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ON MEANS OF DISTANCES ON THE SURFACE
OF A SPHERE (LOWER BOUNDS)

GEROLD WAGNER

Given N points X, X2, ..., Xy on a unit sphere S in Euclidean
d space (d > 3), we investigate the a-sum ) |x —x,|*, a > 1—-d,
of their distances from a variable point x on S. We obtain an
essentially best possible lower bound for the L'-norm of its deviation
from the mean value. As an application, we prove similar bounds for
the a-sums > |x, — xx|* of mutual distances.

Introduction. Let S = S?~! be the surface of the unit (hyper)sphere
in d-dimensional Euclidean space (d > 3). Denote by |x — y| the
Euclidean distance between two points x and y on S9! . Let wy =
(x1, X2, ..., XxXy) beafixed set of N pointson S, andlet x €S bea
variable point. With each value of a parameter a (1—-d < a < 0©0) we
associate a distance function U,(x, wy) on S9!, which we define
as follows:

Mz

(1) (X, ON) |x —x;|*~N-m(a, d) (a#0),

J=1

o(x, wn) oglx—xj|—N'm(O,d) (a=0).

H‘Mz

Here m(a, d) is the mean value of |x — x;|* on §, which means

1
mia,d) = = [ e-xlrdox)  (@#0),
m(O,d):%/Sloglx—leda(x) (a=0),

where o is the (d — 1)-dimensional area measure on S'.

We give two interpretations of the functions U, . First, the sums
> |x — xj|* are related to the classical a-means (4 Y |x — x;|*) of
distances from the point x to the points of wy, which contain as
special cases the arithmetic (a = 1), geometric (a« = 0), and harmonic
(a = —1) mean. Second, the sums ) |x — x;|* can be considered
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as Riesz potentials (see [3]) of a discrete charge distribution with an
atom of unit weight at each point x;. The logarithmic (a = 0) and
the Newtonian (a = 2 —d) potential are special Riesz potentials.

The problem we are going to discuss is a problem of irregularities of
distribution. If we replace the discrete distribution wy in (1) by the
continuous uniform distribution N -¢ on S9-!, the corresponding
integrals vanish identically on S9~!. The fact that uniform distri-
bution can be approximated by an N point distribution to a certain
degree of accuracy only implies the existence of certain lower bounds
for the L!'-norm

1UaCx, on)lls = % /S U (x, wx)|do(x).
We prove

THEOREM 1. Foreach N> 1 andeach o #2,4,...,1-d<a<
00, the following inequality holds:

(2) 1Ua(x, o)l > c(d, a) - N=o/@=D),

Here c(d, o) is a positive constant depending on d and o only.

It will be proved in a later paper [10] that the result of Theorem 1 is
best possible apart from the value of the constant ¢(d, a). Note that
inequality (2) is false for @ = 2, 4, ... . In these exceptional cases,
one can construct a point set wy for each N > Ny(d, a), such that
U,(x, wy) =0 on S9!, In the classical harmonic case o =2 —d,
Theorem 1 is already contained in a paper by P. Sjogren [6]. After
suitable choice of the parameters involved, his Theorem 1 implies that

—minU,_y4(x, wy) > c(d) - N@-2/d=1)
x€S

but his proof also applies to the case of the L!-norm without any
change. For d = 3 and a = —1, our result has the following physical
interpretation: Suppose we place N electrons (each of unit charge)
on the surface S2. The function U_,(x, wy) measures the difference
between the actual potential of wy at the point x, and its mean value
which is equal to N . By Theorem 1, there exist points x € S at which
the actual potential is by at least ¢ - N!/2 below the mean value.
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We also consider distance functionals E,(wy) which have the phys-
ical meaning of energy sums. Let

(3)  Ea(wn) =) _(x;—x|* —m(a,d)) for0<a<2,

Jj,k

Eo(wy) =) _(log|x; — x¢| - m(0, d)), and
J#k

Eo(on) =) _(Ixj — x|* = m(a, d)) forl-d<a<0.
J#k

Note that when dealing with energy sums, we restrict ourselves to
values of « satisfying 1 —d <a<?2.

If we replace the energy sums in (3) by the corresponding energy
integrals with respect to uniform distribution N - g, we obtain the
value zero. The fact that we approximate uniform distribution by
a discrete distribution again gives rise to certain lower bounds for
E,(wy). We prove

THEOREM 2. Foreach N > 2, the following energy inequalities hold.

(a) E.(wyn) < -cla,d)-N'7¢/@-1)  (0<a<?2),
(b) Es(wy) > —c(a,d)-N=2@-D  (1_d<a<3-d),
(¢) En(wy)> —c(a,d)-N'"7C  3_4d<a<0,d>4),

(d) Ep(wy) < %logN + O(N).

Let us make a few remarks. Theorem 2 is probably not best possible
in the case (c), and in case (d) for d > 4. For d = 3, the logarithmic
case has already been handled in the author’s paper [9].

The sum E;(wy) was studied by K. B. Stolarsky ([7], [8]). He
discovered a beautiful identity between the sum E;(wy), and the
L%-norm of a function that measures discrepancy of the point set wxy
with respect to spherical caps on S?~!. Using W. M. Schmidt’s lower
bounds for the discrepancy of an N point set on S?~! with respect to
spherical caps (see [S]), Stolarsky was able to obtain nontrivial bounds
for Ei(wy) in dimension d > 5. J. Beck [1], using his method of
Fourier transforms, finally proved the (best possible) estimate

E\(wy) < —c(d) - N@=2)/(d-1)

The method we shall use in order to prove Theorem 2 is independent
of Beck’s method.
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For d =3 and a = —1, Theorem 2 contains the following result
of physical interest. The energy »_; . |x; — x¢|~! of a distribution of
N electrons on S? satisfies the inequality

Y oIxj— x|t = N2 —c- N2,
J#k
For some basic facts on potential theory, we refer to the beautiful

paper [4] by Polya and Szegd, and to Landkof’s book [3]. The theory
of spherical harmonics on S9-! is treated f.e. in [2].

2. Proof of Theorem 1. The proof of Theorem 1 is based on the
construction of appropriate test functions 7(x) on S9! and the
use of the inequality

J Ualex, omT) da(x)l / sup|T(x)].
N x€S

Step 1. We introduce spherical coordinates 8 = (6, 05, ..., 6,;_5)
(0<6,<m) and ¢ (0< ¢ <2m) on S?!. Let A be the spherical
Laplace operator on S9~!, and consider the differential equation

@) Ualx, on)lh 2 ﬁ

!
/ ~ (sin>49, 2 (sim-2, . 4 _
A'hy(cos 0;) = (sm 01d0, (sm 0, d01)> hi(cosfy) =1,
I=1,2,....
This equation has a solution on the interval (0, z], which behaves like
(sin(6;/2))!~4*2 near the point 6, =0 for [ —d +2#0,2,4, ...,
and like (sin(6,/2))!~4*2 .logsin(#;/2) in the remaining cases. The
expansion of #; into ultraspherical polynomials P,E’l)(cos 0,), A =
4 — 1, is given by
e n+A )
5 h ~c(A, )y ————P, 6,).
(5) i(cos8y) ~ (A, 1) g(n(n”l)), 5 (cos 6))

The expansion (5), although not necessarily convergent, is known to
be Poisson summable, which means

hi(cosy) = lime(4, )Y (n(” +4
= n=1

———mr"Pﬂ(l) (COS 01)

for 0<6,<m.
For the given point set wy , consider the function

N
Hy(x, on) =Y hy(cosy;(x)),
j=1
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where 2sin(1y;(x)) = |x — x;| and x € 97! For the function H;,
the inequality ||H;(x, wy)|; > N'72//d=1) is easily proved in the
following way.

Consider the subdomain D c S9-! determined by the relations
0<5-6,<% (p=1,2,...,d-2),and 0<¢p < Z. Let r=r(N)
be the integer satisfying

2N <26-Dr <24 N,
We partition D into “cubes” By = By, y ..u, (1 < pp <27), where
B, is determined by the inequalities
(p=1)- 527 <Op<pp-Z-27  (p=1,2,...,d-2) and
T, T
(Hg-r = 1) 22 "SéSpg g 27

The set of subdomains B, containing none of the points x; in
their interior will be denoted by A. By the choice of r, we have

> o(By) > 1.

A
For x=(0,¢)e B, €A, let

d-2
tu(x) = 47" [] sin* 6276, - sin® 6 - 2"¢.
p=1

Define a test function T'(x) on S9-! by putting

T(0, ¢) =A1,(0, ¢)

for (0,¢) € B, € A, and T(0,¢) = O elsewhere. Note that
sup,es |T(x)| < 1 holds. Multiplying H;(x, wy) by T(x), and in-
tegrating over S?~!, we obtain, using Green’s second formula:

(6)

/SHI(x, wy)T(x)do(x)

Z/B H(x, wN)AITﬂ(x) do(x)
A "

l . )
;LﬂAHI(X, wy) - Tu(x) - do(x)

> NZ/ tu(x)do(x) > N 47> N. N72/d-D),
A VB,

Here we use the fact that the normal derivatives of A™7,(x) (m =
0,1,...,1—1) with respect to the boundary of B, vanish. From
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relations (4) and (6), using sup,cs|7(x)] < 1, the inequality
|H;(x, wy)||; > N - N~2l/(d=1) follows.

Step 2. We begin with the case 1 —d < a < 3 —d. Consider
the kernel k,(cosf;) = |2sin(60,/2)|*, which generates the distance
function |x — y|®. We are looking for an inverse kernel k;!(cos6);)
such that the convolution equation

(7 kil kg =hy

holds on S9-1,
We have the expansion

(8) ka(cos61) ~ > an - Py (cos61),
=0
where
i = (A, a) (n+d) Ln-a/2) .

T(n+22+1+0a/2)
I'(24) - T(a/2+ A+ 1/2)
TA+1/2) T(-a/2) °

Note that the expansion (8) holds for any value of « satisfying 1-d <
a and a#0, 2, .... If we omit the factor I'(—%) in the denominator
¢(4, @), we obtain a kernel of the type |sin(f;/2)|*logsin(6,/2) for
these exceptional values of «. It is in this sense that we shall use the
notation k,(cos@;) forall a>1-d.

Proceeding quite formally, and using (5), we obtain a solution of
(7) in the form

c(A, a) =2+,

9) k' (cos61) ~ >~ by - P (cos6)),

n=1
where
(n+A)? D(n+2i+1+(a/2)
nn+24) (n+A)-I'(h-(a/2))’
Using Stirling’s formula, and subtracting successively appropriate

multiples of (8) (with a replaced by 4-2d —a,5-2d —a, ...)
from (9), we obtain a representation

bn=c1(4, a)

(10) ki'=di kysgo+dy -ks_2g o+ - +ds kg3 24 o+Rs
(d -1 75 O),

where AR; is bounded and continuous for s=d + 1.
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A rigorous proof of (10) is obtained in the following way. Let

7 (cosBy) = Z(n + A)r't - P,E’l)(cos 6,) (O<r<)
n=0

be the Poisson kernel on S9~!. Note that k7! and A, are integrable
over S9! and hence that x = k!  m, solves the equation

K *xky,=hy *7,.

Letting » — 1, we obtain the desired result.
From (10), we further get the estimates

(11) k' (|x =yl < |x —y|*2~* and
Ak (1x = y))| < |x — y|>724e,

Step 3. We use T k! as a test function for U,(x, wy), where
T is the test function introduced in step 1. In view of the relation

(12) /U X, oy) - (T +k-1)(x) do(x)
/(U xk, DH(x) - T(x)do(x)
/ Hy(x, oy) - T(x)do(x),

it is sufficient to estimate sup,cg (T * k7 1)(x)].

For fixed x € S971, let A’ = A/, be the set of subdomains B, € A
that contain some point y such that |x — y| < N~1/(@=D holds. Let
A" = A\A’ be the set of remaining B, ’s. We have

(13) (T kD)) < /Afu(y S (x -yl do(y)

1,(¥) - Ak N (|x — y|) do(y)

"

< Z/ [x _y|4—2d—a da(y)

+Z/ |x —y|> 22 da(y

AII
< Nld+a=3)/d-1),

From (6), (12), and (13), the assertion follows.
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In order to obtain the assertion of Theorem 1 in the case 2/—1—-d <
a<2l+1-d (I=2,3,...;a#2,4,...), we proceed in a similar
way, solving the equation k! k, = &;, and noting that

sup [(T * k;1)(x)] < N - Nle=2h/d-1),

xS
This argument also works for a =2/-1-d, a#2, 4, ..., whereas
in the case a = 2, 4, ... the convolution equation which corresponds
to (7) has no solution. However, if we define U,(x, wy) by

N
Ua(x, wn) = 3 |x = x;|*log|x — x;| = N - m'(a, d)
j=1
for a =2, 4, ..., the assertion of Theorem 1 would also remain true

in the exceptional cases.
This finishes our proof of Theorem 1.

3. Bounds for energy sums. In proving Theorem 2, we shall distin-
guish three cases.

The case 0 < a < 2. By formula (8), all the coefficients a, = a,(a)
(n > 1) in the expansion of k,(cos€;) are negative. The addition
formula for spherical harmonics (see [2], §11.4.) implies the following
identity:

N 2
E (wy) = —c(a, d)/S (Zaa(pc —le)) do(x).
j=1

Here c(a, d) is a positive constant, and J&,(|x —x;|) is a new distance
function, generated by the kernel
o0
8a(c08 01) ~ Y (=(n +4) - an(@))'/? - P (cos ;).
n=1
In view of the expansion (8), the kernel d,(cos ;) is of the type
O.(|x = y|) ~ |x = y|(1+e=4)/2  Now choose the integer / > 1 such that
2]-1-d < (1+a—-d)/2 < 2l+1—-d. Consider again the convolution
equation
o, " Ja = hy.
Proceeding as in the proof of Theorem 1, we find that the inverse
6, ! has a representation of the following form:

s
(50_1 = Z dm - k21+m+1—2d—ﬁ + R; (dl a O)‘

m=1
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Here f = (1 +a—d)/2, and if we choose s large enough, A'R; will
be bounded on S. From now on the proof is the same as in step 3 of
the proof of Theorem 1, yielding

N
Zéa(lx - le)
Jj=1 1

From this and the Cauchy-Schwarz inequality, the inequality
E,(wy) < —c(a, d)- N1=2/@-1)

> N(d@-a=1)/2d-1)

follows immediately.

The case 1 —d < a < 3 —d. In the case of an unbounded kernel
k., we have to proceed in a different way. Together with the kernel
ko(0) = (2 — 2cos0;)*/? consider the more general kernel

a2
dy(cos ) = <r+%——2cos¢91) 0O<r<l).

Let m, be the mean value of d,(cos ;) over S?~! andlet d,(|x—y|)
be the distance function generated by d,(cosf;) on S9~!. We have

Eqo(y) = Y _(di(l1xj — x¢]) — my)
Jj#k

—Z (Ixj = xkl) —my) = N - d,(0)

—N2~( —m,)+N~m1
+ Y (di(|xj = xk]) = dr(|; = xe]))-
J#k
First of all note that d,(|x — y|) < d;(|x — y|), and that

E(dr(lxj = xl) —
Jk

as all the coefficients of d,(cos 8,)—m, in the ultraspherical expansion

are nonnegative. (This may be proved in the same way as Hilfssatz 6

in [4], using the Rodrigues formula for ultraspherical polynomials.)
Hence

(14) Ey(wy) > =N -d,(0) = N* - (m; — my,).

Now choose r = 1 — N~1/(@=1) " We have d,(0) <« N~/(@=1) and
m; —m, < N-!'. N~/(d=1) Ingerting these estimates in (14) yields
the desired result.
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The case 3—d < a < 0,d > 4. Unfortunately, the preceding
method does not seem to give the best result in the case 3—d < a < 0.
Putting r = 1 —¢, we obtain d,(0) < &* and m;—m, < &* (instead of
g4-1*+e a5 above). Choosing ¢ = N1/(2=%)  assertion (c) of Theorem
2 follows.

In the logarithmic case, the same procedure yields

Eo(wn) < 5 10g N +O(N),

which is best possible in dimension 3 (see [9]), but probably not in
higher dimensions. This finishes our proof of Theorem 2.
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