,

Then
\\Aφ\\ω2 > c(λ)\\φ\\ωι for all φ e Q°(R 2 ),^ radial

where c(λ) = min{AΓi,A 2̂A}; Kγ, Kι positive constants independent of
λ. Furthermore we have the following inequality:

< (l/c(λ)){Aφ,φ) <

Proof. We will show that

\\φ\\2

ωι<(l/c(λ))(Aφ,φ)

where C(λ) = min{K\,K2λ}\ K\, K^ positive constants independent
of λ. The proposition follows from this fact and the observation that

(Aφ,φ)<\\Aφ\\ω2'\\φ\\ωι

which is a consequence of the Cauchy-Schwarz inequality.
:

\φ{r)\2ωλ{r)rdr

Now we estimate \\φ\\2

ωχ:

OO

o
rR /»OO

= 2π \φ(r)\2rdr + 2π \φ(r)\2r~ι dr.
Jo JR

First we estimate 2π/ 0

Λ \φ{r)\2rdr. Let g e CC°°(R2), g radial satisfy-
ing g{r) < 1, g(f) = 1 for r e [0,R] and g{r) = 0forr>R + p.
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Let M = max|g'(r)|2, Q = diam(suρpg). It follows from the un-
certainty principle that | |^|| < diam(supp^) ||V^||L2(R2C2). If ψ is
radial it follows that

(3.7)

An application of this inequality to φ(r) g(r) gives us

rR roo

2π \φ(r)\2rdr<4πQ2 \φ'(r)\2rdr
Jo Jo

fR+p

+ 4πQ2M \φ(r)\2rdr.
JR

Using this together with the fact that V(r) > λ for r e [R,R + p] we
obtain

(3.8) 2π j R \φ{r)\2rdr < max ilQ2, ^^- j (Aφ, φ).

Now we estimate /̂ ° l^ί^)!2^"1 dr.

Let {gn} c CC°°(R2), gn radial and satisfying gn(r) < 1, gn(r) = 1 for
r e Jn, g«(r) = 0 for r £ Jn + (-p/2,p/2) and \(g'n(r))\2 < M, M
independent of n.

f \φ(r)\2r-1 dr = / W{r)\2r~x dr + I \φ{r)\2r-χ dr.
Jin Jln-Jn ->Jn

The potential V(r) is bounded away from zero on In- Jn. Thus

(3.9) / \φ{r)\2r-χ dr < - ^ ί V(r) • \φ(r)\2rdr.
Jln-Jn Λ " Λ Jin

An application of the Poincare inequality to φ{r) gn(r) • r~χl2 yields

/ \φ{r)\2r-χ dr < (/(/„) + p)2 [ \{φ{r) • gn{r))'\2

r-
χ dr

JJn Jin

+ \Ji\φ(r)\2-(gn(r))2r-χdr.

From this it follows that

(3.10) If \φ(r)\2r-'dr

< max {2>2M+

λ

l/4)l d '̂WI2 + v(r) \φ{r)\2)rdr.
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It follows from (3.9) and (3.10) that

ί W)\2

Jin

< max <_ max

Thus

- } ^ ( I ^ W + ̂ W Î WI2)̂ r.

(3.11) 2π Γ \φ(r)\2r-1 dr
JR

^ o .8 Sm+l + 3/R2

< 2π max < - , ^ — ^ —

/o
[ 8 8 m + 1 -ι ^ v I / . N= max < x, ^ ^ (^^, φ).

From (3.8), (3.11) it follows that

(Aφ,φ)>c(λ)\\φ\\2

ωι

where c(A) = min{KuK2λ}; K{, K2 positive constants independent of

λ. D

PROPOSITION 3.2. Let V: R -> R+ U {0}, K G ^ ( R ) . Suppose
there exist positive numbers T, p, λ, m\, mi such that R - [—71, Γ)
w α countable union of disjoint intervals In, In = [an,βn), n G Z+,
mi < I{In) < mi, with the following property: For every n el+ there
exists an interval Jn>

p,βn-p] and V(t)>λ forteIn-Jn

Then

2

where c{λ) = min{KuK2}f Ku K2 positive constants independently
ofλ.

REMARK. This proposition is a generalization of Theorem 3.3 in
[6] and therefore we omit the proof. In our proposition the potential,
V(t), it not necessarily bounded away from zero for large |ί|. The
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proposition roughly says that it suffices to have the potential bounded
away from zero "part of the time" in order to get the desired inequality.

THEOREM 3.1. G = N S, N « Rn, S « R, N normal in G. Let
T e s, T Φ 0. Let {Xo,..., Xn- I } be a basis for n with respect to which
?iάτ is in real Jordan form. Let

Then L, Lx are semiglobally solvable.

Proof of Theorem 3.1. We prove the theorem only for the case when
one of the JΓ/'s appearing in L corresponds to an eigenvalue of ad^
with non-zero real part. When no such X\ exists the proof is similar to
the proof of Theorem 5.4 in [6]. The major difference is that here our
Schrόdinger operators have potentials which are bounded away from
zero "part of the time" and Proposition 3.2 must be used instead of
the analogous proposition in [6].

Assume that the real part of the eigenvalue with non-zero real part is
positive. The proof for the other case is similar. Denote mini <,-<///{α,}
by a.

The potential Pξ can be written as Pξ = Pt + P7 where Pt consists
of terms of the form (3.4) or (3.5) with a > 0 and P7 of terms with
a < 0. In the sequel a positive constant, α, appears. If PΓ = 0 then a
can be chosen to be equal to a (smallest positive real part). Otherwise
a is chosen to be less than or equal to a. More will be said about a at
the point in the proof where its choice becomes significant.

REMARK. Invertibility of the πξ(L)9s on L2(R) would easily lead to
a definition for Uξ. That this invertibility is not the case in general is
illustrated by the Laplacian of the "ax+b" group. If L is the Laplacian
on the "ax + 6" group then

and this operator is not boundedly invertible on L2(R) since the po-
tential ξ2e2t goes to zero at -oo. In fact this operator doesn't have a
bounded right inverse on L2(R,,e2t dt) even though on this weighted
Hubert space πξ(L) satisfies | |π*(L)p|| > C | |p | | for φ e Q°(R). The
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problem is that π f(L)(Q°(R)) is not dense in L2(R,e2tdt) and thus
its closure is not onto.

Thus to prove the existence of these w«*'s we utilize the following
change of variables:

r = ea\ 0<a<a.

If h is a function in t let h denote the corresponding function in r.
h(r) = h(^logr). Under this change of variables the operator πξ(L)
is transformed into πζ(L) where

Here a2r2Qξ{r) = Pξ(r); Pξ(t) the potential in πξ(L).
We think of functions in r as radial functions on the plane. If Δ

represents the radial part of the Laplacian in 2 variables then π^(L) =
a2r2(-A + Qξ). Our aim is to find a function uξ such that

π(L)uξ = fξ.

Since fξ e Q°°(R) we have fξ e C0°°(R
2 - {0}). Thus (ar)-2fξ e

Q°°(R2 - {0}). If Aξ = - Δ + Qξ then our problem is equivalent to
finding a sufficiently nice function ύξ such that

Aξuζ = (ar)-2fζ.

For some of the operators covered by the theorem (including the
Laplacian on the "ax + b" group) Aξ is invertible as an operator on
L2(R2). Unfortunately most of the operators give rise to Aξ's which
are not invertible on L2(R2). We shall see that Aξ is invertible as
an operator from L2{U2,ω\) to L2(R2,ω2) with appropriate domain
where ω\, ωι are appropriate weights on the plane. (We are think-
ing of radial functions only as we will be doing in the sequel unless
explicitly stated otherwise.)

When we make the change of variables we get Pξ(r) = 0L2r2Qξ(r). It
follows that we can write Qζ = Qt + Q7 where Qt, Q7 are sums of
terms of the following forms with a > 0, a < 0 respectively:
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•(ξ2k cos(b/a)logr - ξ2k+ί sm(b/a) logr) I .

We need to analyze potentials of these forms. First we analyze a
potential of form (3.5') with a > a which we denote by qξ(r).

By Lemma 3.2, given 0 < δ < π/(b/a), there exist T > 0, ε > 0
such that for t > T, qξ{eat) > a~2ε(ξl + ξ2) as long as t is outside
symmetric intervals of length δ around the zeros of

Vb/a(t) = (ξ0 cos(b/a)t - ξ, sin(b/a)t)2.

Let

All the zeros of Vbja are of the form

t0 πn
+ ,, , s, n e I.(b/a) (b/aY

Let

lKυ,u}

 + 7 Γ r ^ { n ~ 1 / 2 ) ' 7 J ^ + 7 Γ T ^ { n + 1 / 2 )

J' =

[(b/a) (b/aγ" ''""(b/a) (b/a)
to , πn

[(b/a) (b/a) "' '(b/a) (b/a)
(The /ή's are the symmetric intervals indicated above.) Changing vari-
ables we can conclude that #*(r) > a~2ε(ξ^+ζl) for r > eτ and outside
the corresponding intervals /„ (for r in In — Jn.) It follows that

11 J \ - et0/(b/a)+πn/(b/a)( δ/2 _ e~δβ\

We can choose δ small enough so that there exists p > 0 for which

et0/(b/a)+(π/(b/a))(n-l/2) ^ ι>

independent of n € Z. (The denominator in the above expression is
the value of the left endpoint of /„.) Let R = eτ. It follows from
Proposition 3.1 that

(3.12) \\(-A + qξ(r))φ\\ω2 >*(&,&) ||*IU

for φ e CC°°(R2) where C(ξo,ξχ) = a~2min{KuK2(ξ2 + ξ2)}; Kx,
K-2 positive constants independent of £, and —ω\, ω2 weights on the
plane, as described in the statement of Proposition 3.1.
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We now analyze a potential of the form (3.4') with a > a which we
denote by βj(r). For large enough R, qξ{r) > ξo/a2 as long as r > R.
It follows from Proposition 3.1 that

(3.13) \\(Ά + qξ(r))φ\\ω2>c(ξ0)'\\φ\\ωi

for φ e Q°(R 2) where c(ξ0) = a-2mm{KuK2ζ%}, Ku K2 positive
constants independent of ζ.

This analysis shows that if we consider -A+Qξ as an operator from
L 2(R 2,ωi) to L 2(R 2,ω 2) with domain equal to C£°(R2), where the R
in the definitions of ω\9 ω2 is chosen to be the largest R corresponding
to the terms in Qt then

(3.14) ω2

where c(ζ) is a constant of the form appearing in (3.12) or (3.13)
depending on whether Qξ contains terms of the form (3.4') and/or
(3.50.

In the remainder of the proof we must differentiate between 2 cases,
p- = 0 and P7 φ 0. The difference between the 2 cases is that in the
first case it makes sense to choose the domain of Aξ as C£°(R2) while
in the second case we must make do with C^°(R2 - {0}). In both cases
we prove that Aζ is invertible from L2(R2,ω\) to L2(R2,ω2). More
precisely we have :

LEMMA 3.3. Think of Aξ = —Δ + Qξ as a linear operator from

L2(R2, ωi) to L2(R2, ω2) with domain as described above. Then Aξ is

onto and has a bounded right inverse satisfying \\Aξ || < l/(c(ξ)) where
c(ξ) is the constant appearing in (3.14).

Proof of of Lemma 3.3. We first remark that Aξ is closable since At is

densely defined. (All functions of the form ψ\/ω2, ψ\ e QX )(R2-{0})?

are contained in D{s/£).)

It is a direct consequence of inequality (3.14) and Proposition 3.1
that

\\ψ\\lx < l/(c(ξ))((-A+Qpφ,φ) < l/(c(ζ))(Aξφ,φ)

<l/(c(ξ)) \\Aξφ\\ω2.\\φ\\ωι.

Thus \\Aζφ\\ω2 > c(ζ) | |^ | | ω i for φ e D(Aξ) where c(ξ) is as in (3.18).
To finish the proof of this lemma it suffices to show that the range of
Aξ is dense in L2(R2,ω2). Here we must differentiate between the 2
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cases:

P~ = 0: Thus Q- = 0, D(Aξ) = Q°(R2). Suppose ψ e

i.e., for all φ G Q°(R2), φ radial, (Aξψ, ψ)ωi = 0. We must show that

ψ = 0. Define

r), 0 < r < R,

y(r), r > R.

A bootstrapping type argument using Sobolev's lemma (see [9], Lem-
ma preceding Theorem IX.24 and Theorem IX.24) shows that y/χ G
C°°(R2 - {0}) and that ψx G C0(R2). In addition it is easy to check
that ψx GL 2 (R 2 ,ω0.

Make the change of variables r = eat. Let u{t) = ψχ(eat). Under
this change of variables α 2r 2Δ becomes (d2/dt2). u G C°°(R) since
ψx G C°°(R2 - {0}), and satisfies

(3.15)

Again it is easy to check that u G L2(R, ω^) where

eat, t < log R,

1, ί> log i? .

Suppose u Φ 0. W.L.O.G. u(to) > 0 for some to- Since u Φ 0
and is continuous it must be non-zero at a point where Pξ(t) does not
vanish. Thus we can assume that Pξ(to) > 0. It follows from (3.15)
that u"{to) > 0. If w'(ίo) > 0 then u is a non-decreasing function
on [to, 00) and can't be in L2(R, ω 3). Thus u'(to) < 0 and u is a
decreasing function on (-00, to] with lim^-oo w(ί) = 00. This leads to
a contradiction: Since ψx G C°(R2), u must have a limit at -00. (^1 is
continuous at the origin.) Therefore u = 0 from which it follows that
ψx = 0, which in turn implies that ψ = 0. This completes the proof
of density of ^(Q°°(R2)) in L2(R2, ω2) for the case when P~ = 0.

Pξ Φ 0: In this case D(Aξ) = C£°(R2 - {0}). Suppose ψ G

Aξ{D{Aξ))1-, i.e. for all-p G Q°(R2 - {0}) we have {Aξφ, ψ)ω2 = 0.

We must show that ψ = 0. As in the case where P7 = 0 we have

^! G C°°(R2 - {0}).
We again make the change of variables r = eat. Let u(t) = ψ\{eat).

u G L2(R2, ω3) Π C°°(R) and satisfies

(3.16) %-H-u.
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Suppose w / 0 . W.L.O.G u(to) > 0 for some to- As before we can
assume that Pξ(t0) > 0. Thus u"(t0) > 0 by (3.16).

If u'(to) > 0 then u is a non-decreasing function on [£o,oo) and
can't be in L2(R,ω3). Thus uf(to) < 0 from which it follows that
u is a decreasing function on (-oo, ίol We will show that for small
enough α, u is not square integrable against eat at -oo and this will
be a contradiction to u being in L2(R, ω^).

Pξ(t) contains a term of the form (3.4) or (3.5) where a < 0. We
will analyze the case where we have a term of the form (3.5). The
other case is similar. Thus

2,(^ tK~k Ϋ
Pξ(t) > elat I 2 ^ 7^—ΊΓTJ(ζik c o s bt - £2fc+i s i n &*)] > a<0.

\k=o ^ ^ J
By Lemma 3.2 given δ > 0 there exist T > 0, ε > 0 such that Pξ(t) >
ε(ζl+ζ2) as long as t < -T and is outside symmetric intervals of length
δ around the zeros of Vb{t) = (ξ0 cos bt + ξ\ sin bt)2. We can assume
that to is outside these intervals and that to< -T. (u is decreasing on
(-oo, ίo].) Let γ > 0 be small enough so that ίo - y stays inside the
"good" interval. By the Taylor formula with remainder we have

u(t0 -y) = u(to) - γu'(to) + -ju"(s) > u(t0) + y / W ,

(u'(to) < 0) for some s, to - y < s < to.

By (3.16) we have

y2

u(t0 -y)> u(t0) + y

(Λ is in a "good" interval).

Let κ = (γ2/2).ε (ξ2 + ξ2). Then

Replacing ^ by ίo - π/b (n/b is the period of Vb) we get

u (to - \ - y) > u (to - f ) (1 + K) > ιι(ίo)(l + κ) 2 .

ίw ί/o - T) > u(to - y) since w is decreasingj

By induction it follows that for net",

u (to - ™ - y) > κ(ίo)(l + κ)n+l
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If a is chosen so that ea < (1 +κ)blπ then it follows that u is not square
integrable against eat at —oo. Thus u = 0 from which it follows that
ψx = 0, which in turn implies that ψ = 0. This completes the proof of
the density of 4*(CC°°(R2, ω2)) in L2(R2, ω2) for the case when P~ φ 0,
and concludes the proof of Lemma 3.3.

Now we can define ύξ to be

4* acts as - Δ + Qξ in the punctured plane. Thus

Aξύξ = (-Δ + Qξ)ύξ = j - ^ fξ.

This implies that

Auξ = F(r)

where

F{r) = ±f

is in ^^(R 2 - {0}) and Δ is the distributional Laplacian. By a boot-
strapping type argument similar to the one mentioned above ύζ e
C°°(R2 - {0}).

We define uξ = ύζ(eat). It follows that πξ(L)uξ = fξ.

uξ e L2(R2, coi) =• uξ e L2(R2, ω3).

Below we estimate ||W{||ω3:

(ar)-ιf\\ω2 <

)-||r-2./ίlk
where c(ζ) is as in (3.18). Thus a2c(ζ) is of the form

if the potential contains a term of the form (3.5); and of the form
min{K\, Λ^Q } if the potential contains a term of the form (3.4). (The
potential might contain terms of both types in which case either form
of c(ξ) is sufficient in the following argument.) In the remainder of the
proof we will assume that a2c(ζ) is of the form min{Kι,K2(ξQ +ζ\)}\
the other case can be dealt with similarly.
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Let p(ξ) =ζo+ζΐ In order to apply Theorem 2.1 we need to show
that ξ —• p(ξ)Uξ{t) is a tempered distribution for a.e. /. It follows
from the definition of p that p(ξ)/(a2c(ξ)) is bounded by some K.
As supp/s is independent of ζ it follows that | | ( l/^ 2 )^| |ω 3 < L\\fζ\\
for some constant L. The following calculation demonstrates that
ξ-+p(ξ)uξ(ή is in L2(R2) for a.e. /:

\uξ(t)\2(p(ξ))2dξω3(t)dt

= ί ί\uξ(t)\2ω3(t)dtp(ζ)2dξ
J \\n J R

< J^p(ξ)2(l/a4c(ξ)2) l / j | dξ

<K2L2 \\fξ\\2<oc.
JRn

Thus ζ —• p(ξ)Uξ(t) is tempered in ζ for a.e. t. We can now apply
Theorem 2.1 to obtain semiglobal solvability of L.

The proof of semiglobal solvability for Lx follows along the same
lines. The operator ήξ(Lχ) can be written as a2r2Hξ where Hξ =
Aξ + Bξ where Aξ is as before and Bξ = (l/(ar)2)πζ(X).

We want to thing of Hξ as an operator from L2(R2, ω\) to L2(R2, ωι)
with D(Hξ) = Q°°(R2 - {0}). The following calculation shows that Hξ

satisfies the same type of inequality as Aξ ((3.14)): It follows from
Proposition 3.1 that for φ e D(Hξ)

\\2

ωι<(l/c(ζ)) (Aξφ,φ)

ξ is skew-symmetric)

\(Hζφ,φ)\ < (l/c(ξ)) \\Hξφ\\ω2 | |^ | |ω i.

Thus
\\Hζφ\\ω2>c(ξ) \\φ\\ωι

where c(ξ) is as in (3.14).
In order to show that Ήξ has a bounded right inverse it remains

to demonstrate that Rg(Hξ) is dense in L2(R2,ω2) as before. This is
much simpler than before and follows from the skew-symmetry of Bξ.
The remainder of the proof of global solvability for Lx is similar to
the proof of L. n

REMARK. Theorem 3.1 discusses operators of the form I + I , L a
sum of squares. Similar results hold for operators of the form L + λX,
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if Re(λ) φ 0 and X e Z(g). For in this case πξ(L + λX) = πξ(L) +
λπξ(X) where πξ(X) e C. It follows that πζ(L + λX) is invertible on
L2(R) with inverse bounded in terms of Re(Λ,). Semiglobal solvability
follows from a straightforward application of Theorem 2.1 (see [4]).

The case Re(Λ,) = 0 is less tractable. Many of the operators discussed
here are strictly positive on L2(R). Unfortunately the dependence of
the lower bound of the spectrum on the representation parameter is
not linear except in special cases (e.g. the Heisenberg group.) For
example it follows from [4, pg. 144] that

d

has lowest eigenvalue of order ξ^3. This seems to suggest adding on,
not a linear term, but a term with order balancing that of L. We hope
to consider such operators in future work.

4. Parabolic operators. In this chapter we give another application
of Theorem 2.1. Here the operators in question are parabolic. In
the notation of the previous chapters these are operators of the form
L = T - ΣieIXf. Under the representation π^ these operators are
taken to first order ordinary differential operators. We will use inte-
grating factors to solve the resulting differential equations. Below are
examples in this chapter:

EXAMPLES. (1) G is the "ax + b" group. With the global coordinates
g = (expxX) (expίΓ) G G we have

~~dt * dχi'

Semiglobal solvability of L follows from Theorem 4.1.
(2) G is TV S where N = R2, S = R and the brackets are

[T,XX] = aXi + bX2, [T,X2] = -bXx + aX2.

Let Lx = T - X2, L2 = T - X\ - X\. With the above coordinates we
have

d 9 / d d \2

{ = — - e2aί ( cos bt^- + sin bt—) ,L\ = - — e2at ( cos bt- h sin bt

d 9 / d d \2

L2 = — - e2at ί cos bt-^— + sin bt >
dxi)

2

-eat (-UΆbt^ +cos bt-^-λ .
V dx\ dx2j
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Semiglobal solvability of these operators follows from Theorem 4.1.

THEOREM 4.1. Let G = N - S, N &Rn, S &R, N normal in G. Let
Γ G S , T φθ. Let {Xo,..., Xn-\} be a basis for n with respect to which

is in real Jordan form. Let

iel

Then L is semiglobally solvable.

Proof of Theorem 4.1. Let / e C°°(G). Thus suppfξ c [c,d] inde-
pendent of ζ.

It follows from (2.1) that πξ(L) = djdt + Pξ(t) where Pξ is the sum
of terms of the form (3.4), (3.5). Let qζ be a typical term of the form
(3.5). (Terms of the form (3.4) can be dealt with similarly.)

is a first order differential operator. We can solve

(4.1)

with the aid of the integrating factor

A solution to (4.1) is

l f Iζ(s)fξ(s)ds.
Jct c

Let p(ζ) = ξl + ζ2. We will show that ξ —> p(ξ)Uξ(t) is tempered in ξ
for a.e. t. Semiglobal solvability of L will then follow from Theorem
2.1.

First we estimate ||w^(ί)eΛί||2 where a is the same a appearing in
qξ(t). (a might be 0.)

(4.2) / \uξ(t)\2e2at dt = f°° \uξ(t)\2e2aί dt
JR JC

/

d roo

\uζ(t)\2e2atdt+ / \uξ(t)\2e2at dt.
Jd

It follows from the Cauchy-Schwarz inequality that
(4.3)/ \uξ(t)\2e2at dt = ί {Iζ{t))~2 \f Iξ(s)fζ{s)ds e2at dt

Jc Jc \Jc

<e2ad{d-c)2\\fξ\\2
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where in the last inequality we have used that Iξ(t) is an increasing
function.

It follows from the analysis done in §3 that there exists ε > 0,
m > 0, γ > 0 for which [d, oo) can be written as the disjoint union
of intervals Jn = [an9bn), In = [bn,an+ι) such that /(/„) = γl(Jn),
m > max{/(/Λ),/(Λ)K a nd s u c h t h a t

on Jn. (We can always adjust d so that it will match up with a left
endpoint of a "good" interval.) Since s u p p ^ c [c, d] we have

roo

(4.4) / \uξ(t)\2e2at dt
J d

= Γ{Iξ{t)Y2e2atdt- ίd Iξ(s)fξ(s)ds
Jd Jc

Γ2e2ate2atdtΓ(Iξ(t)
J d

= Σ / ( w r 2e2at dt+f; f
n=lJjn n=\Jl"

oo r

<(l+emγ)Σ {k{t)T2e2atd
n=\Jjn

oo -

= K-Σ (Iξ(t)Γ2e2at dt
n=\JJn

since Iζ is an increasing function.

ιe2atdt

Thus

n=\
N



INVARIANT DIFFERENTIAL OPERATORS ON METABELIAN GROUPS 157

where we again have used that Iξ is increasing. Since Iξ(t) —• oo as
/ —•oo we can conclude that

r
3d

Using this estimate in (4.4) we get

(4.5) Γ \uξ(t)\2e2at dt < -f#M0Mt(d))-2{Iζ(d))2(d - c)\\fξ\\

K

Estimates (4.3), (4.5) together give

(4.6) / \uξ(t)\2e2at dt < Kv\\fξ\\2 + - * >

for some constants K\, K2. From (4.6) and Fubini's Theorem it fol-
lows that

\uζ{t)\2{ξ2 + ζ2)2dξe2atdt
RJR"

= / ί\uξ(t)\2e2atdί(ζ2+ξ2)2dξ
JR'JR

<(Kι+K2)[ \\πt{X2 + X2)fξ\\2dξ + K2- ί \\fζ\\2dξ

K2)\\{Xl + Xf)f\\2

2 + K2\\f\\2

2 < oo

where we have used the Plancherel Theorem and that / E C™(G).
Hence ξ —• p(ξ)Uξ(t) is in L2(Rn) for a.e. t. It now follows from
Theorem 2.1 that L is semiglobally solvable. D

REMARK. A recent paper of Levy-Bruhl dealing with solvability
questions has been brought to my attention [5]. In this paper Levy-
Bruhl proves solvability results for many of the same classes of oper-
ators that have been treated here. His approach differs from ours in
that he does not use representation theory.
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