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BLASCHKE COCYCLES AND GENERATORS
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Dedicated to Professor Shozo Koshi on his 60th birthday

Using a local product decomposition, we establish a certain class of
Blaschke cocycles with the property that a simply invariant subspace
has a single generator if and only if its cocycle is cohomologous to one
of this class. Some applications are also obtained. We show, among
other things, every simply invariant subspace is approximated by a
singly generated one as near as desired.

1. Preliminaries. Let Γ be a dense subgroup of the real line R,
endowed with the discrete topology, and let K be the dual group of Γ.
For each t in /?, et denotes the element of K defined by et(λ) = eiλt

for any λ in Γ. Then the mapping from t to et embeds R continuously
onto a dense subgroup of K. Choose and fix a positive γ in Γ, and let
Kγ be the subgroup consisting of all x in K such that x(γ) = 1. Then
K may be identified measure theoretically, and almost topologically,
with Kγ x [0,2π/γ) via the mapping y + es to (y9s). We assume, for
simplicity, that 2π lies in Γ throughout the paper. Thus K may be
regarded as K2π x [0,1). This local product decomposition is very
useful for understanding the group K. We denote by σ and θ\ the
normalized Haar measures on K and K2π, respectively. Then dσ is
carried by the above mapping to the restriction of dσ\ x dt to K2π x
[0,1).

A Borel function V on K2π x R is automorphic if V(y9t + 1) =
V(y + β\9t) for dβ\ x dt-a.e. (y, t) in K2π x R. Every Borel function φ
on K has the automorphic extension φ# to K2π x R by

for each (y, t) in K2π x i?, where |[ί]] denotes the largest integer not
exceeding t. Conversely, if V is automorphic on K2π x 7?, then there
is a function ψ on K of which the automorphic extension is V, since
V is determined by its values on K2n x [0,1).

A function ψ in Lι(σ) is analytic if its Fourier coefficients

357



358 JUN-ICHI TANAKA

vanish for all negative λ in Γ, where χχ denotes the character on K
defined by χχ(x) — x(λ). The Hardy space Hp(σ), 1 < p < oo, is
defined to be the space of all analytic functions in Lp(σ), and H^(σ)
denotes the space of all functions φ in Hp(σ) for which ao(φ) = 0.
Recall that a complex-valued function of modulus one is said to be
a unitary function. An analytic unitary function is called inner. A
function φ in Hp(σ) is outer if φ satisfies

\og\a0{φ)\= I \og\φ(x)\dσ{x) > -oo.
JK

A closed subspace 9JΪ of L2(σ) is simply invariant, often just called
invariant, if 9Jt contains strictly χλffl for any positive λ in Γ. For any
simply invariant subspace ffi of L2(σ), we define

and 9DT_ = the closure of ( J

Then M is called to be normalized if 37t = 9JΪ+. If φ lies in L2(σ),
then we denote by M[φ] the smallest invariant subspace containing φ,
and #? is called a s/flgfe generator of 9Jί[^]. In order for 9Jί[^] to be
simply invariant it is necessary and sufficient that

f°° dt
(1.1) / \og\φ{χ + et)\——ϊ>-oo

J -oo 1 -Γ ί

for σ-a.e. x in K.
A cocycle is a unitary Borel function ^4(x? t) on KxR which satisfies

the cocycle identity

(1.2) A(x,t + u)

for all x in K and £, w in R. A cocycle is a coboundary if it has
the form ψ(x)ψ(x + ̂ ) for some unitary function ^ on K. Two
cocycles are called cohomologous if one is a coboundary times the
other. A one-to-one correspondence is established between normalized
invariant subspaces and cocycles (see [6; Chapter 2]).

We denote by H°°(dt/(l + t2)) the space of all boundary functions
of bounded analytic functions in the upper half-plane %*. The closure
of H°°(dt/(l + t2)) in Lp{dt/(l + t2)), 0 < p < oo, is denoted by
Hp(dt/(l + t2)), where we use the ordinary metric on Lp(dt/{\ + t2))
when 0 < p < 1. The class N{dt/{\ + £2)) consists of all boundary
functions of analytic functions on %? which are the quotients of two
bounded analytic functions.
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A cocycle A(x, t) on K is analytic if, by considering the restriction
to K2π x i?, the function of t, A{y, t), lies in H°°(dt/(l + t2)) for σ r

a.e. y in K2π. We say an analytic cocycle A(x9t) is a Blaschke or a
singular cocycle if the function of t,A(y,t)9 is an inner function of that
type for σ ra.e. y in K2π. It follows from (1.2) that our definitions are
equivalent to usual ones. There is a vague sense in which the Blaschke
cocycles are generic among all cocycles. Surprisingly, it happens that
every cocycle is cohomologous to a Blaschke cocycle (see [6; Theorem
26]).

Our objective in this paper is to characterize singly generated sub-
spaces in terms of Blaschke cocycles. In the next section, we introduce
a certain class of Blaschke cocycles and present some lemmas which
we shall use. After preparing some lemmas, the main theorem, Theo-
rem 3.1, is proved in §3. Applications to analyticity are presented in
§4, and we close with some remarks in §5.

We refer the reader to [6] and [2; Chapter VII] for further details
of analyticity on compact abelian groups and [3] for results about
classical Hardy spaces.

The following lemma is a minor variation of known facts, so the
proof is omitted.

LEMMA 1.1. Let 9Jΐ be a simply invariant subspace ofL2(σ), and let
A be the cocycle of$Jl+. Then

(i) a function φ in L2(σ) lies in DJI+ if and only if the function of
U Aiy9 t)φ*{y9 t)) lies in H2(dt/(l + t2)) for σra.e. y in K2π, and

(ii) a function φ in M is a single generator ofΐΰl if and only if the
function ofty A{y9 t)φ#(y, t), is outer in H2(dt/(l +12)) for σ\-a.e. y in

We see from (i) of Lemma 1.1 that A is analytic if and only if
9JΪ+ contains H2(σ). Equivalently, A is analytic if and only if 9JI+ is
contained in H2(σ).

Let V be a function on K2π x R such that the function of t, V(y, t)9

lies in Hι{dt/{1 + t2)). Then we define

(1.3)

for each r > 0. We now derive some simple properties of cocycles by
restricting them to K2π x R.
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LEMMA 1.2. Let A be an analytic cocycle, and let 9Jί be the normal-
ized invariant subspace with cocycle A. //> > 0, then we have

(i) \A(y9 t + ir)\ is automorphic on Kιπ x R, so there is a function
v on K with 0 < v < 1 for which

on Km χ R> and
(ii) if we write φ*(y, t) = A(y9 t)V(y, t) for any φ in SDΐ, then there

is a function ψ in SDΐ such that

on Kin χ R-

Proof (i) We see by (1.2) that the function A(y,z+l)A(y+euz)-{

on Km x ^ is a unitary function only of y. This implies that

\A(y, t + ir + 1)| = \A(y + eut + ir)\

on Kin x R' Thus (i) follows from the definition of automorphic
functions.

(ii) Observe that the function of ί, V(y,t), lies in H2(dt/(l + t2))
by (i) of Lemma 1.1. By the similar way as above we see that
A(y, t)V(y, t + ir) is also the automorphic extension of a function ψ
on K. It follows from Lemma 1.1 that ψ lies in 9JI again.

The next elementary fact will be used later.

LEMMA 1.3. Let B(z) be a Blaschke product on %*, and let
{tn + isn}™=\ be the zeros ofB(z), listed according to their multiplicities.
If {sn}™=ι is bounded and bounded away from zero, then the infinite
product

U(Z) =

defines a meromorphic function in the complex plane C which has a
pole at each point tn ± isn. Furthermore, the function u(t)B{t) on R is
an outer function in H°°(dt/(l +12)).

Proof. Recall that the Blaschke condition is given by

0 0

SnΣ - ,—-^—τ <°°

Λ=1
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The hypotheses imply that, on each compact subset of C \ {tn ± isn},
there is a constant M > 0 such that

1 -
(Z-tn)

2+S2 (z-tn)
2+s2 - t2+s2+\

for all n. It follows from [7; Theorem 15.6] that u(z) converges uni-
formly on each compact subset of C \ {tn ± isn}. It is also easy to see
that u{z) has a pole at each tn ± isn\ thus the first part is obtained.

For the second part, let u^ and BN be the JVth partial products of u
and 2?, respectively. Since Uχ{z)BN(z) is analytic at z = oo, we verify
easily that uN(t)BN(t) is outer in H°°(dt/(l + t2)). Then

\og\uNBN(i)\ = ^ Γ° \Og\uNBN{t)\-^
ft J — oo 1 ~r Γ

r°° dt1 ί°

π J-
> —oo

since \Bjy(t)\ = 1. Observe that 0 < w^+i < ujy < \ on R and that

lim uNBN(i) = uB(i) φ 0.

It follows from the monotone convergence theorem that

1 f°° dt
log|wi?(/)| = — / \o%\uB(t)\- j > ~°°'

ft J—oo 1 "Γ ί

thus u(t)B(t) is an outer function in H°°(dt/(l + t2)).

2. A certain class of Blaschke cocycles. Let q be a Borel function on
K2π which takes nonnegative integral values. We call q a multiplicity
function on K2π if q satisfies

(2.1)

for cri-a.e. y in K2π. Obviously if q lies in Lι(σ\)9 then q is a multi-
plicity function on K2π. For the remainder of this paper, we always
fix an a > 0. Let E be the Borel set in K2π x & of all (y, \ + « + /α)
for « = 0,±1,±2,. . . . By using a multiplicity function <? on K2π, we
define a Borel function q on E by
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Then E and q, interpreted as a zero set E with multiplicity function
q, satisfy all properties arised from a Blaschke cocycle, that is,

^ ^ < °°, and
) 2 + 2 + l

\ eu\ + n + ia)

for σi-a.e. y in Kιπ. Thus we can construct a Blaschke cocycle B%
whose zero set matches E, and whose multiplicity function matches q
by [5; Theorem 1 and Remark in §5]. We say that B® is the Blaschke
cocycle induced by a multiplicity function q on K2π. Of course, B% = 1
if q = 0. The structure of B% is so simple that we can describe it
easily: Let

n ^ ( v z — ia
(2.2) g(z) = Z + lOL

Then B% can be written as

(2.3) B%(y9t)=p(y) J] {eng{t-\-n

where εn with \εn\ = 1 is chosen so that εng(i - n) > 0, and where
p(y) is the unitary function on K2π that makes B%(y9 0) = 1. Recall
that there is a canonical way of extending the restriction of a cocycle
to K2π xRto the cocycle on K (see [2; Chapter VII, §11]).

LEMMA 2.1. (i) There is a multiplication function q on K2π which
does not lie in Lι(σ\).

(ii) Let Bq be the Blaschke cocycle induced by such q, and let v be
the function on K such that \B%(y9t + ir)\ = v*(y,t) on K2π x R for
r > 0 (see Lemma 1.2). Then logf cannot lie in Lι(σ) for all r > 0.

Proof, (i) It is well-known that there is a function w on K with
0 < w < 1 such that logw does not lie in Lι(σ)9 while w satisfies (1.1)
with w in place of \φ\ (cf. [2; Chapter VII, Lemma 9.2]). Regarding
w as a function on Km x [0,1), we define a nonnegative integral value
function q on K2π by

fΓ ,i T|
- / \ogw(y,s)ds\\ .

Jo JJ
Then it is easy to see that q does not lie in Lx (σ\) but has the property
(2.1).
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(ii) Let g be the function in (2.2). Then by (2.3) we see

oo

\Ba

q{y,t+ir)\ = f ] \g{t - \ - n + ir

on K2π x [0,1) since \g(z)\ < 1 on T. We then put

-\Ϋ + {r-aγ

,o 1 O g "

Since we have

s:
f logυ(x)dσ(x) = ί I f logv(y,t)dt \ dσλ{y)

< / \aq{y)dσx{y) = -oo,

\o%v does not lie in

We now introduce nonnegative functions u on K for which the
functions of t, u(x + et), can be extended as meromorphic functions
on %?. This utility depends on the fact that they can remove the zeros
of Bg(x, z) by multiplying one of them.

Let fa(z) be the meromorphic function on C given by

Notice that 0 < fa(t) < 1 on R. It is convenient to calculate the
equation

/•oo

(2.5) / logfa(t)dt = -2aπ.
J—oo

Let q be a multiplicity function on ΛT2π, and let

Ω = C \ {£ + n ± lα; /ι = 0, ± 1 , ±2,. . . } .

It follows from Lemma 1.3 that the infinite product

(2.6)
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converges uniformly on each compact subset of Ω for σi-a.e. y in K2π.
We also see that U(y,z) has a pole of multiplicity q{y+en) at \+n±ia.
Since fn(t - \ - n)pi^y+e^ is a Borel function on K2π x R for all n, so
is U(y,t). Observe that U(y,t) is automorphic on K2π x R, that is,
U(y, t + 1) = £/(ί + e\, t) on ̂ π χ R So there is a function ŵ  on
T̂Γ for which U(y,t) = u#

q(y,t). Thus we obtain a function ŵ  on Γ̂
satisfying that 0 < uq < 1 and that the function of ί, w*0>, ί)> c a n be
extended as a meromorphic function u*(y, z) which has no zeros on ^F
and has a pole of multiplicity g(y + en) at each ^ + n + ia for σi-a.e. y
in AΓ2π. This uq is called the function on K induced by (fa{t—\),q(y))
via infinite product. Of course, in this definition, we may replace fa

with another suitable function.

LEMMA 2.2. Let q be a multiplicity function on K2π, and let Bq and
uq be as in above. Suppose that 9DT is the normalized invariant subspace
with cocycle Bq. Then

(i) if q lies in Lι(σ\), then B% is a coboundary, equivalently dJΪ is
generated by a unitary function, and

(ii) ifq does not lie in Lx(σ\)y then \oguq does not lie in Lι(σ) and
M- is generated by uq.

Proof. By Lemma 1.3, the function of t, B%(y9 t)uq(y, t), is an outer
function in H°°(dt/(l + t2)) for σi-a.e. y in K2π. Then we see from
Lemma 1.1 that the cocycle of Wl[uq]+ is B%. On the other hand, let
fa be the function in (2.4). Since log^(ί) < 0 on R, it follows from
(2.5), (2.6) and Fubini's theorem that

= I
Jκ

(2.7) I loguq{x)dσ{x)
JK

en)logfa(t-±-n)dt\dσ{(y)

J
= ΓlogMήdt ί q{y)dσx{y)

J-oo JK2π

= -2aπ / q{y)dσλ{y).

(i) If q lies in Lι(σ\), then (2.7) above implies that loguq lies in
Lι(σ). Hence there is a unitary function ψ on K such that

q]+ = ψH2{σ)
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by Szegό's theorem. This shows also that B%(x, t) = ψ{x)ψ(x + et) on
KxR.

(ii) Suppose q does not lie in Lι{σ\). Then we see by (2.7) that
logw<7 does not lie in Lι(σ), so uq belongs to 97t_. It follows from the
preceding remark that 9Jl[ug] — 9)t_.

We remark that if 9JI φ 9Jί_ in (ii), although we do not know if such
a case occurs, then 9Jί = ψH2(σ) for some unitary function ψ on K.
Thus 3Jί has also a single generator.

3. Singly generated subspaces. In this section, we show the converse
to Lemma 2.2 essentially holds. This enables us to characterize single
generated subspaces by means of Blaschke cocycles. The following
theorems give the details.

THEOREM 3.1. Let w be a function on K with 0 < w < 1 satisfying
(1.1) with w in place of\φ\, and let fa be the function in (2.4). Define
a multiplicity function q on Km by

(3.1) q(y) =

Ifuq is the function on K induced by (fa(t-j), q{y)) via infinite product,
then there is a unitary function ψ on K for which

UJl[w] = ψUJl[uq].

We can restate Theorem 3.1, together with Lemma 2.2, in terms of
cocycles.

THEOREM 3.2. Let UJl be a simply invariant subspace, and let A be
the cocycle of 9Jt+. Then Wl is generated by one of its elements if
and only if A is cohomologous to the Blaschke cocycle B® induced by
some multiplicity function q on Km- In particular, HQ{G) has a single
generator if and only if there exists a coboundary of the form B% where
q does not lie in Lι(σ\).

We begin with adopting a wider definition of outer functions. Let
φ be a Borel function on K. We call φ an outer function on K in the
wide sense if the function of t, φ(x + et), is an outer function in the
class N(dt/(l + t1)) for σ-a.e. x in K. It follows, of course,

(3.2) Γ

although not only log|^| but also φ may not belong to Lι{σ).
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LEMMA 3.3. Let w be a nonnegative function on K satisfying (3.2)
wtih w in place of\φ\. Define a function p on K2π by

p(y)= / \ogw(y,t)dt.
Jo

If p belongs to Lx{p\)> then there is an outer function φ on K in the
wide sense for which \φ\ = w.

Proof. Consider/? as a function on K by p(y91) = p(y) for each (y, t)
in K2π x [0,1). Let p = p+ — p~ where p+ and p~ are positive and
negative parts of p. By Szegό's theorem we can find outer functions
φι and ψi in H°°(σ) so that \φ\\ = exp(-/?+) and \ψ2\ = exp(—/?"").
If we put ψi = φ\xψ2, then φ^ is an outer function in the wide sense
for which \φ$\ = ep. Thus, by replacing w with we~p, we may assume
p = 0.

Let us consider the Hubert transform V(y9t) of logw#(;M) on
x R, explicitly

1 ί 1
V(y,t) = lim - / \ogw*(y,s)-—-ds.

By our assumption, we may replace (/ - s)~ι by (t - s)~x -{t-
in the above integral when \t - |[5]|| > 1. Then we see easily that
this integral converges for σpa.e. y in K2π. Observe that V(y, t) is an
automorphic Borel function on K2π x i?. Therefore there is a function
v on K for which V(y, t) = υ*(y, t) on K2π x R. This implies that the
function of /, v(x + ̂ ) , is a conjugate function of logw(x + et) for
σ-a.e. x in K. Thus

is the function with desired properties.

LEMMA 3.4. Let w be a function as in Lemma 3.3. For each r
in R, there is an outer function φ on K in the wide sense for which
\φ{x)\ = w(x)w(x + er)~ι.

Proof. We notice that the function of t,

\ogw(x + et) - logw(x + et + er),
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belongs to Lι(dt/(V + t2)) for σ-a.e. x in K. Consider the Hubert
transform v(x) of it. Then we have

υ(x) = lim — / {logw(x + es) - \ogw{x + es + er)}— ds

= lim — / logw(x + es) \ } ds.
^+o^Λ<l#-r| [s-r s J

Since ( s - r ) " 1 - s " 1 = O(s~2), as |s| —> oo, the above integral converges.
Thus the function

φ(x) = exp{log w(.x) - logw(x + er) + iv(x)}

satisfies the desired properties.

LEMMA 3.5. Let w be a function as in Lemma 3.3, and let {#«}£L_oo
be a sequence in R with the property that \an\ — O(n~2), as \n\ —• oo.
Then the infinite product

n=-oo

converges σ-a.e. x in K and satisfies (3.2) with W\ in place of\φ\.

Proof. We may assume that 0 < w < 1 and an > 0 for all n. Let
f(s) = 1/(1 + s2). Then we see the Fourier transform of /,

f(t)= Γe-itsf{s)ds,
J -oo

is equal to πe~^. Since the convolution / * / of / and / satisfies that

(/*/Π0 = πV2'l = (2 2

it follows from the inversion theorem that / * f(s) = 2π/(4 + s2).
On the other hand, let h{t) = an on [n, n + 1) for all n. There is a

constant C > 0 such that Λ(ί) < C/(ί) and f(s - [t]) < Cf(s - t) for
s, t in R. This yields that

2πC2
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Our assumption shows that \ogw(x + et) < 0, so we have

dt ί°° -°°, dtf°° dt Γ
J-oo l ι \ + t2 /_

/•oo

= / lθgU>(
J — oo

-oo A ' v °° n=—oo

roo °°

I \ogw(x + es)-i—τds > -oo

by (3.2). Simultaneously this assures the convergence of the product
W\(x) since

oo

Σ an\ogw(x + en) > -oo
«=—oo

for σ-a.e. x in AT, which completes the proof.

LEMMA 3.6. Let {an}
(^L_oo be a sequence in R such that

(3.4) an = 0(n~4), as \n\ —• oo, and

(3.5) Σ an = 1.
«=—oo

Let w and wx be as in Lemma 3.5. Then there is an outer function φ
on K in the wide sense for which \φ\ = wχw~ι. In particular, suppose
that w is bounded and that an > 0. Then there is a unitary function ψ
on K for which Wl[w] = ψM[w{].

Proof. Observe that the automorphic extension logw*(y,t) lies in
L{(dt/(l + t2)) as a function of t for σ ra.e. y in Klπ. Let V(y, t) be the
Hubert transform of \ogw*(yj) with the normalization V(yJ) = 0,
that is,

V(y, t) = lim - / logw*(y,s) I + S

 9 \ ds.
ε - + + θ π j e < \ t _ s \ * V^ J \ t - S l + S 2 )

Let j < p < 1. It then follows from Kolmogoroffs estimate [3;
Chapter III, Theorem 2.1] that the function of t, V(y9t)9 lies in
Lp(dt/(\ + t2)) for σpa.e. y in Km. We notice that the function of t,
\ogw*(y, t) + iV(y, /), may be extended to %? analytically.

Since logio#(y, t + 1) = logiί;#(y + e\9t) on K2π x i?, we see that

(3.6)
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on K2π

 x R> a function only of y. We define a Borel function U(y, t)
on K2π x R by

(3.7) £/(jM)= £ anV(y,t + n).
n=—oo

Then we claim that the function of t, U(y,t), also belongs to
LP{dtl(\ + t2)) for σ ra.e. y in ^ 2 π Indeed, recall that LP(dt/(l + t2))
is a complete metric space whose metric d is given by

dtpoo

d(f,g)= \f(t)-g(t)\pγ
J-oo A

t2

for/, g in Z/(ί/ί/(l + ί2)). Since \anψ = O(n~2), as \n\ -» oo, by (3.4),
it follows from (3.3) with \an\

p in place of an that

/ :
1 l+t2

an\
p

Π--OO
Σ τl

<C2/

By Lemma 3.5, we see that the function of t, logwf(y,t)> belongs
to Lι(dt/(l + t2)) for σ ra.e. y in K2π. From the definition (3.7) of
U(y, t), it follows that the function of t, U(y, t)9 is a conjugate function
of logwf(y,t)9 and logwf(y9t) + iU{y,t) belongs to HP(dt/{\ + t2))
for σi-a.e. y in K2π.

On the other hand, by (3.5) and (3.6), we obtain that

on Km x R. Together with (3.6), this yields

on K2π x R, that is, C/(y, ί) - V(y, t) is automorphic. So we may find
a function u on K for which

on K2π x i?. Therefore the function of t, u(x + et)9 is a conjugate
function of logw\(x + et) — log ^ (x + et) for σ-a.e. x in AT. Thus if we
put

φ{x) = exp{log^i(x) - \ogw(x) + /M(Λ:)},
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then φ is the outer function on K in the wide sense such that \φ\ —
W\W~l.

Suppose that w is bounded and an > 0. Then w\ is also bounded
and Lemma 3.5 assures that 9Jl[wi] is simply invariant. Since

eιu^W\(x) = exp{logw\(x) -logw(x) + iu(x)}w(x)

= φ(x)w(x)

on K, it follows from Lemma 1.1 that the cocycle of ΌJl[w]+ coincides
with the one of eiu9Jl[w\]+. Observe that \ogw\ lies in Lι(σ) if and
only if so does logw. Thus by Szego's theorem we conclude UJl[w] —
eium\wx\

Now we may offer a proof of our main result stated at the beginning
of this section.

Proof of Theorem 3.1. If log w lies in Lι(σ), then the function q
in (3.1) lies in Lι(σ). So it follows from Szego's theorem and (i)
of Lemma 2.2 that Wl[w] = θ\H2(σ) and M[uq] = θ2H

2(σ) for some
unitary functions θ\ and #2 o n K. Thus we may assume that log w does
not lie in Lι(σ). We then notice that M[w] = M[w]- and Wl[uq] =
M[uq]- by (ii) of Lemma 2.2.

If we define a function p\ on K2π by

ίι

Pi(y) = - / logw(y9t)dt,
Jo

then it follows from Lemma 3.3 that there is an outer function φ on
K in the wide sense for which \φ\ = wtxp(p\), where p\ is regarded
as a function on K = K2π x [0,1). Hence we can choose a unitary
function ψ\ on K such that

(3.8)

Define a meromorphic function ga on 2? by

z4

Since z 4 + 4α4 = {(/ - a)2 + a2}{{t + a)2 + a2}, ga(z) has a pole of
multiplicity 1 at z = α(±l + /) in ^. Easy calculation shows that

log ga(t)dt = -4απ.

We then define a multiplicity function q\ on K2π by
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Since 4aπq\ < p\ < 4an(qx + 1) and q\ does not lie in Lι(σ) as a
function on K, it follows from Lemma 3.3 that there is a unitary
function ψι on K such that

(3.9) 9K[exp(-/?i)] = ψ2Wl[exp(-4aπqι)].

We next put

Then we see easily the sequence {an}
(^L_oo with an > 0 satisfies the

conditions (3.4) and (3.5) in Lemma 3.6. Since X^-oo^tfiC* + en)
does not belong to Lι(σ), there is a unitary function ^ 3 on K for
which

(3.10)
/ oo >

exp I -4aπ Y] anq{{x + en)

Let υ be the function on K induced by (ga(t - \), q\ (y)) via infinite
product. Then we see that 0 < v < 1 on K and that the function of t,
v#(yj), may be extended to %f as a meromorphic function v*(y,z),
which has a pole of multiplicity q\(y + en) at z = (%±ά) + n + ia
and has no zeros on %* for σra.e. y in Klπ. Let 5 be the Blaschke
cocycle determined by the property that the function of z, B(y, z), in
%? has a zero of multiplicity q(y + en) at z = (j ± a) + n + ia and
has no zeros elsewhere. Then it can be seen by Lemmas 1.1 and 1.3
that the cocycle of 9#[?;]+ is B. On the other hand, it follows from the
definition of v that

logυ(y,t)dt= Y" qι(y + en)
n=-oo JQ

-\-n)dt
n=—oo

= - 4aπ
n=-oo

From this fact we see also logτ; does not lie in Lι(σ). Therefore it
follows from Lemma 3.3 that there is a unitary function ψ^ on K for
which

(3.11) 97t expί-4απ ] Γ anqx(x + en) ) = ψ4fm[v].

Let fa be the function in (2.4), and let U\ be the function on K
induced by (fa(t - \ - a)fa(t - \ + a)9q\(y)) via infinite product.



372 JUN-ICHI TANAKA

Then we see easily that 0 < u\ < 1 on K and logui does not lie in
Lι (σ) by the same way as the proof of Lemma 2.2. Since ?ΰl[u\]+ has
the same Blaschke cocycle as 57ί[^]+ has, we thus obtain

(3.12) m[v] = m[u{].

Let u be the function on K induced by (fa(t — j), Q\ (y)) via infinite
product. It follows from Lemma 3.4 that there are outer functions
ψx and φ2 in the wide sense so that |^i(x)| = u(x)u(x + ea)~ι and
\φ2(x)\ = u(x)u(x - ea)~ι on K. Observe that

u{(x) = u(x + ea)u(x-ea),

and logu does not lie in Lι(σ). Then we see that there is a unitary
function ψ$ on K such that

(3.13) Wt[uι] = ψ5m[u2].

It is easy to see that the cocycle of 9Jt[t/2]+ is B%qχ. Let q be the
multiplicity function on K given by (3.1). Then we have

from the definition of q\. So if q2 — q — 2q\, then q2 becomes a mul-
tiplicity function on K2π. By (i) of Lemma 2.2, B®2 is a coboundary.
If uq is the function on K induced by (fa(t - \), q{y)) via infinite
product, then the cocycle of ffl[uq]+ is B% by (ii) of Lemma 2.2. Thus
we may choose a unitary function ψ6 on K for which

(3.14) M[u2]= ψ6VJl[ug]

Define the unitary function ψ on K by

Ψ = Ψ\ψ2ΨlΨW5ψ6

It then follows from the equalities from (3.8) to (3.14) that ΰ)l[w] =
ψM[ug]. This completes the proof.

Proof of Theorem 3.2. Suppose that 971 has a single generator φ.
Then we may assume that 0 < φ < 1 by Szegό's theorem. It follows
from Theorem 3.1 that there are a unitary function ψ on K and a
multiplicity function q on K2π so that 9tt = ψ9Jl[ug] where uq denotes
the function on K induced by (fa(t — \)->q{y)) via infinite product.
Thus Lemma 2.2 shows that the cocycle A of 9Jί+ is cohomologous
to Bq. Converse is a consequence of Lemma 2.2, so the proof is
complete.

4. Applications. We first ask under what conditions a Blaschke cocy-
cle B is cohomologous to the one B% induced by a multiplicity function
q on K2π.
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THEOREM 4.1. Let B be a Blaschke cocycle which has no zeros on
K2π

 x { I m z > r} for some r > 0. Then there is a multiplicity function q
on K2π such that B is cohomologous to B%. Consequently\ the invariant
subspace with cocycle B is singly generated.

Proof. We let F{y9 t) be a function on K2π x R defined by

where B(y9t + ir) is given by (1.3) with B in place of V. Then the
hypothesis implies that the function of t, F(y9 t), is an outer function
in H°°(dt/(l + t1)) for σ ra.e. y in K2π. Observe that B[y9t)F{y91) is
automorphic on K2π x R. Then, together with (i) of Lemma 1.2, there
are two functions w and υ on K whose automorphic extensions w# and
v* satisfy \F{y91)\ = w*{y91) and B(y9t)F(y91) = v#(y, t) on K2π x R.
Since 0 < w < 1 on K, it follows from Theorem 3.1 and Lemma
2.2 that there is a unitary function ψ\ on K such that the cocycle of
ψιWl[w]+ = 9Jl[ψιw]+ is B% for some multiplicity function q on K2π.
By (ii) ofLemma 1.1 we see that the function of t, B%{y,t){ψ\w)*{y,t),
is an outer function in H°°(dt/(l +11)) for σi-a.e. y in K2π. Then the
zeros oϊ F{y,z){(ψχwγ(y,z)}~1 exactly match zeros of B%(y, z) on
K2π x XT.

On the other hand, since w = \v\9 if we put ψ = v{ψ\w)~x, then ψ
is a unitary function on K. Since

B{y9 t)ψ*{y91) = B{y9 t)v^{y9t){{Ψιwf{y9 ί)}" 1

= B{y9 t)WJ)F{y, t){(ψiw)*(y91)}~{

on K2π x R. Thus we have B%(x91) = ψ(x)ψ(x + et)B(y91) on K x 1?.
The last assertion follows from Theorem 3.2.

We can strengthen the conclusion of [6; Theorem 26] which is one
of the most important features of cocycles.

THEOREM 4.2. Every cocycle is cohomologous to a Blaschke cocycle
B with the property that the function of zf B(x, z), on %? has no zeros
on {0 < Imz < a}, so B{x9z) may be extended to {-a < Imz},
analytically, for σ-a.e. x in K.

Proof. It follows from [6; Theorem 26] that every cocycle is coho-
mologous to some Blaschke cocycle B\. By restricting B\ to K2π x 7?,
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we denote by Ej the set of all zeros of Bx (y, z) in K2π x R, and qx (y, z)
denotes the multiplicity of zero at (y, z) in Ei. Define

E2 = {(y,z) € E^O < Imz < α},

and let q2(y,x) be the restriction of q\ to E2. Then by [5; Theorem 1
and §5] there is a Blaschke cocycle B2 whose zero set and multiplicity
match E2 and q2. Observe that i?3 = B{B2 is also a Blaschke cocycle
which has no zeros on K2π x {0 < Imz < α}. On the other hand, it
follows from Theorem 4.1 that B2 is cohomologous to B% for some
multiplicity function q on K2π, which has zeros only on line {Imz =
a}. Since Bx is cohomologous to B*Bτ» the Blaschke cocycle B = B%B3

is the desired one.
Let φ be a function in Hι(σ). For each r > 0, we define

1 f°

<Pr{x) = - J

which is an analogue of (1.3). We notice that φr also lies in Hι(σ) by
Lemma 1.1. Recall that an inner function /(z) on the unit disc is a
Blaschke product if and only if

lim J_ Γ log \f(reiθ)\ dθ = 0

(see [3; Chapter II, Theorem 2.4]). Similar characterization also holds
in the case of X ([1]). Strange to say, suchlike does not hold in the
almost periodic setting.

THEOREM 4.3. There is an inner function ψ in H°°(σ) which has the
following properties:

(i) the function of z, ψ(x + ez), is a Blaschke product on β? for
σ-a.e. x in K, and

(ii) for all r > 0,

/ log\ψr(x)\dσ(x) = -oo.
JK

Proof. Let q be a multiplicity function on K2π which does not lie
in Lι(σ\), and let B% be the Blaschke cocycle induced by q. If 9JI is
the invariant subspace with cocycle B%, then 971 is contained in H2(σ)
by Lemma 1.1. Choose and fix a bounded function φ in 271. We may
assume φ has no weight at infinity, that is, χλφ does not lie in H2{σ)
for each negative λ in Γ. Then we have



BLASCHKE COCYCLES AND GENERATORS 375

on K2π x R, where the function of t, V(y,t)9 lies in H°°(dtl(l + t2))
for CΓI-a.e. y in K2π. Let V(y91 + i) be the function defined by (1.3)
with r = 1. It then follows from (ii) of Lemma 1.2 that there is a
function θ im 9JI such that

on K2π x i?. Notice that the inner part of the function of z, θ#(y, z),
is a Blaschke product on X . By Theorem 3.2, the cocycle of 9Jt[0]+
is cohomologous to the Blaschke cocycle B% for some multiplicity
function q\ on K2π. This implies that there is a unitary function ψ on
K so that B*x(x9 t)ψ(x + et)ψ(x) is the cocycle of Wl[θ]+ which is the
conjugate of some Blaschke cocycle. From this fact we see easily ψ is
an inner function satisfying the property (i).

On the other hand, since the function of t, B%(y, t)ψ#{y, ί), is inner
in H°°(dt/(l + t2)) for σra.e. y in K2π, we have \(Ba

qψ#)(y,t + ir)\ < 1
on Km x R, especially on K2n x [0,1). Since

ψ?(y, t) = B%(y91 + ir)(Ba

qψ*)(y, t + ir\

it follows from (ii) of Lemma 2.1 that

f \og\ψr{x)\dσ{x)
JK

= ί ί
Jκ2π Jo

< ί ί log\B$(y,t + ir)\dσx{y)dt = -oo,
Jκ2n Jo

this completes the proof.

We finally show that every invariant subspace contains a singly gen-
erated one as close as we please.

THEOREM 4.4. Suppose that K is separable, and that 9Jί is a sim-
ply invariant subspace ofL2(σ). Then there is a sequence {φn}^L\ of
bounded functions in 371 with same arguments such that

(i) \<Pi\>\<Pi\>\(P3\>'-,
(ii) 9Jl[φι] C Tl[φ2] C ^[φ^] C C SDt, and

(iii) UJl = the closure tf/lim^oo ffl[φn]>

Proof. If 9Jt Φ 9Jt_, then there is nothing to prove since 9Jt = ψH2(σ)
for some unitary function ψ on K\ thus we assume that 9Jΐ = 9Jΐ_. By
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Theorem 4.2, we may also assume the cocycle of 9Jt+ is Έ, where B
is a Blaschke cocycle whose zeros lie in K x {Imz > a). Perhaps, B
might be 1, so Wl = H$(σ). We let E be the set of all zeros of B(y, z)
in K2π x <#% and g(y9 z) denotes the multiplicity of zero at (y, z) in E.

Observe that 9Jί is contained in Hβ(σ) and that some bounded func-
tion ψ\ in UJl has no weight at infinity. We denote by Ej and q\ the
set of all zeros of <p\(y9 z) in K2π

 χ {Imz > α} and the multiplicity
of zero at (y, z) in Ej, respectively. Since ψ\ lies in 971, Ei contains
E and q\ > q on E. Since Ej and #i satisfy the properties arisen
from a Blaschke cocycle, it follows from [5; Theorem 1] that there is
a Blaschke cocycle Bγ whose zeros, together with their multiplicities,
match E! and q{. We put φ\(y, t) = Bx{y, t)V(y, t) on K2π x i?. Then
the function of ί, V(y, t), lies in H°°(dt/(1 + ί2)) for σ ra.e. y in A:2π.
By (ii) of Lemma 1.2, we may choose a bounded function p in 9Jΐ for
which

on K2π x i?. Observe that the function of z, φ*(y, z), has no zeros on
{0 < Im z < a} for σ ra.e. y in Klπ.

We next define

fn = {(y, z) G Ei;an < Imz < α(n + 1)} \ E,

for « = 1,2, 3,.... We then write

j + iSj);j= 1,2,3,...},

listed according to their multiplicities q\ - q. Since {SJ} is bounded
and bounded away from zero, it follows from Lemma 1.3 that the
product

converges for σpa.e. y in K2π. We, of course, consider Un(y9 ί) = 1 if
Fn(y) is empty. Furthermore, since K is separable, similarly as in the
proof of [5; Lemma], we see that Un(y, t) is measurable on K2π x R.
Since Un(y,t) is automorphic, we can find a function un on K for
which Un{y, t) = u*{y, t) on K2π x i?.

Define analytic functions φn on ίΓ by

Ψn = uιu2 -unφ.

Then since 0 < un < 1 on K, {φn} is a sequence of bounded functions
with the same arguments and satisfies the property (i).
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Let Tϊn be the cocycle of ffl[φn]+. Then the conjugate cocycle Bn

of Έn is a Blaschke cocycle with the property that the zero set of
Bn(y, z) in Λ^π x {α < Im z < an} and their multiplicities match the
restrictions of E and q to K2π x {a < Imz < an}. We then see that
BnBn+\ and BnB are analytic for all n. Hence the property (ii) follows.

On the other hand, it can be easily seen that the normalization of
the closure of lim/,_KX)9Jΐ[^/J] has the cocycle B, the cocycle of 9Jt+.
Since 9Jt = 9Jΐ_, we obtain the property (iii), this completes the proof.

5. Remarks. Let q be a multiplicity function on K2π. We then
denote by B% the Blaschke cocycle induced by q as usual.

(a) The following question is interesting and probably difficult: Is
every cocycle cohomologous to some B*Ί By virtue of Theorem 3.2,
this is equivalent to the old problem of whether every simple invariant
subspace is generated by one of its elements (see [6; Chapter 5, §4]).
Experimental evidence seems to indicate that the answer would be
negative.

(b) Let φ be a nonnull function in H°°(σ). Then the cocycle of
97t[0?]+ is cohomologous to some B% by Theorem 3.2. This assures the
existence of an inner function which has exactly the zeros of φ and B*
together. In other words, by adding zeros on the line {Im z = α}, the
zero set of any analytic function becomes the one of an inner function.
This observation as well as Theorem 4.1 implies information to a
problem posed by Helson:

When does the zeros of a Blaschke cocycle coincide with the zeros of
some analytic function**

(c) Similarly as in the proof of Theorem 4.3, we can show the
following

PROPOSITION 5.1. Let 9Jt be the simply invariant subspace with co-
cycle Ba

q. Suppose that q does not lie in Lι(σ\). Then, for every φ in
9JI, we have

I \og\φr(x)\dσ{x) = -oo
JK

for all r > 0.

We remark that 971 contains many unitary functions (see [6; The-
orem 16]). If φ is continuous on K, so is φr. It then follows from
Arens' theorem [2; Chapter VII, Theorem 9.4] that 2Jί has no contin-
uous functions other than the null function.
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(c) The next proposition is an analogue of Theorem 4.4, and two
proofs are quite similar.

PROPOSITION 5.2. Let K and 9JI be as in Theorem 4.4. Then there
is a sequence {ψn}^L\ of unitary functions in 9Jt such that

(i) ψιH2{σ) c ψ2H
2{σ) c ΨiH2{σ) C- CWI, and

(ii) 9Jt = the closure 0/limΛ_>oo ψnH
2{σ).
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