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ON MEANS OF DISTANCES ON THE SURFACE
OF A SPHERE (LOWER BOUNDS)

GEROLD WAGNER

Given TV points X\, x2 , . . . , XN on a unit sphere S in Euclidean
d space (d > 3), we investigate the α-sum ] ζ \x - x} \

a , a > 1 - d,
of their distances from a variable point x on S. We obtain an
essentially best possible lower bound for the Z^-norm of its deviation
from the mean value. As an application, we prove similar bounds for
the α-sums Σ\XJ ~ χk\a of mutual distances.

Introduction. Let S = Sd ι be the surface of the unit (hyper)sphere
in d-dimensional Euclidean space (d > 3). Denote by \x — y\ the
Euclidean distance between two points x and y on Sd~ι . Let ω^ =
(x\, X2, . . . , x v) be a fixed set of N points on S, and let x e S be a
variable point. With each value of a parameter a (1 -d < a < oo) we
associate a distance function Ua(x, CON) on S^" 1, which we define
as follows:

N

(1) Ua(x,ωN) = Σ\x-Xj\a-N'"*(<*><*) (<*ΪO),
7 = 1

- Xj\ - N - m(0, d) (a = 0).

Here m(a, d) is the mean value of \x - Xj\a on S, which means

m{a, d) = - ^ js\x - Xj\a dσ{x) (a φ 0),

m(0? έ/) = —^y / log |x-x ; |ί/σ(x) (α = 0),

where σ is the (d - 1)-dimensional area measure on 5 .
We give two interpretations of the functions Ua First, the sums

Σ \x - Xj\a are related to the classical α-means (^ Σ \x ~ χj\a) °f
distances from the point x to the points of ω^, which contain as
special cases the arithmetic (α = 1), geometric (α = 0), and harmonic
(α = — 1) mean. Second, the sums Σ\x - Xj\a can be considered
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as Riesz potentials (see [3]) of a discrete charge distribution with an
atom of unit weight at each point xj . The logarithmic (a = 0) and
the Newtonian (α = 2 - d) potential are special Riesz potentials.

The problem we are going to discuss is a problem of irregularities of
distribution. If we replace the discrete distribution ω^ in (1) by the
continuous uniform distribution N σ on Sd~ι, the corresponding
integrals vanish identically on Sd~ι. The fact that uniform distri-
bution can be approximated by an N point distribution to a certain
degree of accuracy only implies the existence of certain lower bounds
for the ZΛnorm

\\Ua(x, ωN)\\χ = ——J\Ua(x, ωN)\dσ(x).

We prove

T H E O R E M 1. For each N > 1 and each aφl, 4 , . . . , 1 - d < a <
oo, the following inequality holds:

(2) \\Ua(x, ωN)\U > c(d, a) Λ T ^ - D .

Here c(d, a) is a positive constant depending on d and a only.

It will be proved in a later paper [10] that the result of Theorem 1 is
best possible apart from the value of the constant c(d, a). Note that
inequality (2) is false for a = 2, 4, . . . . In these exceptional cases,
one can construct a point set CON for each N > No(d, a), such that
Ua(x, CON) = 0 on Sd~ι. In the classical harmonic case a = 2 — d,
Theorem 1 is already contained in a paper by P. Sjόgren [6]. After
suitable choice of the parameters involved, his Theorem 1 implies that

- min U2-d(x, coN) > c(d) l^d'2^d'1^,
xes

but his proof also applies to the case of the ZΛnorm without any
change. For d = 3 and a = - 1 , our result has the following physical
interpretation: Suppose we place N electrons (each of unit charge)
on the surface S2 . The function C/_i (x, ω#) measures the difference
between the actual potential of ω# at the point x, and its mean value
which is equal to N. By Theorem 1, there exist points x eS at which
the actual potential is by at least c Nχ/2 below the mean value.
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We also consider distance functional Ea(ω^) which have the phys-
ical meaning of energy sums. Let

(3) Ea(ωN) = Σ(\xJ-χk\a-m(<*,d)) f o r O < α < 2 ,

Eo(coN) = Σ(log\xj -xk\-m(0, d)), and

Ea{ωN) = ̂ 2(\xj - xk\
a - m{a, d)) for 1 -d < α < 0.

Note that when dealing with energy sums, we restrict ourselves to
values of a satisfying 1 - d < a < 2.

If we replace the energy sums in (3) by the corresponding energy
integrals with respect to uniform distribution N σ, we obtain the
value zero. The fact that we approximate uniform distribution by
a discrete distribution again gives rise to certain lower bounds for
Ea(ωN) - We prove

THEOREM 2. For each N > 2, the following energy inequalities hold:

(a) Ea(ωN)<-c(a,d) Nι-aKd-V ( 0 < α < 2 ) ,

(b) Ea(ωN)>-c(a,d) Nι-aKd-V ( l-rf<α<3-</),

(c) Ea(ωN)>-c(a,d) Nι-aK2-aϊ (3 - d < a <0, d > 4),

(d) E0(ωN)<jlo%N + O(N).

Let us make a few remarks. Theorem 2 is probably not best possible
in the case (c), and in case (d) for d > 4. For d = 3, the logarithmic
case has already been handled in the author's paper [9].

The sum Eι(ωN) was studied by K. B. Stolarsky ([7], [8]). He
discovered a beautiful identity between the sum E\ (ω#), and the
L2-norm of a function that measures discrepancy of the point set ω^
with respect to spherical caps on S^" 1 . Using W. M. Schmidt's lower
bounds for the discrepancy of an N point set on S^"1 with respect to
spherical caps (see [5]), Stolarsky was able to obtain nontrivial bounds
for E\(CON) in dimension d > 5. J. Beck [1], using his method of
Fourier transforms, finally proved the (best possible) estimate

Ex{ωN) < -c{d) #(*-2)/(</-i).

The method we shall use in order to prove Theorem 2 is independent
of Beck's method.
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For d = 3 and a = - 1 , Theorem 2 contains the following result
of physical interest. The energy Σ&k \χj ~~χk\~~ι °f a distribution of
N electrons on S2 satisfies the inequality

For some basic facts on potential theory, we refer to the beautiful
paper [4] by Polya and Szegό, and to Landkof s book [3]. The theory
of spherical harmonics on Sd~ι is treated f.e. in [2].

2. Proof of Theorem 1. The proof of Theorem 1 is based on the
construction of appropriate test functions T(x) on Sd~ι, and the
use of the inequality

(4) \\Ua(x9ωN)\\ι>^\ίua(x9ωN)T{x)dσ(x) /sup|Γ(x)|.
<Π )̂ Us I xes

Step 1. We introduce spherical coordinates θ = (θ\, θι, ... , θd-i)
(0<θp< π) and φ (0 < φ < In) on Sd~ι. Let Δ be the spherical
Laplace operator on Sd~ι, and consider the differential equation

This equation has a solution on the interval (0, π], which behaves like
(sin(0i /2))ι-d+2 near the point θ{ = 0 for / - d + 2 ^ 0 , 2 , 4 , . . . ,
and like (sin(0 1/2)) /~ ί / + 2 logsin(#i/2) in the remaining cases. The
expansion of hi into ultraspherical polynomials Pnλ\cosθ\), λ =
2 - 1, is given by

(5)

The expansion (5), although not necessarily convergent, is known to
be Poisson summable, which means

A f (oosβ,) = U m c ( λ , l ) Έ i n {

n

n l λ \

for 0 < 0i < π.
For the given point set ω^, consider the function

N

Hι(x, ωN) = ] Γ A/(cos γj
7=1
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where 2sin(^yy(x)) = |JC — Xj\ and x e Sd ι . For the function Hi,
the inequality ||///(x, ω#)|i > Nι~2l^d~1^ is easily proved in the
following way.

Consider the subdomain D c S^"1 determined by the relations
0 < §-0/>< f (/>= 1, 2, . . . , d - 2 ) , a n d O < 0 < £ . Let r = r(N)
be the integer satisfying

We partition D into "cubes" Bμ = Bμιμ2...μdϊ (1 < μp < 2 r ), where
Bμ is determined by the inequalities

( μ p - 1) - 2~r < θp < μ p - 2~r (p = 1,2, ... , d - 2 ) a n d

The set of subdomains Bμ containing none of the points Xj in
their interior will be denoted by Λ. By the choice of r, we have

For x = (θ,φ)eBμeA, let

rf-2

T / /(χ) = 4~lr Yl sin2/ 6 2rθp sin2/ 6 2rφ.
p=l

Define a test function T(x) on S^"1 by putting

T{θ,φ)=Δ!τμ{θ,φ)

for (θ,φ) e Bμ e A, and T(θ, φ) = 0 elsewhere. Note that
sup x G ί S |Γ(x) | < 1 holds. Multiplying fl/(jc, &>#) by Γ(JC), and in-
tegrating over Sd~ι, we obtain, using Green's second formula:

(6)^JsHi(x9ωN)T(x)dσ{x) , ωN)Aιτμ(x)dσ(x)

AιHι(x, ωN) - τμ{x) dσ(x)

Here we use the fact that the normal derivatives of Amτμ(x) (ra =
0 , 1 , . . . , / - ! ) with respect to the boundary of Bμ vanish. From
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relations (4) and (6), using supxeS\T(x)\ < 1, the inequality
\\Ht(x, ωiv)||i > N N~2l^d~^ follows.

Step 2. We begin with the case 1—d<a<3 — d. Consider
the kernel ka(cosθx) = |2sin(0i/2)|α, which generates the distance
function \x - y\a . We are looking for an inverse kernel k~ι(cosθx)
such that the convolution equation

(7) k-χ*ka = hx

holds on Sd~ι.
We have the expansion

(8) Mcos0! ) - £ > „ • PiA) (cos 00,
Λ=0

where

n Λ {n + λ) Γ(n-a/2)

_ 2 i+α Γ(2λ) Γ(a/2

and

Note that the expansion (8) holds for any value of a satisfying 1 -d <
a and a Φ 0, 2, . . . . If we omit the factor Γ ( - | ) in the denominator
c(λ, a), we obtain a kernel of the type | sin(0i/2)|αlogsin(#i/2) for
these exceptional values of α . It is in this sense that we shall use the
notation ka(cosθx) for all a > 1 - d.

Proceeding quite formally, and using (5), we obtain a solution of
(7) in the form

(9) K

where

Using Stirling's formula, and subtracting successively appropriate
multiples of (8) (with a replaced by 4 - 2d - a, 5 - 2d - α, . . . )
from (9), we obtain a representation

(10) k~l = dX k4_2d-a + ^2 k5-2d-a + ' ' ' + ds ' fcs+3-2rf-α + Rs

(d-lφθ),

where Δi?5 is bounded and continuous for s = d + 1.
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A rigorous proof of (10) is obtained in the following way. Let
oo

πr(cos0i) = J^(/i + λ)rn />iλ)(cos0i) (0 < r < 1)
Λ=0

be the Poisson kernel on Sd~x. Note that k~ι and /*i are integrable
over Sd~ι, and hence that K = k~ι * πr solves the equation

K * ka = h\ * π r .

Letting r —• 1, we obtain the desired result.
From (10), we further get the estimates

(11) | ^ - l ( | x

Step 3. We use T * k~ι as a test function for Ua(x 9 CON) , where
T is the test function introduced in step 1. In view of the relation

(12) ( Ua{xyωN) \T*k-ι){x)dσ{x)
Js

= ί{Ua*k-χ){x) T{x)dσ{x)
Js

= [ Hι(x,ωN) T(x)dσ(x),
Js

it is sufficient to estimate sup x β S \(T * ka

 ι)(x)\.
For fixed x e Sd~ι, let Λ' = Λ^ be the set of subdomains Bμ e A

that contain some point y such that |JC — y| < N~ι^d~1^ holds. Let
Λ" = Λ\Λ' be the set of remaining Bμ 's. We have

(13) \(T * k~ι)(x)\ «
Λ'

+ Σ
Λ"

Bβ

τμ(y)-Ak-ι(\x-y\)dσ(y)

Λ' *

+
Λ" " n β

From (6), (12), and (13), the assertion follows.
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In order to obtain the assertion of Theorem 1 in the case 2/-1 -d <
a<2l+l-d (/ = 2, 3, . . . α ^ 2, 4, . . . ) , we proceed in a similar
way, solving the equation k~ι * ka = hi, and noting that

sup \(T * k~ι)(x)\ < N ^(«
s

This argument also works for a = 2/ — 1 - d, α ^ 2, 4, . . . , whereas
in the case α = 2, 4, . . . the convolution equation which corresponds
to (7) has no solution. However, if we define Ua(x9 co^) by

N

Ua(x, coN) = Σ\x -Xj\alog\x -xj\ - N m'(a, d)
7=1

for a = 2, 4, . . . , the assertion of Theorem 1 would also remain true
in the exceptional cases.

This finishes our proof of Theorem 1.

3. Bounds for energy sums. In proving Theorem 2, we shall distin-
guish three cases.

The case 0 < a < 2. By formula (8), all the coefficients an = an(a)
(n > 1) in the expansion of ka(cosθι) are negative. The addition
formula for spherical harmonics (see [2], §11.4.) implies the following
identity:

dσ{x).

Here c(a, d) is a positive constant, and δa(\x—Xj\) is a new distance
function, generated by the kernel

5α(cosθx) ~ £ ( - ( * +λ) an{a)γl2 pW(cosθx).

In view of the expansion (8), the kernel <5α(cos#i) is of the type
δa(\x-y\) ~ \x -y^+a-d)/2 . Now choose the integer / > 1 such that
2/-l-fl?< (l+a — d)/2 <2l+l—d. Consider again the convolution
equation

^ α 1 *δa = hι.

Proceeding as in the proof of Theorem 1, we find that the inverse
δ~ι has a representation of the following form:

= Σ dm ' k2l+m+\-2d-β + ^s (d\ φ 0).
m=l
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Here β = (1 + a — d)/2, and if we choose 5 large enough, AιRs will
be bounded on S. From now on the proof is the same as in step 3 of
the proof of Theorem 1, yielding

From this and the Cauchy-Schwarz inequality, the inequality

Ea{ωN) < - c ( α , d) - Nl-a^d-V

follows immediately.

The case 1— d < a < 3 — d. In the case of an unbounded kernel
ka, we have to proceed in a different way. Together with the kernel
ka(θ) = (2 - 2cos#i)α/2 consider the more general kernel

dr{cosθι)=
I \a/2

--2cos(9i (0 < r < 1).

Let mr be the mean value of dr{cosθ\) over Sd~ι, and let dr{\x-y\)
be the distance function generated by dr(cosθ\) on Sd~ι. We have

Ea{ωN) = - mx)

- N2 (mi - mr) + N - m{

j - xk\) - dr(\Xj - xk\)).

First of all note that dr(\x — y|) < d\(\x — y\), and that

as all the coefficients of dr(cos θχ)-mr in the ultraspherical expansion
are nonnegative. (This may be proved in the same way as Hilfssatz 6
in [4], using the Rodrigues formula for ultraspherical polynomials.)

Hence

(14) Ea(ωN) > -N dr{Q) - N2 (m{ - mr).

Now choose r = 1 - N~ι^d-ιK We have dr(0) < N~a^d-{^ and
m\ - mr < N~x - N~a^d~^. Inserting these estimates in (14) yields
the desired result.
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The case 3-d<a<0,d>4. Unfortunately, the preceding
method does not seem to give the best result in the case 3-d < a < 0.
Putting r = 1 - ε , we obtain dr(0) < εa and m\ -mr < ε2 (instead of

εd-ι+a a s a 5 o v e ) Choosing e = Nx^2~a\ assertion (c) of Theorem
2 follows.

In the logarithmic case, the same procedure yields

which is best possible in dimension 3 (see [9]), but probably not in
higher dimensions. This finishes our proof of Theorem 2.
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