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ISOMORPHISMS AMONG MONODROMY GROUPS
AND APPLICATIONS TO LATTICES IN PU(1, 2)

JOHN KURT SAUTER, JR.

The discreteness of some monodromy groups in PU( 1,2) is proved.
G. D. Mostow's conjecture on a necessary and sufficient condition for
the discreteness of monodromy subgroups of PU( 1, 2) is established.
Some isomorphisms and inclusion relations among the monodromy
groups are given.

1. Introduction. In [DM], Deligne and Mostow define certain mo-
nodromy subgroups of PU(1, ή) which are closely related to the
groups Mostow studied in his earlier work [M-l]. The connection be-
tween these two is made clear in [M-2] and [M-3]. Each of the papers
investigates the discreteness of the groups. Thereafter, in case n > 3,
Mostow gives a necessary and sufficient condition for the groups to be
discrete in PU(1, ή) [M-4]. He conjectured that his condition would
also hold in dimensions two and three (apart from stated exceptions).
This paper considers the monodromy subgroups of PU(1, 2). The
discreteness of some monodromy groups is proved in §3. Mostow's
conjecture is verified in §4. The volumes of the fundamental domains
for the groups are computed in §5 and are used to find the indices
for the inclusion relations among the monodromy groups given in §6.
The isomorphisms given throughout this paper were discovered using
computer investigations of the fundamental domains as a guide. The
proofs however are completely independent of the computer work.
The following brief summary of [DM], [M-l], [M-2], and [M-3] in-
troduces notation and results needed in the remaining sections.

2. Preliminaries. Mostow's work on discrete groups generated by
complex reflections. The following results are contained in [M-l]
which arose out of Mostow's exploration of the limits of the validity
in the case of R-rank 1 groups of Margulis' Theorem, Irreducible lat-
tices in semisimple Lie groups of R-rank greater than 1 are arithmetic.
Motivated by Makarov's (for n = 3) and Vinberg's (for n < 5) con-
struction of nonarithmetic lattices in SO(«, 1) using reflections in
faces of geodesic polyhedra in real hyperbolic «-space Rh77, Mostow
considered subgroups in the isometry group P U ( Λ , 1) of complex
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hyperbolic space Ch" generated by complex reflections. He defined
a family of subgroups TPit for p = 3, 4, 5 and \t\ < 3(j - i ) as
follows.

Let V be a complex 3-dimensional vector space with basis e\, eι,
^3. An hermitian form Hφ on V corresponding to the Coxeter dia-
gram:

(p)

(2.1)

where p is a positive integer and φ3 = eπιt

is given by

(2.2) (e{, έ>2) = (*2> ^ ) = (*3, eι) = -aφ where α = ^ m

Set

(2.3) */ = ** .

Then each i?/, / = 1, 2, 3 defined by

(2.4) /?;(*) =χ + (η2- l)(jc, £>/)*>/ for x € F

is a C-reflection since it is a linear map of order p fixing each point
of ef- = {x e V (JC, ̂ , > = 0} . We call ef- the mirror of i?/ and
β[ the mirror normal of i?;. The group corresponding to the Coxeter
diagram is TpJ = ({Ri}]=\), the group generated by the complex
reflections. The group Γ^, t preserves the hermitian form H ψ. If we
restrict our attention to p > 2 and arg(^3) = ί < 3 ( | — | ) i t turns
out that the signature of Hφ is (two + , one - ) and hence ΓPit is
embedded in U(2, 1).

It is not at all clear which values of (p, t) result in a Tp 91 which
is discrete in U(2, 1) however. This was the main problem Mostow
faced. Computer exploration of the fundamental domains for these
groups was essential in deciding which Tp 91 are discrete. Using the
computer investigations to get a clearer picture of what was going on,
he formulated and proved theorems with some technical details that
can be found in [M-l, §6]. His strategy for proving discreteness of
Tpj is based on: if a smooth polyhedron F in a Riemannian manifold
and a finite subset Δ of the isometry group together satisfy certain
conditions on the codimension one and two faces of F and a related
family of polyhedraf then the group Γ generated by Δ is a discrete
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subgroup of the isometry group and F is a fundamental domain for Γ
modulo Autp F. Since Δ is only a finite subset it is possible to use
the computer to figure out candidates for Δ and F. Mostow used
these theorems to find a sufficient condition for ΓPjt to be discrete
by solving for the set of (p, t) which give a polyhedron satisfying the
codimension one and two conditions. He was able to prove that Γp 91

is a lattice for 17 values of {p,t)\ seven of these are nonarithmetic
and are listed in §7. The codimension one and two conditions also
give relations among the generators that result in a presentation for
Tpj, which was used later to show its relation with the monodromy
groups defined by Deligne and Mostow.

The work of Deligne and Mostow. Define a function of N - 3 vari-
ables z\, . . . , z;v_3 by

N-3rz /N-3

f i j ( z l 9 . . . , z N - 3 ) = / ' [ H i z -
J z \ k lk=l

where {z\, ... , zN-$} and {μ\, . . . , μw-i} are complex numbers and
the path of integration is selected in P — {z\, ... 9 z # _ 3 , 0, 1, oo},
P = C U {oo}, the complex projective line. Let μ^ be the order of
the pole of the integrand at oo. Then summing over all the μ 's, one
has ]££Li μk = 2. For this reason we define a disc N-tuple to be an
Λf-tuple of real numbers μ = {μ\, . . . , μjsr} satisfying 0 < μ^ < 1 for
k = 1, . . . , N and J2^=\ Vk — I a n d restrict our attention to such μ.

The fij are multivalued hypergeometric functions of N - 3 vari-
ables studied by Schwarz in case N = 4 and Picard in case N = 5.
Deligne and Mostow studied the monodromy of these hypergeometric
functions via flat vector bundles and cohomology with local coeffi-
cients with the following results [DM].

Let S = {1, . . . , N} and Ps be the set of functions from S
to P. Let M be the subset of injective maps from S to P, i.e.
M = {(zi, . . . , zN) e PN z, Φ z7 for i φ j}. Then PGL 2 acts
on Ps by Mόbius transformations in each coordinate and we set
Q = PGL 2 \M. Note that Q = {{zu . . . , z^_ 3 ) ; zf e P z{ φ
0, 1, oo and z, ^ z7 for / ^ j}. Remark: For the sake of simplic-
ity, we first defined the multivalued function fj as a function of
the N - 3 variables z i , . . . , z#-3 . However in [DM] they are stud-
ied on the space Q, thereby permitting a symmetric role for each of
z\, ... 9 ZN . Since PGL 2 sends any three distinct points of P to any
other, we can choose (z#_2, zN-\, z#) = (0, 1, oo).
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There are N - 2 linearly independent integrals among the fa and
by taking them as projective coordinates of a point in the projective
space PN~3

 ? one gets a multivalued map

ωμ : Q —> PN~\

From the map ωμ we obtain a well-defined map from the simply
connected cover of Q to PN~3 which is πi(Q)-equivariant. The
action of π\(Q) on pN~3 is called the monodromy action. We define
Tμ as the image of π\(Q) in PGL( JV-2). If μ is a disc TV-tuple, Γμ

preserves an hermitian form of signature (1, N - 3). A main result in
[DM] is:

THEOREM (Deligne-Mostow). If μ = (μ{, . . . , μN) is a disc N-tuple
which satisfies the condition

(INT) For all 1 < iψ j <N, such that μ, + μ} < 1,

μ w ^ lattice in the projective unitary group P U ( 1 , N — 3).

In their proof they consider the following partial compactification
of Q. A point y e Ps is called μ-stable if and only if for all z e P,

I* < 1.

The set of all //-stable points is denoted Mst. The partial compact-
ification, Qst, is the quotient space PGL2\Λ/^. Let Q —• (? be the
cover corresponding to the kernel of the monodromy action and Qst

the Fox completion of Q -* Q over Qsί Deligne and Mostow extend
the map ωμ to a map ώμ from β^ to ΰ + , a complex ball in PN~3.
They prove that ώμ : β^ —• B+ is a topological covering map and as
the ball is simply connected, an isomorphism. The homeomorphism
ώμ transforms the fibers of the projection Qst —• Qst into the orbits
of Γ^ and so we have B+/Γμ ~ Qst. Hence the task of computing
the volume of the fundamental domain for Γμ acting on the ball is
equivalent to computing the volume of Qst. We make use of this fact
in §5.

Although the condition INT is sufficient to prove the discreteness of
the monodromy groups Γμ , one would like a necessary condition for
discreteness. Towards that end, Mostow [M-2] weakened the integral-
ity condition to a condition Σ INT: there is a subset S\ c {1, . . . , N)
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such that βi = μj for all /, j G S\ and for all / Φ j such that

if i , . / € S i ,

otherwise.

He proved a theorem that he states in [M-2, §2] as follows. Let
S = S{US2 with S\ as above and S2 = S \ S\. Let Σ denote the
permutation group of S\. Then Σ operates on Ps by permutation
of factors and hence on the subset M and on Q.

Let Q denote the subset of Q on which Σ operates freely; Q' is an
open dense submanifold of Q. Let 0 be a base point in Q', let U de-
note the orbit ΣO. The monodromy homomorphism can be extended
to π\{QIΣ9G) (the exact homotopy sequence of the fibration

Σ > Q

gives the exact sequence

and we consider it\{Q) as a subgroup of π\(Qf/Σ)) and for the image
of this monodromy homomorphism we write Γ^χ.

THEOREM (Mostow). Assume μ = (μs)ses satisfies condition ΣINT.
Then ΓμΣ is a lattice in PU(7, N - 3).

In fact, Γμ is a lattice, since the exact sequence

1 —- Γμ —> Γμ Σ —> Σ — 1

implies Γ ^ is a lattice whenever Γμ is. The complete list of all μ
satisfying the half integral condition Σ INT but not INT is given in
§7. This list includes some μ not found in [M-2],

Mostow was led to an investigation of ΓμΣ by the similarities be-
tween Γμ and Tpj in the case N = 5. Although these lattices are
different, it turns out that the Tpj are conjugate in PU(1,2) to a sub-
group of ΓμΣ of index at most three (the relation is made explicit
in the next section). For this reason, we can consider the TPit as
included in the list of μ satisfying Σ INT.

Next Mostow gives a necessary condition for discreteness when he
proves in [M-4] the converse to the previous theorem in case N > 6.
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THEOREM (Mostow). Assume N > 5 and μ is a disc N-tuple. IfTμ

is discrete in PU(1, TV - 3), then μ satisfies condition ΣINT except
for

_ / J _ _3_ _5_ _5_ 5_ 5_
~ V l 2 ' 1 2 ' 1 2 ' 1 2 ' 1 2 ' 12

In this paper we deal with the Γμ subgroups of PU( 1,2).

The relation between Γμ and Tpj via braid groups. In the case
N = 5, Mostow shows in [M-3] how Γ^ 9 t and Γμ are related via
the braid group. We use this connection extensively and therefore
reproduce part of that discussion here in the current notation. We
begin with the definition of a braid group.

Let L\ and L2 be two parallel lines in the plane y = 0 of (x, y, z)
space, L\ at z — τ\ and L2 at z = r2. Let Pi = (/, 0, r\), Qt =
(/, 0, r 2 ) , / = 1, . . . , n.

A braided N-path is a set of TV paths c/(ί) in R 3 (/ = 1, . . . , N)
satisfying

(1) a(t) = (Xi(t), yt(t), ί ) , η < ί < r 2 , C/ίrO = />•, c/(r2) €

{ β β }
(2) The paths do not intersect.

Two braided N-paths are regarded as equivalent if and only if it is
possible to deform the one configuration into the other respecting con-
ditions (1) and (2) throughout the deformation; note that one does
permit rx, r2 to vary so long as rx < r2 is respected. We define a
braid to be an equivalence class of braided TV-paths. The fact that rx

and r2 can vary allows one to define an associative multiplication of
braids. The braid in which no paths intertwine is the identity braid. It
is easy to see that an inverse of a braid is defined by its mirror image.
Thus the set of braids forms a group under multiplication. We call
this the braid group on N-strings in R 3 and denote it by BN( R 2 ) .

Each braid b in BN( R 2 ) effects a permutation b of {1, . . . , N}.
The map π: b —> b is a homomorphism of 2?τv(R2) onto Σ^, the
permutation group on N letters. Let

CN — Ker π.

CM is called the colored braid group or pure braid group.
A braided Λf-path can be regarded as a deformation of the N dis-

tinct points in R 2 and it is a topological fact that this deformation
can be extended to an isotopy of R 2 . In fact, the TV points can be
taken anywhere in R 2 . We can also consider TV-string braids whose
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endpoints lie anywhere on the 2-sphere S2 = R 2 U oc. In that case
the deformations can take place in *S2x R rather than R 2 x R . We
distinguish this braid group from the previous one by denoting them
BN(S2) and BN(R2) respectively.

Recall the M was defined as the set of all injective maps from S =
{1, . . . , N} to P . Fix a base point of M as 0 = (1, 2, 3, . . . , N).
Then πi(M, 0) consists of N paths d(t) in P, 0 < t < 1 with
Cj(O) = c/(l) = /, 1 < / < n + 3 and such that (c/(ί), t) in Px R do
not intersect. That is, π\(M, 0) is precisely the colored braid group
Cχ(P) on TV strings in P.

In order to describe the relation between ΓPjί and ΓμΣ Mostow
chooses a set of generators for the pure braid group on 5 strings in
P that is stable under the permutation group of the subset S\ of
punctures S = {z\, z2 , z 3 , z 4 , z5} .

Assume *SΊ = {z\, z 2 , z3} and assume μx—μ1 — μz.
Identify the projective line P with S2, the 2-sphere with its stan-

dard metric. Choose z\, z2, z^ equally spaced on the equator of S2

with z 4 and z5 at the North and South poles respectively. Denote
by (2) for any / Φ j with /, j G {1, 2, 3, 4, 5} the pure braid that
moves Z[ along the shortest path to a point near z 7 , then makes a
small circuit in the positive sense around z,, and then returns to its
original position. For z, j e {1, 2, 3} let /// denote the braid that
interchanges / and j via a half-turn isotopy in the positive sense that
leaves each point fixed outside of a small neighborhood of the shortest
arc joining / to j .

Let / denote the cyclic permutation 1 —> 2 -^ 3 -+ 1 of { 1 , 2 , 3 ,
4 , 5 } . We denote also by / its realization as a rotation by angle 2π/3
in the positive sense around the North pole of P, and its realization
as a braid in B5(P). Let θ denote the monodromy homomorphism
and set

(2.5) Λ, =

Bt = θ((i- 1 / + 1)), (cyclicly permuting / = 1, 2, 3)

where the circuit ^JX is chosen so as to cross the equator only on the
short arc (/ - 1, i + 1). We shall use the following identities coming
from the braid group:

(2.6) J-ιRiRi+i = A~x, JRi+ϊRi = A£\,

JRι = 7?/+1 / , (cyclicly permuting / = 1, 2, 3).
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The product of the pure braids (2~̂  ̂ ~3)(3j)©@ O i s i n t h e c e n t e r

of the colored braid group C4( R 2 ) on 4-strings in R 2 , and therefore
its image in Γμ is central in Tμ, and therefore central in PU(1,2)
since Γμ is of finite covolume in PU( 1, 2), by a well known result
of A. Selberg. Inasmuch as PU(1, 2) has only the identity element in
its center, we get

= 1.

The group Γμ is generated by any five of {A\, A2, AT, , B\, B2,
Additional identities coming from the braid group are:

(2.7) A'i=Ai^AMBi,

AiBi = BiAi,

AiA'j = A'jAi ϊoτjφi,

BiB'j = B'jBi for j φ i.

For any /, j with i φ j , set

(2.8) kiJ = (l-μi-μj)-1.

We assume that μ satisfies condition ΣINT for S\. Then kjj is an
integer except when /, j e {1, 2, 3}. For any /, j e {1, 2, 3} we
set

ίku if kij eZ,

y Ikij otherwise,

k 4 = k 4 i , k 5 = k 5 i ( i , j = 1 ? 2 , 3 ) .

Then Γμ has the presentation

(2.9) Generators: Ax, A2, A3, Bx, B2, 5 3

Relations: AiBt — BiAi, B1A3A2B2A1B3 = 1,

" = 1.
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The group Γμz has the additional generators R\, Rι, R3. Set Γ* =
(R1.R2.R3), the subgroup of Γ^^ generated by R1.R2.R3. One
can derive a presentation for Γ* which coincides with the presentation
for Tpj given in [M-l] if one takes (p. t) and μ related by

(2.10) ^ = ^ 2 = 03 = 1 - 1 ,
2 p

-1 JL_ί - I A ί
that is,

/ I λ" 1

By the strong rigidity theorem for PU( 1, Λ ), AI > 1 Mostow con-
cludes:

THEOREM (Mostow). The lattices Tp,t are conjugate in PU(1, 2)
to the subgroup Γ* 0/ Γ^Σ WίΛ // ^^^ (p, ί) related as above, and

- (J", Γ P ί ί ) .

The specific relations between Γμ, Γ ^ Σ , and ΓPyt in all cases are
given in §7.

3. The discreteness of some monodromy groups. Mostow proved that
ΣINT is a necessary and sufficient condition for the discreteness of
Γμ c PU( 1, n) for all n > 3 except for μ = ( ^ , £ , £ , £ , ^ , ^ )
in dimension 3. He discovered that in dimension 2 the situation is
more complicated [M-4]. There are several disc 5-tuples μ such that
Γμ could be proved discrete even though the μ do not satisfy Σ INT.
However, for three of the μ he could not determine if the Γμ were
discrete. Here we give a list of the three μ with the corresponding

3 0 ' 3 0 ' 3 0 ' 3 0 ' 30 J \ 1 5 ' 30

(ϋ il 11 A ^ „ Λ4 Â ί
\ 2 4 ' 2 4 ' 2 4 ' 2 4 ' 2 4 ; \ ' 2 4 /

/20 20 20 ^_ ^ 6 \ / £\

V 4 2 ' 4 2 ' 4 2 ' 4 2 ' 4 2 / V ' 2 1 / "
All previous methods for proving the discreteness of Γμ or Γpj

are insufficient. The theorem in this section settles the question of
whether or not these groups are discrete.
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We begin by computing the normal vectors to the mirrors of the
reflections {̂ 4/}/=i,3, their inner products, and the eigenvectors of
{B'i)i=\ ,3 Using (2.4) and the fact that a = φ^ , the matrices of the
Ri can be written in the ^-basis as follows:

(3.1)

R3 =

Using (2.6) we find that

(3.2)
Ψ

0

-ηiφ

0

0 -η3iφ

-η2φ -ηiφ

-ηiφ

1

-η2φ -ηiφ)

0 -η3iφχ

-ηiφ

1

-ηiφ

0
1

0
0' 0

-η3iφ —η2φ — ηiφ 0

η2 -ηiφ -ηiφ)

The characteristic polynomial of A~[λ is:

te\(A\x - λl) = -(Λ + ηiφ)(λ + ηiφ)(λ + η2ψ).

So we take the third column of:

/0 η2 -ηiφ

A~x-(-ηiφ)I =

2φ2)

0 ηiφ 1

-η3iφ —η2φ



ISOMORPHISMS AMONG MONODROMY GROUPS 341

as the mirror normal for A\. Similar computations show that the
mirror normals for the {Λ}/=i ,3

/ -ηiφ \

-ηiφ(3.3) ax = 1
•>-r2

a2 =

1
i-τ2

ai = I -η2f I .

1 V -ηiφ

From (2.1) and (2.2) the matrix of Hψ in the βι base is:

/ 1 —aφ — αζ

(3.4) Hφ =

Note that since the {#/}/= 1,3 are related by a cyclic permutation of
entries we have

{ax, α2) = (^2 ? Λ 3 ) = (α 3 , fl!>, and

We compute

{ax , a2)

= a\Hφa2 = (~ηiφ, 1, ~η2φ2) I -aφ 1 - α

1 —aφ —aφ
1 — α<

—aφ 1

-3) + 2aηiφ2- " " ' Σ ΛΓ

and

Hence

(3.5)

??2/(/) +η2iφ3

η-η

, a2)

otφ(η2 - 3) + laηiφ + lηiφ - η2φ

1 1

From (2.7) we compute

1 0 0

(3.6) B\=A~xA-χA-χ= I Ξ -η6 0 | ,

T 0 -^/6

ηiφ
1
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( -η6 T 0

0 1 0

0 Ξ -η6

/-η6 0 Ξ-

B'2 = A - ι A ϊ ι A - 1 = 1 0 - η 6 '

V o oΞ = η5iφ - ηAφ - η2φ2 - ηiφ,

Ύ = η5iφ-η4φ2-η2φ2-ηiφ.

We shall see that for the cases we are interested.in, the Ξ and T
simplify, making the computations much cleaner. The characteristic
polynomial of B[ is:

The eigenvectors corresponding to the eigenvalues —η6, -η6, 1 are
0\ (0\ fl + η6

1 , 0 , and
OJ \lj

respectively. We raise B\ to a power n by letting P be the matrix
of eigenvectors

fl + η6 0 0\

P = [ Ξ 1 0 ,
V Ϊ o i )

and therefore
1 0 0 \

B[" = P I 0 (-ί/6)" 0 p-\

.0 0 {-η6)nJ
1 0 0 \

0

0

Similarly for B'2 and B'3 we get

τ>ιn
Dη — 0 1

o
0

"̂  V ι+η6 ) ^
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f(-η6)n 0
r>tn s

^3 - 0 {-η6

V o o

THEOREM 3.1. The groups Γ,c i , Γ 7 4 ±, and Γ 4 ? ± are lattices
J ' 30 ' 24 ^ ' 2 1

in P U ( 1 , 2 ) . More precisely,

Γ 1 5 JL ^ Γ 3 _L ,

1 J ' 30 J l 3 0

Z ^ ' 24 J ' 12

^ ' 2 1 J ' 4 2

Proof. The above isomorphisms that prove the discreteness of
Γ,c i , ΓJΛ ± , and Γ 4 ? j . are three in a more general class of iso-

J ' 30 ' 24 ^ ' 2 1

morphisms. Let Γ 3 ? / with t e {JQ, ^ , ^ , ^ , 3} denote the lattices
from [M-l]. Then we will prove

Γlj ~ Γ _ L 2 _ ! _ / .
1-6/ ' 4 2

We consider the action of the groups on the image of V~ = {v e
V\ (v , υ) < 0} in the complex projective space. Since the signature
of the hermitian form is (1 negative, n positive), the image of V" is
a complex 2-dimensional ball. We find reflections {C/}/=i ,3 of order
3 in Tp\__L whose mirror normals {c/}/=i,3 satisfy

{c\, c2) = (c2, c3) = (c3, c\) = -α<^,

where —α^ is the inner product of the mirror normals, {eι} , corre-
sponding to the generators of Γ^j and hence

πit

—aφ =
2 sin f 3

Since the action of PU( 1,2) on the ball is transitive, the isometry
of the ball taking the system of mirror normals {£/},•=! ,3 for the gen-
erators {i?/}/=i,3 of Γ^t to the system of mirror normals {c/}/=i93
induces a monomorphism of Γ 3 ^ to ( { C J / ^ 3 ) , the subgroup gen-
erated by the {C/}/=i 3. Then we show that the {C, }/=i 3 generate

"Vi-i
We motivate the choice of the {C/}/=i ,3. Each reflection on V has

a fixed point set in the projective space consisting of a point (the image
of the mirror normal) and a line (the image of the mirror). Note that
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the line and not the point lies in the negative ball since the mirror
normals lie in the positive cone. Let ef-, aj-, a1^ , and b' 1 denote
the lines in the ball fixed by the B[, A\, A\, and B\ respectively. The
following diagram gives the configuration of these lines in the ball; all
intersections of the complex lines are orthogonal.

These lines play an important role in the fundamental domain Ω de-
fined in [M-l]. Since Tp^L_L does not satisfy the necessary condi-
tions for it to be a discrete group, the Ω is not a fundamental domain
for Tpi_L. However, studying Ω does give a clue to the choice of
the {C/}j=1,3. Label the points defined by the diagram as follows:
t{ = a{ n e{, t\ = a'^ n e^, rx = b^ n e^, and r[ = b^ ΠeJ-. In
the complex geodesic line e^ , the points r\, r\, t\, and t\ form a
geodesic quadrilateral.

The reflection Bf

3 stabilizes

\ =

and affects a rotation in e^ around

rx through an angle 2π\ = ^ , where q is defined by

1 1 1
I __

P Q 6"

From (2.10) the μ = {μ\,... , μ$) corresponding to (p, \ - | ) is
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given by

tin /I 1 1 1 1 1 1 1

(3.7) μ-fj--, -2--, -2--, 5 + ? ,
So k4 and k4$, the orders of the 4̂/ and B\ respectively, are (refer
to (2.8) and (2.9))

k4 = (\ -μ{ -μ4)'1 = 3 and k45 = (I -μ4-μ5y
ι = | .

Now, k45 is the reason μ does not satisfy Σ INT. The Ω is too large
to be a fundamental domain for TD \__L and ^ , the angle of rotation
of £ 3 , is too large. If one can choose n eZ such that 3n = 1 mod#,
then B'g is a rotation through an angle ψ. Hence Bfft\ = U\ and
B^nu\ = t\. Since 4̂i is a rotation through an angle ?f at t\,
Ci = B^A{B'{n is a rotation through ^ at « i . Let C/ = B^A^I
for / = 1,2,3 . Adding {C/}/=i53 to the set Δ that gave rise to Ω
(see §2) should cut down the size of Ω and it turns out that these are
exactly the reflections needed.

Recall that we need order 3 reflections {C, }, = i ,3 whose mirror nor-
mals {c/}/=1 3 satisfy

/ \ / \ / \ V 3 Eli

(cι, c2) = (c2, c3) = {c3,d) = —ye 3.

Since we are choosing C, = Bf_χAιB'~J\ for i = 1, 2, 3, the mirror
normals are precisely c, = B'^at for i = 1 ,2,3 . We begin with a
lemma.

LEMMA. Let {#•},=1,3 be the reflections in Tp>\__L defined previ-

ously. Define q by ! + ! = £. For ί € ^ ^ έ ί
« G Z 5MCΛ ί/tαί 3n = lmodtf. Define Q = B'^AiB'fJl for

ί = 1, 2, 3. 77?e« ?Λe mirror normals for the {C, }/=i,3

c, = ^"fl! = ( »/2 ) , c2 = B\"a2 =

\
Ί

V2_
c3 = B'2

nai = I -η2φ2

0

where η = e^ and φ3 =
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Proof of Lemma. We have computed B\n previously in this section.
For the specific n and q chosen above, the B[n can be simplified as
follows.

Since 3n = 1 mod*?,

— = — modZ and = — modZ.
Q Q Q Q

But Y" = i - 5 so we have

n[ x ) = - m o d Z ,

which implies

We write this equation as

From this we get

•l-(->76)"l 1+eΎη2

Since (3.7) gives μs - μ^ = 5 + } , we have

φ3 = eπi(μ5-μ4) =^f^.

Substituting for ^ in Ξ gives

Ξ = η5iφ- η4φ - η2φ - ηiφ

= η i φ e 3 (e * ψ + e i ψ + e 3 + ^ 3

Combined with the above we get

*{ l + ηβ )=e>ψφ=-e *ηιφ.

Similarly,

so

Note also that
η3iφ

3iφ
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Together, these equations imply

' 1

(3.8)

and hence

yln
\

0
— 21 • i — ΐi ~>

—e 3 ηiφ e 3 ηz

0

0 ^

0

-r2-η*φ
B[na2 = [ 0 = c2.

From the symmetry in the {Z?-};=1>3 and the {α/}/=i,3,

0

n2_
- η 2 φ 2

We now show that

C2=

, c2)

0 c3 = I -
0

First

Next

, c2) - -aφ - φ .

Hence

(c\, c2) —aφ — φ

Now, since p — jt^y, notice that

Using simple facts about 6th roots of unity and the previous equations

involving φ , one shows that

ηi + η2φ -φ 5
3 •
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The final step is to show that the {C, } 1=1,3 generate the whole
group. Since Γ_IL_ I _ I is generated by the {i?/}/=i 3, we show R~ι =

1 - 6 / > 4 2 ' *

/C/C/_i for / = 1, 2, 3. By symmetry we need only exhibit the
case / = 1, and since we only need projective equality, we show
RιJC{C3 = e2-τη2l. From (3.2) and (3.8) we have

c, =

=

and hence

(ηiΦ

o <
I o

0
_EL ~T

? iηιφ-
EL—2

e>η2

. n^sh2 o i

0 λ

fφ" -e~ηiφ

e'ίηiφ J

C 3 =
e l η i φ — η φ 1 e * φ — e *

0

Finally from this and (3.1) we get

R1J C\ C3 =

2πι 9

e 3 ηL

0

0

0

0

0

0

This completes the proof of Theorem 3.1. Notice that in addition to
the three isomorphisms stated in the theorem we have also included
in the proof

-\2,±-li,-:

and Γ-304± — i 3 3-
J ' 30

All five of these isomorphisms play an important role in the next sec-
tion.

4. Mostow's conjecture on the discreteness of monodromy groups in

PU(1,2).

Mostow's Conjecture. Let μ be a disc 5-tuple. Then Yμ is discrete
in PU(1, 2) if and only if μ satisfies ΣINT or Γμ is commensurable
with Yu where v is a disc 5-tuple satisfying ΣINT.

Mostow found that any μ not satisfying ΣINT with Γμ discrete
[M-4] is on the following list of nine (the corresponding (p, t) is given
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whenever μ{ = μ2 = μ^):

10\
Tϊ)A A A A

12 ' 1 2 ' 1 2 ' 12
1 1 4_ Ί_ Ί_

Tδ' Tδ' To' To' To
Π _3_ _4_ _9_ _9_
\14' 14' 14' 14' 14

I A 1 11 11
1 8 ' 1 8 ' 1 8 ' 1 8 ' 18

(L A A A lλ f_,2 JLΛ
V l 2 ' 1 2 ' 1 2 ' 12 ' 12/ ' \ 12/

A A A A A
1 5 ' 1 5 ' 1 5 ' 1 5 ' 15

II 11 11 — —\ (\* —
30' 30' 30' 30' 30/ * Λ 30

11 11 11 A 19λ (ΎA —
24' 24' 24' 24' 24 ) * \ ' 24
20 20 20 _8_ _16\
42 ' 42 ' 42 ' 42 ' 42/ " 21

Theorem 3.1 proves that five of the nine have Γμ commensurable
with Γ^, v satisfying Σ INT. For the four remaining μ in the list we
prove the following theorem.

THEOREM 4.1. There exist monomorphisms

/j. ± ± ±
M2 ' 12 ' 12 ' 12

I t I <—• 1 (X j_ ± 2. JL) >
'10 M0 ' 10 ' 10 ' 10 ' 10'

and the following isomorphisms

Γ 7 2. * • T,i. i_ ± X X)
' 1 4 M4 ' 14 ' 14 ' 14 ' 14'

I n X 4 > I (J_ _5. _4_ l± U_\.
> 18 M 8 ' 18 ' 18 ' 18 ' 1 8 '

Proof. The monomorphisms are explicitly constructed as before. In
this case we map the generators {i?/};=i ,3 of Γ3; 0 and Γ5 j . to reflec-
tions in the corresponding Tμ. Hence we must find mirror normals
{£;}(=1,3 that satisfy

(C\ , C2) = (C2 , C3) = (C3 , Ci) = ~Oίφ =
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in the case of Γ3 5 o, and

(c\, c2) = (c2, c3) = (c3, a) = - α # =
— e 30

2sinf

in the case of Γ s ± . The computations are complicated by the fact
' 30

that no three of the μ, are equal in either case. We begin by giving
generalized matrices and mirror normals in terms of the μ parameters.

Given μ = (μ\, ..., μs), associate to each μ, a complex number

Recalling how the i?,, At•, A\ and B\ were defined in §2 we see that
the multipliers for them are M(_iΛ/ ί+i, Λ//Λ/4, ΛfjΛ/5, and M4Λ/5
respectively. By multiplier we mean, for example

Bt{x) =

Let

α, +i ,_i = α ;_i
,-_!) sin

Then the matrix of Hφ with respect to the £-base (the {̂ /}/=i,3 are
the unit normals to the mirrors of {2?/}/=i ,3) is:

I i

H =

1

1

>M 'W43 α32Λί1

 2Λf4

 3 1

Now one can write down the matrices of the B\ and the A\ in the
£-base. In this general setting the £-base comes from normalizing an
e'-base that satisfies

, j = sin π(///_! -
N z ? ι sinπ///_i

Set βi = (̂  , e( )2 and β/7 = v-. A computation like the one in §3

with the more general matrices gives the mirror normals to the A\ as

a{ =

- 1 J

a2 =

/ — J \

21 03 =

-Mjβn

-1
1
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We now show that Γ 3 ? o *-•

c\ = a2, c2

The {c/}/=i,3 are given by

/ - 1 λ

--M4V21

1 1 1 i jo
12 ' 12 ' 12 ' 12 ' 12

. Let

C2 = 0
5πi

C3 = e is

^Λ/2Λf4+ l j

Since (e/, efi = 1, c2 and C3 are clearly unit vectors and it is not
hard to see that C\ is also. One computes that

, c2) = -e

(C 2 , C3> = rh M2±
o
P3

l)sinπ/ί4

M2M\ [β 4 sin

sin π//4 + ^3 sin πμ\

After substituting // = ( n ' Π ' Π ' Ί I ' Ί l) f°Γ t h e Pi* o n e verifies

that indeed

(c\, c2) = <c2, c3) = (c 3, c{) = - - ^ = .

Now for the Γ± ± ± ± ± case we choose mirror normals {c/}i=i 3
jn ' »n ' in » in ' in '

such that
10 ' 10 ' 10 ' 10

Let

(C\ , C2) = (C2 , C3> = (C3 , Cγ) = ~ 2 s i n Z L .

c2 -
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\-l

iπi πι_ 2πι 2πi 4π/

-e-ΐ
2 COS y

0

\e
2

+e eί +e s -\-e 5 y

Also

B2 = (Λ/Ί7I

1

e 5

1

0

0
2πi

\)HX1 .

°\
ef\

0

0

0

n

0 0 1

since

H =

Thus we get

>τ

-e> \

2cosf

V - 1 J
2cosf

\ - l .

ί 0 \

2cosf

V o

and
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c 3 =

\ 0 J

-e
4ni

which gives
— El

6

147Π

15

4cos ψ sin I (2cos3L)2 4cos ^f sin f

IS! *
— € 30 1

2 sin f ' (2cos2f)2 '

—e
4 cos Ϋ sin f 2sinf

and

C 3 1

2 sin

Ίπi

4 c

ί

π
5

e

os-

2-

1

/JΓI

30

CC

sin

Ίs

f

r

sin

e so

2 sinf

2 sinf 2cos 2 ? ϊ '

Now since we find that
T

1

1

(2cosf )2

, and (C3, C3) = 1

after normalizing the c, we are left with

(cι,c2) = {c2,ci) = (c3,cι) = J ^

as required.
Notice that since all four groups are arithmetic lattices, the Tpj

inject as subgroups of finite index. Hence the Γμ are commensurable
with groups satisfying Σ INT.
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The isomorphisms are proved in a similar way and are in fact part
of a more general statement given by Deligne and Mostow in a paper
to appear. From the viewpoint of Theorem 6.2 we can make the
following statement that includes these isomorphisms. For each p e
{ 5 , 6 , 7 , 8 , 9 , 10, 12, 18} the following groups are isomorphic:

_l I_I i_i I_! 4\ —
p > 2 p > 2 p ' 2 p ' p ) p>2 p ' 2

i 2\
p ' p)

\2 p ' 2 p ' 2 p ' 2 + F ' / > /

Together Theorem 3.1 and Theorem 4.1 verify Mostow's conjecture.

5. The volumes of fundamental domains for the Γμ . In general it is
difficult to compute the index of one infinite group inside another. In
§6 we determine indices using ratios of the volumes of fundamental
domains computed here. Let Ω be the region defined in [M-l]. Ω is
a fundamental domain for TPit modulo (/), the subgroup generated
by J, the cyclic automorphism of order 3 permuting the generators
of Tpj. Some of the TpJ do not contain / in which case Ω is a
fundamental domain. Carrying out for general (p, t) the computation
done in [MS] for (5, ^ ) gives the following theorem of Mostow and
Siu.

T H E O R E M 5 . 1 . Let ΓPit be a lattice with p = 3 , 4 , 5 and \t\ <

vol(Ω) = 2π2 (B)2-
In case |ί| > \ - i we have the following.

THEOREM 5.2. Let ΓpJ be a lattice with p = 3, 4, 5 and \

Proof. The computation is the same as in [MS] except when \ -
i < |ί| < 3(j - i ) the combinatorial type of Ω changes; that is,
the Δ321, Δ213, Δ132 collapse to a point and hence drop out of the
computation. Also, the quadrilateral 2̂3/̂ 31̂ 32/̂ 21 i n R\ Π R^[ι has
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angles

= * l * - U - £ l l ,

= n-'β-p

2P ) '

Therefore the area of R\ n R7ι is

The angles in Δ123 are

=^13^21^23 = f ( ' " ( 2 " p

2π

P

and so the area of Δ123 is

Carrying out the computation with these values and without the Δ321
term yields the result.

Next, when p > 5, we have μ4+μs < 1 and the fixed point set of the
{i?J}/=i f 3 are lines not points, resulting in an increase in the number of
2-faces in the computation. There is still a great deal of cancellation,
but not quite enough. Integrals of the logarithm of the Jacobian of
the element / over surfaces that are not geodesies remain. Rather
than trying to evaluate these integrals, we use an alternate method to
compute the volumes.

We remarked in §2 that we could use the fact that B+/Γμ ~ Qst, in
case μ satisfies INT (i.e. Γpj with p even), to compute the volume.

We begin by choosing a torsion free subgroup Γo < Γμ of index m
in Γμ . If we define Y = B+/ΓQ then the projection

Y = B+/Γo

Qst ~ B+/Γμ
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is an m to 1 covering map off the branch locus. This implies that with
respect to the volume induced from the ball, vol(Γ) = m vol(Qsί).
But vol(y) = $f- χ(Y). Hence we need only compute χ{Y). But
χ(Y) = m-χ(Qst)- correction for ramification. We proceed with this
calculation.

We work under the assumption that μ satisfies INT. Let L/7 =
{z\zi = Zj} whenever μ, + μ}< 1. The L/7 are all exceptional lines
in Qst if μι + μ7 < I for all /, j [DM] and π ramifies only over
the Lij ~ Pι. If four of the lines are blown down, Qst may be
P 2 and then the lines L/y are not exceptional. However, under the
assumption that μ/ + μ7 < 1 for all /, j eS, there are ten exceptional
lines with the following configuration

(5.3)

\

Notice that the line Ltj is the line fixed by (Γj) . That is, L/_i > / + 1

comes from Bt-9 i = 1, 2, 3, Li4 and Li5 come from A\ and A\, / =
1,2,3 respectively, and L45 comes from the B\. The ramification
over the lines comes from the orders of the corresponding element as
follows.

We want to determine the ramification of π : Y —• Qst over a
point y £ Qst Let V be a suitably small neighborhood of y in Qst

(for precise details see [DM, §8.2]). Define the decomposition group
Dy to be the image of π{(V n Q, 0) in πx(Q, 0). Then

so
m

\θ(Dy)\

If y £ Q then π\(V Π Q, 0) is trivial and |7Γ~x(ĵ )| = m which we
know since π is an m to 1 covering map except over the L / y . Hence
we need only determine for each y e L/7 the order of the image of
Dy under the monodromy homomorphism θ.
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If y is on L/y but not on any of the other lines, then V Π Q is just
C 2 with a complex line removed and hence the decompostion group
is generated by a loop around the line. The image under θ of this
loop has order equal to the order of the element associated to L/7.
Hence

\θ(Dy)\ = ku (recall that ku = (1 - μt - μj)'1).

Next consider y e L/7 Π L/̂  . Then V Γ\Q is C 2 with two lines
removed and the image of the decomposition group is the sum of two
cyclic groups, hence

\θ(Dy)\ = kijklq.

We can now proceed with the following theorem.

THEOREM 5.3. Let μ be a disc 5-tuple with μ\ = μι = μ$ that
satisfies INT and such that μ, + μ} < 1 for all i Φ j . Then

Proof, From the above discussion we need only compute χ(Y).
Choose a triangulation on Qst that includes the triangulation of each
Lij ~ P 1 which consists of vertices at 0, 1, oc on the equator and at
/, - / , the North and South poles and includes the edges connecting
each of 0, 1, oo to the other four points. Also choose this triangula-
tion such that if two of the L / ; intersect, then the intersection point
is a vertex of the triangulation of both lines. Take π~ι of this tri-
angulation of Qst as a triangulation of Y. Let v\ = the number of
/-dimensional cells in the triangulation. Now we compute ι>/(Γ) as

with corrections for /-dimensional cells in the L\j .

MY) = m MQst) - £ (m(

/ ,7, / ,q distinct
in {!,...,5}

-̂  Σ

Here the first sum is a correction term for the vertices that are inter-
section points in figure (5.3). The second sum is the correction term
for the remaining two vertices in each line L^, 1 < / < j < 5. Next
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note that there are 9 edges in the triangulation of each L ί ; . Hence

MY) = m MQst)-9 Σ

Similarly there are six 2-faces in each L;y so

= m v2{Qst) - 6 Σ

Off the lines JL/7 we have

u3(Y) = m • i/3 (βjί)» v4(Y) = m MQst)-

Taking the alternating sum we get

χ{Y) = m • χ{Qst) - £ (m--j^-Sj+ Σ (m

distinct

Since μ\ = μι = μ?> we have

μ ~ \ 2 p ' 2 p f 2 p ' 4 +2p 2 ' 4 + 2 ^ + 2 ) '
Under our assumption that μ satisfies INT, the /c,7 are integers and
we compute for / = 1, 2, 3 that

ki-ι,i+ι = ( -
, _ , 1 it
Ki4-[-*~2p~ + 2

-1

-1

-1

In this case Qst is complex projective 2-space P2 with four points
blown up, so χ(Qst) = 3 + 4 = 7. From figure (5.3) note that there are
6 points where Aj meets A'j, 3 points where 2?, meets Aj, 3 points
where B{ meets A't, and 3 points where Bj meets 5 ' , hence

χ{Y) = 7 - 6 1 -

3 1 1 p 14 " +~

-3 1-- 4-^--i -
P\2 p

= m τ(p2+12p-
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From this we compute

359

m

j_ _
m'~3

χ(Y)

ψ2\P2 + Up-60_4t2]

P2

This completes the proof. Next we consider a set of μ which satisfy

INT but now with μt + μ5 > 1 for / = 1, 2, 3 .

THEOREM 5.4. Set ^ = ( 2 - ^ 5 5 - ^ 5 - ^ ^ 5 + | ) For p e
{8, 10, 12, 18}, μ is a disc 5-tuple that satisfies INT and

vo\{B+/T,) = π2

Proof. Under these assumptions, the lines in Qst coming from the
A\, i.e. L/5, / = 1, 2, 3 are blown down and the configuration of
lines is

(5.4)

The computation is the same as in Theorem 5.3 except we omit the
A\ lines and need to determine the ramification over the points where
three lines meet. From the proof of Lemma 10.3 in [DM] we have
that the order of the decomposition group is

-Γ

where the kt correspond to the three intersecting lines. Notice that
this point of intersection is A^\ Π Ai+\ n δ / for / = 1 , 2 , 3 . Since
in this case &/_i ? / + i = § and ki4 = 2, / = 1, 2, 3, we have that the
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order of the decomposition group at A\-\ Π AM n 2?, is

-Γ
= P2.

Using this information we can complete the calculation.

MY) = m vo(Qst) - Σ \m~~k—~ίc~

'/=C2,345

> [m - -Ί r—
\ /v/ 1 /_|_ t /v/4

i = l , 2 , 3

; = 1 , 2 , 3

m T —

= m • u2(Qst) - 6

l</</<4

u3(Y) = m MQst)

uΛ(Y) = m MQst)

Taking the alternating sum and noting that since three lines have been
blown down, χ(Qst) = 4, we have

= m
3(p - 5)

This gives

to complete the proof.
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We have only dealt with μ satisfying INT. In the case of μ satisfy-
ing Σ INT we study the Γ^χ of [M-2] mentioned in § 1. The proofs
are much the same, with some modification that we give in the proof
of Theorem 5.1'. We use the notation 5.1' since we are consider-
ing exactly the same class of groups as in Theorem 5.1. The formula
for the volume is divided by 3 since the formula in Theorem 5.1 is
for a fundamental domain of Tpj modulo (/) . If / e Γ p > ί then
Ypj ~ Γμ£ and the formula in Theorem 5.1 is too large by a factor
of 3. If / $ Tpj 9 then (ΓPyt, /) ~ Γ^Σ and Theorem 5.1' gives the
volume of a fundamental domain of Γμz.

THEOREM 5.1'. Let μ be a disc 5-tuple that satisfies ΣINT and
such that μi+μj < 1 for all /, j except μ^+μs > 1 (this is equivalent
to p < 5). Then the volume of the fundamental domain for Γμz is

2π2

(H)2- r

Proof. The role of Qst in the previous theorems is played by Qst/Σ
as follows. As in §2 let S = SγUSi be a decomposition of the set S
into disjoint subsets and assume that μs = μt for all s, t G S\. Let
Σ denote the permutation group of S\. Then Σ operates on Ps by
permutation of factors and hence on the subset M. Let Q denote
the subset of Q on which Σ acts freely, 0 a base point in Q, and 0
denote the orbit ΣO, and let

denote the monodromy homomorphism. Then we have

Qst/Σ ztB+fΓp

where

ΓμΣ = πι(ΰ/Σ,Ό)/KsrθΣ.
Now we choose Γ 0 < Γ ^ Σ torsion free with |ΓμΣ/Γo| = m as before.

Let Y = B+/ΓQ and π: Y —• Qst/Σ be the ramified cover. Let
y £ Qst and V be a suitably small neighborhood of y in Qst so that
the image of π\(V Π Q 9 o) in πχ(Q', 0) is the decomposition group
Dy as before. Then the image of

is the decomposition group, Dφ) (τ is the orbit map Qf —• Q1 /Σ).
We need to compute the order of 0z(Ar(.y)) for all y G Qst such
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that ITΓ'^TOO)! Φ m- I*1 addition to the points in the L/7 we must
consider points where the action of Σ is not free. Next we determine
all such points, where in this case we have S\ = {1, 2, 3} .

Let σ denote the transposition (12). Then σ acts on Mst by

(zi, z 2 , z 3 , z 4 , z5) -2+ (z 2 , Z!, z 3 , z 4 , z 5).

The line Lγι = {(z, z, z^, z4, z5)} is fixed by σ. To find points in
Qst fixed by σ we consider the PGL 2 action and solve for points that
satisfy

( Z i , Z 2 , Z 3 , Z 4 , Z 5 )

= (£z 2, ^zi, #z 3 , #z 4 , gz5) for some £ e PGL2.

If g fixes three points then g = identity, so assume z3 = z4. Then
by changing g we can assume z3 = z 4 = 00 and that the other fixed
point is z 5 = 0. This implies g(z) = az for some a e C , hence
zj = <z2zi and we take a — - 1 to get the point (z, —z, 00, 00, 0)
in L 3 4 . Similarly we get (z, —z, 00, 0, 00) in Z/35. Although in
cases later on we have (z, — z, 0, 00, 00) in L 4 5 , this point does not
appear here since μ4 + μ$ > 1.

The permutations (13) and (23) fix the lines L i 3 and L 2 3 respec-
tively, and contribute points in L 2 4 , L 2 5 and L J 4 , L 1 5 exactly as
above. In the quotient Qst/Σ, the lines coming from the 2?/, / =
1,2,3 (i.e. L/_i/+i) are identified so there is only one resulting
line in the quotient denoted by b. Likewise the L / 4 , / = 1, 2, 3
are identified, as are the Li5, / = 1,2,3 and we label the result-
ing lines a and a! according to the associated elements. The points
(z , —z, 00, 00, 0), (z , 00, —z, 00, 0), and (00, z , — z , 00, 0) are
identified in Qst/Σ and we call the resulting point aσ e a. Simi-
larly the image of (z, - z , 00, 0, 00) in Qst/Σ is called a!σ eaf.

Finally, we must check the 3-cycles. Let / denote the permutation
(123). Then

(Zi , Z2, Z3, Z4, Z5) - Λ (Z3 , Zi , Z2 , Z4 , Z5)

clearly fixes the point r = (z, z, z, z 4 , z5) where the L/_i f + 1 , / =
1,2,3 intersect in Qst. Next we take the PGL 2 action into account
and solve

( z 1 ? z2, z3, z4, z 5)

, gz3, gz 2 , # z 4 , gz5) for some g e PGL2.
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Since z 4 ψ z$ in this case, we assume z 4 = 0 and z 5 = oo. Then
from z\ = a?z\ we take a = ω = e^ and denote the image of
(1, ω , ω2, 0, oo) in β?//Σ by 47. Hence in this case the configura-
tion of lines in Qst,

\

becomes

(5.1)

in Qst/Σ.
Recall that when μ satisfies ΣINT, S{ = {1, 2, 3} is the set of

indices where k = k^ = (1 - μ/ - μ/)" 1 , i, j € S\ is a half integer.
The permutation group Σ on S\ was introduced so that the order of
the image under 0χ of a loop around the image in β^/Σ of the C-
line coming from when two coordinates zf , Zj coincide is 2 ky . For
the precise details see §3 in [M-2], specifically Lemma 3.9. Thus the
decomposition group has order 2/c/; at those points in L// fixed only
by the transposition (i j).

There are two points r and qj remaining. The point qj is isolated
from the lines L// and since the group fixing qj is ((123)), the
decompostion group has order 3. The point r = (z, z9 z, z 4 , z$) is
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the intersection point of the lines L/_i , + 1 , / = 1, 2, 3 coming from
the Bi, i = 1, 2, 3. The decomposition group has as generators, the
images of loops passing around each of the lines and, as a subgroup
of Tμz acting on the ball and fixing a point in the ball, it is generated
by conjugate reflections of order p. By the classification of complex
reflection groups in C 2 , the decomposition group has diagram

The order of this group is 2 4 ( ^ ) 2 . We complete the proof as before.
Choose a triangulation of Qst/Σ that includes vertices in each of the

lines a, a1 ,b exactly as before. In each line choose the points labeled
in (5.1) as three of the vertices, i.e. in a choose the points s, t, and
aσ, in a! choose s, tr and a'σ, and in b choose t, t', and r. From
the previous discussions we list the order of the decomposition group
at each point.

s

t

tf

Y
1

<

ki4ki5

2kki4

2kki5

~>A ( P

2ki4

2ki5.

The order for all other points in a, ar, and b is ki4, fc/5, and 2k
respectively. We also include a correction term in v$(Y) for the point

vo(Y) = rn ι>o(Qst/Σ) - (correction terms for s, t, t', r, aσ, a!σ , qj)

- 2 (correction term for remaining vertex in a, a!, and b)

- 9 (correction term for an edge in each of a, a!, and b)

m.v2(Qst/Σ)
- 6 (correction term for a 2-face in each of a, a!, and b)

u4(Y) = m

Now taking the alternating sum, writing out each term, and taking the
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value of χ(Qst/Σ) from [KLW] we have

Ϊ 4 - ί l -

365

[\4 2p) 4\)

d ι ( ι ι i '
V p\4 2p + 2

— - -
2p 2

= m

Therefore

- 2 ) 2 t2

16/?2

I6p2

2π2

1 ( 1 - _L _ /

We use this method to compute the volumes in the rest of the cases
where μ satisfies Σ INT. The only differences are in the configuration
of lines and whether Σ = Σ3 or Σ 4 . We begin with the μ satisfying
ΣINT and such that μt + μ}< 1 for all iφj.

T H E O R E M 5.5. Set μ^{\-^\-^9\-^,\ + ^9\ + ^ ) . When
p = 7 or p = 9 , μ is a disc 5-tuple that satisfies Σ I N T and

vo

Proof. In this case 5Ί is still {1,2,3} so Σ = Σ3. Since
1, there is a line L 4 5 in Qst and the configuration of lines in Qst is
as shown in (5.3). Hence in addition to the points that are fixed by
elements of Σ3 found in the proof of 5.1', we must look for points
where z 4 = z$.

In the case of transpositions σ 9 we mentioned before that there is
a point b'σ e Qst/^3 which is the image of (z, - z , 0, 00, 00) e Mst.

Now for the three cycle (123) which we denote by / , w e solve

( Z 1 ? 22,21,2^, Z5)

= (g23, g2X, g22, g2, gz) for some g e PGL2.
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Set z\ = 0, Z2 = 1, Z3 = oo and note that g(z) = 1/1 - z maps
0 —• 1 —• 00 —• 0 and has fixed points z = - ω , - ω 2 . Note that
(0, 1, oo? - ω , - ω ) and (0, 1, 00, -ω2, - ω 2 ) are identified in
&,/Σ 3 since (12) (0, l , o o , - ω 2 , - ω 2 ) = (1, 0, 00, - ω 2 , - ω 2 ) =
(<?0, ^ 1 , ^oo, g ( - ω ) , g{-ω)) for ^(z) = 1 - z . We denote the
image in Qst/^3 of (0, 1, 00, - ω , -ω) by fej.

Hence the configuration of lines and points where Σ3 does not act
freely is

(5.5)

Choosing a triangulation as in the previous theorem and writing out
Vi(Y) with correction terms for the points aσ , t, s, a!σ , t

f, r, b'σ , bj
and qj as before we get (using χ(Qst/Σ^) = 5 from [KLW])

A. I Λ ^*. ^*. II I Λ. I .^

— m
p2+l2p-60 t2]

I6p2 4 r
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Hence we compute the volume as before and get

,,
Λ /v

 , 8π
2
 \p

2
 +Up-60 t

2
'

3 [ I6p
2
 4

π
2
 \p

2
 + \2p - 60 .

6 ί p2

Next we consider a case where Σ = Σ4 and μz + μ3 < 1 for all i, j .

THEOREM 5.6. Set μ = ( J - I , $ - 1 , $ - £ , $ - 1 , J) . Mfcii /> = 7
or p = 9, μ is a disc 5-tuple that satisfies ΣINT and

. Here we must find the points where Σ 4 does not act freely.
We begin with the transpositions. Clearly the line L/; where z\ =
Zj> 1 < / < 7 < 4, is fixed by the transposition (ij). Note that
these lines are identified in the quotient Qyί/Σ4 (the lines Li5, ί =
1,2,3 and L45 are also identified, but they are not fixed by any
element of Σ 4 ) . There are points of the form ( z , - z , 0 , o o , o o ) that
include any permutation of the first four coordinates. These points are
identified in the quotient and, as in previous theorems, we denote the
point in the quotient by b'σ . In addition, there are points of the form
(z, — z, oc, 00, 0) that are not only fixed by (12), interchanging z
and —z, but also (34) and (12)(34). The image of these points in the
quotient is aσ as before. Next we consider the rest of the points fixed
by(12)(34).

For the product (12) (34) we solve

(gzi9 gz2, gz3, gz4, gz5)

= (z 2 , z i , z 4 , z 3 , z5) for some g e PGL2.

Notice that g2 fixes the five points z/, / = 1, . . . , 5 and hence
must be the identity. We assume z5 = 00 and so g(z) is the involu-
tion g(z) = c - z for some c e C . This gives a line of fixed points
(y9c — y9w9c — w9 00) which, after applying

c -
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and changing coordinates, can be written (0, 1, x, 1 - x, oo). This
line contains the point (0, 1, \, \, oo) e #3 which gets identified
with a preimage of aσ in Qst by

g(x, -x, oo., oo, 0) = ί o , 1, - , - , ooj

where g(z) =

The line also passes through a\ n b\ = t\ = (0, 1, 1, 0, oo) and
a2 Π bι = h — (0 > 19 0 > 1 ? oo) when x = 1 and 0 respectively. If
we denote this line by l^ there are similar lines //, / = 1, 2, each
intersecting α/ and passing through two points ίf _i and ti+\. The
//, / = 1, 2, 3 are identified by Σ 4 in the quotient.

Although the lines are fixed by a subgroup of order 2 there are points
in the // that are fixed by a cyclic group of order 4 (e.g. ((1423))).
These are points fixed by (12) (34) where z5 Φ oo and come from the
involution g(z) = =γ , hence

(0,oo ? 1 , -

gives the points (0, oo, 1, - 1 , /) and (0, oo, 1, - 1 , - / ) . We can
see that these points are also fixed by (1423) using g(z) = j^f ,

g(0,oo, 1 , - 1 , /) = ( ! , - l , o o , 0 , / ) .

We denote the image of these points in <2^/Σ4 by qσa G /.
The 3-cycles in this case where S\ = {1, 2, 3, 4} have fixed points

(1, ω, ω2, 0, oo) and (0, 1, oo, -ω, -ω) as before except that per-
mutations in the first four coordinates are allowed. The additional
points don't add any new points in the quotient Q5ί/Σ4 as they all
get identified, and we continue to label the points the quotient as
b'j ebf = a' and the isolated point qj .

The configuration of lines in Qst (where the // are shown as dotted
lines) is
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which becomes

(5.6)

in the quotient Qst/Σ4 .
The image of the decomposition group under ΘΣ at aσ is generated

by two commuting reflections of order 2 and p , and hence being the
sum of two cyclic groups has order 2p .

The other decomposition groups are identical to previous cases, ex-
cept at the point t. Let U be a small ball around a preimage of t
in Qst. Let U1 = U Π Q. A preimage of t in Qst is of the form
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(x, x, y, y, z) and locally the configuration of lines is

\
\

s
s

63

The point (x, x , y, y, z) has a dihedral group, Z)4 (the Sylow 2-
subgroup of Σ4) as isotropy group. Pick a base point 0 e £/' and let
0 = τ(0). We need to determine the image under θ^ of π\(Uf/D4, 0)
- π 1 ( β / / Σ 4 , U ) .

Consider the exact sequence

', 0) -

Now C/7 is homeomorphic to C 2 minus the four lines, l\, I2 , a^, b?>,
so 7Γi (£/', 0) is generated by γ{, y2, 73, 74 ( 7/<, i= 1,2,3,4 conju-
gate to a small positive loop around /1, /2, 03, ^3 respectively) with
relations those expressing that 7i 727374 (conjugate to a small loop
around the origin on a general line through the origin in C 2 ) is cen-
tral. Next write D4 = VK Z2 , the semidirect product of the 4-group
and Z 2 , where we take the 4-group V = (a, b) generated by the per-
mutations fixing the a?> and bi, lines, and Z 2 = (7), generated by a
permutation fixing the line l\.

If we think of π\(Uf, 0) as a subgroup of π\{U'/D<χ, 0) and write
y/5 / = 1, 2, 3, 4 for the image of the yz, then π\(U'/D4, 0) is
generated by 77, / = 1, 3, 4 with the property:

7 7 2 = 7/ 1 = 1 , 2 , 3 , 4 ,

and where the 77, / = 1, 2, 3, 4 map to /1, /2, α, b in Z>4 respec-
tively. Since the map ωμ of Q to the ball is etale, it follows that
ΘΣ(YΪ) has order 2. As noted before, #1(73) and #1(74) have order
p so the image of θ^ is (ZP®ΊJP ) x Z 2 . The order of the group is
2p2 and we can proceed with the calculation as before.

Choosing a triangulation as before and, after writing out the Vi{Y)
with the usual correction terms and taking χ{Qstl^) from [KLW],
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we have

x(Y) = 4 V1 p\l pj) V1 2Ϊϊ)~V

= m
P-5

Hence

UD+/r \ 8 π 2 \P~5] %1 \ - 5 )

The following theorem is used with Theorem 5.6 in §6 to prove
that an inclusion of one class of groups in another is actually an iso-
morphism.

THEOREM 5.7. Set μ = ( I - I , \ - I , \ - I , I, \

or p = 9, μ is a disc 5-tuple that satisfies Σ INT

- 5)

L P 1

Proof, S\ = {1, 2, 3} and the configuration of lines in

= 7
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becomes

JOHN KURT SAUTER, JR.

(5.7)

in Qst/Σi. Here the ramification about the 6-line is p and about the
β-line is 2, hence the <z-line plays the role of the /-line of the previous
theorem. For example, the decomposition group at the point t is
precisely the same as the decomposition group at aσ in the previous
case since they are both the intersection point of lines of ramification
2 and p.

The only point that doesn't correspond exactly to a point in the
previous theorem is s. In this case, the isotropy group in Σ3 of
(x,y9y,y,z) (a preimage of s) is just Z 2 = ((23)). Let U be a
neighborhood of (x, y, y, y, z) in Qst and U' = U Π Q. Then the
configuration of lines is

We must find the image under ΘΣ of πι(U'/Z2,0)
Consider now the exact sequence

π{ ( β ' / Σ 3 , 0)

1

Let π\ (£/', 0) be generated by yi, )>2 > ft (7/» / = 1, 2, 3 conjugate
to a small positive loop around b\, a2, a?, respectively) with relations
those expressing that jΊftft (conjugate to a small loop around the
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origin on a general line through the origin in C 2 ) is central. Write
Z2 = (b), b the permutation fixing b\.

πι(Uf/Z2, 0) is generated by γj, yi (where y\2 = y\ and the im-
age of Jϊ in Z2 is b). Since p is odd and #Σ(7I) has order p,
ΘΣ((Ή, 71)) = 0 Σ ( ( ) T 2 , 72)) Also, #1(72) has order 2. Thus the im-
age of ΘΣ is generated by a reflection of order 2 and one of order p.
The resulting group is not the sum of cyclic groups nor the dihedral
group because the image has a central subgroup of order p coming
from y 17273 Hence by the classification of subgroups generated by
complex reflections of order 2 and of order p , the group is

which is of order 2p2 .
We thus arrive at the remarkable fact (5.7.1) the configuration of

lines for Q^JΣ^ and Qst/^3 match, Le. even the orders of the decom-
position groups at each point match up, where μ and v are

1 1 1 1 1 1 1 1 4

Hence the computation in this case is exactly as in Theorem 5.6 which
gives the stated result. In fact, Deligne and Mostow prove in a paper
to appear that

The final computation is for the group Γ5 i , a μ of the above type

except μi + μ$ > 1 for all /.

THEOREM 5.8. Set μ = $ - i , i - i , J - 1, J - I , | ) . Γ ^ only

case where μ is a disc 5-tuple that satisfies ΣINT with \ + | > 1 is

p = 5, m

vol(2?+/I» = π2 ψ~^r\

Proof, Here we have the same configuration of lines in Qst as in
Theorem 5.6 except that the lines L/5, 1 = 1, 2, 3, 4 are blown
down. That is, the configuration in Qst (where the // are again shown
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as dotted lines)

JOHN KURT SAUTER, JR.

becomes in the quotient

(5.8)

The proof follows exactly as the others. The orders of the decompo-
sition groups are listed below since the points are exactly like ones
previously discussed.

Now we have

χ{Y)-m π

1

t

aσ

Qj

Qσσ

{β-p)
24p2

(6

2p

2p

3

4

! )

2

- ( -

1 ^

2p2)
Λ i
V 2p

— m
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T h e r e f o r e w e h a v e

This completes the proof and §5 .

6. Isomorphisms among monodromy groups in PU(1,2). These theo-
rems were discovered during work on Mostow's conjecture. The simi-
larities between the orders of reflections in the groups suggested vari-
ous isomorphisms. The computer investigation revealed that in many
instances isomorphisms could indeed be constructed. The first is a
more general statement of Theorem 3.1.

THEOREM 6.1. For each t e {0, ± ^ , ± ^ ? ± ^ , ± ^ , ± £ , ± ^ ,
±^} there is a monomorphism:

Γ 12 i , i c—• Γ 3 i
1+6/ ' 4~1~2 '

which is an isomorphism whenever 3 does not divide j~^-t.

Proof. This theorem can also be stated in terms of the parameter p
as follows. For each p e {4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 24, 42,
00, - 3 0 , -12} there is a monomorphism:

which is an isomorphism only when 3 does not divide -^ .
Observe that in Γ_i2_ ±,, we have

1+6/ ' 4~l~2

2 s i n

W e n o w s h o w t h a t w e c a n m a p i ? i , i ? 2 , R3 o f Γ_LL ι,L t o A 2 ,
1+6/ ' 4~1~2

^ 3 , respectively in Γ^j Using (3.5) and noting that in Γ 3 ? ?

η2 — -η and 1 + η2 = η,
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we find

{fli 9 a\) -3aφ - lηiφ - laηίφ2 + aη2φ - η2

( { a 2 , a 2 ) ( a ι , ax))* 1 + φ

η2φ + ηiφ2 - iφ2) -i(ήφ - ηiφ2)

η-η-ηiφ - ηiφ3 η{\ - iφ3) - η{\ + iφ )

-I i —2 i 3-i

-iηi2φ2(φ2i2 +φϊi2)

—iηi2φ2

as required. Notice that for t e {-JQ , -JΪ > — ^ •> -jo > — 3} we have
that 3 does not divide j ^ . This is precisely the condition that allows
us to solve for the n in the Lemma of §3, and hence Theorem 3.1
proves that

Γ3,^ΓJ2_ i + I
1+6/ ' 4 ^ 2

for the above values of t. Using the volumes of the fundamental
domains computed in §5 we find that the index of Γ_L2_ i + I in Γ3 t in
the other cases is either 4 or 12 depending on whether or not / e Γ3 ? t .
A more detailed discussion is given in §7.

Now we turn to a theorem that generalizes the fact proved in [M-l]
that

Γ5 ^ Γ 5 i β
J ' 10 J ? 2

It gives an isomoφhism between a class of groups where Σ = £3, the
permutation group on three letters and the {Λ}/= 1,3 are reflections
of order 2 and a class of groups where Σ = S4 and which has no
obvious reflections of order 2. Given integers π, p, σ set

1 1 1 1 1 1 1 1 1 1 1 1

Let Γ^(π p >σ) be the corresponding group and Γ^Σ(π ^ σ ) the exten-
sion defined in §2 coming from the maximal subset where the μ,
agree.

T H E O R E M 6.2. For eαcΛ /? e { 5 , 6 , 7 , 8 , 9 , 10, 12, 18} there is

an isomorphism
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Proof. Writing out the five μ, in each case we get

. , (\ 1 1 1 1 1 1

and

p ^ )
' 2 ' / ? - 6 j ~ \2 p9 2 p9 2 p9 2 p9 p

Notice that in going from the first to the second we've taken enough off
μs to make μ$ equal the first three μ{ = μ2 = μ^. This is significant
because the isomorphism is not among the Γμ nor the Tp>t. However,
note that in the case of μ(p, 2, -p) we have the corresponding Tpyt ~
ΓμΣ which is generated by the Rj. Recalling the discussion of the
braid group in §2, we want to map the i?/ E Γ ^ ^ . - p ) > coming from
turning / — 1 around / + 1, / = 1,2,3 to the square roots of the
Ai e ^μ{p, ̂ , -2e-)' which lie in Γ//Σ(/7 5 £ ? j£_) and come from turning j
around 4, j = 2, 1, 3, respectively. For μ(/?, 2, -p) we have that
(refer to (2.1), (2.2), and (2.10))

Next notice that for μ{χ>,\, ^ ) , t = | - \ and so

= _iη5

Replacing each φ by expressions in η yields

(a2, a{) _ aη2φ - 3aφ - 2ηiφ - 2άηiφ2 - η2φ2

((a2,a2)(aι, α,))* ~ 1 + ̂ {r\2f +

-ae* [W3 + 2 w 3 + W3
L i 1 L i

as required. This proves that Tμτ{P, 2, -/?) injects into
Consideration of the volumes of the fundamental domains computed
in §5 (and listed in §7) indicates that this is an isomorphism. It is
an isomorphism at the Γμ level only when Γμ ~ ΓμΣ (i.e. when the
corresponding p is odd). Notice that for both 5, \ and 5, ̂  it is the
case that Γ^ ~ Γ^Σ czΓPft.
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7. Summary of specific information about Γμ and ΓPft Here we
give the specific information in dimension 2 mentioned in previous
sections. This includes lists of lattices in the μ and p, t parame-
ters, and the volumes of the fundamental domains for the lattices in
PU(1,2). The following is the list of lattices given in [M-l]. For each
p, t, the corresponding μ is given, where d is the denominator of
the μι. The orders of the elements A[, A\, and B\ are p, σ, and
τ respectively. AutΩ indicates whether or not J is in ΓPit.

RCP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

d

12

30

18

24

42

6

30

12

10

20

30

10

8

12

20

4

12

dμ
{

2

5

3

4

7

1

5

2

3

6

9

3

2

3

5

1

3

dμ
4

9

22

13

17

29

4

19

7

5

9

11

2

5

7

11

2

5

9

23

14

19

34

5

26

11

6

13

22

9

5

8

14

3

10

P

12

10

9

8

7

6

5

4

5

4

3

2

8

6

5

4

3

σ

12

15

18

24

42

oo

-30

-12

10

20

-30

-5

8

12

20

oo

- 12

τ

-2

-2

-2

-2

_ 2

-2

-2

_ 2

- 10

- 10

- 10

- 10

-4

-4

-4

-4

-4

P

3

3

3

3

3

3

3

3

5

5

5

5

4

4

4

4

4

0

j_

π

T2

42

ά

3

Tϋ

1
5

7
Tϋ

0

Ίϊ

20

1
4

Π

Aut
Γ
Ω

1

3

1

3

3

1

3

3

3

3

1

3

3

1

3

3

1

DM

10

22

26

3

23
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Now we give the list of lattices satisfying INT in dimension 2 from
[DM].

DM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

d

3

4

4

5

6

6

6

6

8

8

8

9

10

12

12

12

12

12

12

12

12

12

12

15

18

20

24

dμ{ ι

1

2

1

2

2

3

4

2

3

2

3

4

4

5

6

5

4

7

7

8

5

3

3

6

8

5

9

dμ2

1

2

1

2

2

3

3

2

3

2

3

4

4

5

5

5

4

6

7

5

5

3

3

6

8

5

9

dμ3

1

2

1

2

2

3

2

2

3

2

3

4

4

5

5

5

4

5

4

5

5

3

3

6

8

5

9

^ μ 4

1

1

2

2

3

1

2

1

3

5

1

2

1

4

4

3

5

3

4

3

1

7

5

4

1

11

7

2

1

3

2

3

2

1

5

4

5

6

4

7

5

4

6

7

3

2

3

8

8

10

8

11

14

14

P

3

4

4

5

6

3

2

4

8

2

3

2

4

3

4

2

6

3

3

2

5

3

σ

oo

4

oo

5

6

6

- 6

8

8

- 8

9

- 10

6

12

12

- 12

12

- 12

15

- 18

20

24

τ

0 0

2

- 4

5

oo

2

oo

8

- 4

8

3

5

4

4

oo

4

- 4

— 4

5

3

- 4

8

/?

6

oo

4

10

6

oo

6

8

4

8

18

10

12

12

6

12

4

4

10

18

4

8

1

1
3

0

1
4

0

0

1
6

2

0

8

4
T8

6
To
1

12

Tϊ

Π

TΊ

Π

Π

4
15

10
T8

20

TA

AutΩ

1

3

3

3

1

1

3

3

3

3

1

3

3

1

3

3

1

1

1

3

3

1

RCP

16

13

14

17

15
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The following is an updated version of the list in [M-2] of lattices
satisfying ΣINT. All μ not satisfying ΣINT with Γμ discrete are
added to the end of the list.

d

10

20

14

18

18

6

6

6

10

12

12

18

14

18

42

30

24

42

12

30

10

12

14

18

dμ
{

3

6

5

7

7

1

1

1

2

2

2

2

5

7

15

13

11

20

7

16

1

1

3

4

dμ
2

3

6

5

7

7

1

1

1

3

2

2

7

5

7

15

13

11

20

7

16

1

3

3

5

dμ
3

3

9

5

7

7

2

2

3

3

4

6

7

5

7

15

13

11

20

7

16

4

5

4

5

dμ
4

3

9

5

7

5

3

4

3

6

7

7

10

2

2

13

7

5

8

1

4

7

5

9

11

dμ
5

8

10

8

8

10

5

4

4

6

9

7

10

11

13

26

14

10

16

2

8

7

10

9

11

P

5

7
2

9

3

2

2

7

3

3

3

3

3

σ

- 10

14

6

18

-7

-9

14

10

8

7

4

5

τ

- 10

14

6

6

14

6

14

8

7

4
3

5

5

7

9

9

7

9

7

15

24

42

- 12

-30

I

14

T8

9
14

Tϊ

13
42

7
30

Ί4

27

π
4
30

AUTΩ

3

3

1

1

3

3

3
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The specific relations between Γμ, Γμz and TPit. Mostow has shown
that Tpj is conjugate to a subgroup of Tμz The precise relation
among Γμ, Γμ% and Tpj is summarized below.

Case 1. If μ satisfies INT (and hence p is even) and / G Tpj,
then

index n\

Case 2. If μ satisfies INT (p even) and / φ Γp t t , then

Γ index n\
μ

index 3

Case 3. If μ satisfies ΣINT but not INT (hence p is odd) and
J e Γ p ? / ? then

Case 4 If // satisfies Σ INT but not INT (p odd) and / φ Γp it,
then

index 3

The following lists give the volumes of the fundamental domains
for Γμ, ΓμΣ, and Tpj in Cases 1 thru 4. The configuration of lines
column, headed "Config. No.", indicates which formula in §5 was
used to compute the volume. Consideration of the volumes is used in
§6 to compute indices and prove isomorphisms.
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Config. No.

5.1

5.1

5.4

5.3

5.4

5.3

5.4

5.3

5.4

5.4

J O H N

P,

4,

4 , :

6,

8,

8,

10,

10,

12,

12,

18,

t

0

20

2

5

0

6
TO

h

10
Ϊ8

KURT SAUTER,

Case 1

r.

6 . jkί

2 -5-

2

8 ΐ

2 Ϋ

4 - ΐ
7π2

1W

2 • 1 3 π 2

Case 2

JR.

Γ ~ r p ,
2

π
T

l l π 2

TOO"

1 π2

3 ' T

1 π2

2 ' T

1 π2

3 " T

1 7π 2

6 ' TF

3 01

1
2 *

1
3 *

1
6 '

π 2

T

π 2

T

7π2

Config. No.

5.1

5.2

5.3

5.3

5.3

5.3

5.3

P,

4,

4,

6,

8,

10,

12,

18,

t

1
T2~

ΊΊ

1
3

7
24

4
T5

3

TI

4
T8

]

2

2

8

8

8

8

8

ϊr
π

• T

π 2

' T

l l π 2

37π2

12T

' T

13π2

1Γ

2

π
T

π
T

4-Hί

4 *

4 Ϋ
13π2

Γ

I .

1

Ί

4
3 '

4
3 '

4

^Σ

13π2

IF

' T

l l π 2

"7T

37π2

72T

π 2

' T

ί > 4

1 π2

3 " T

1 13π2

3 ' "8T
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Config. No.

5.1

5.1

5.1

5.2

5.2

5.1

5.1

5.2

5.8

5.6

5.7

5.5

5.7

Config. No.

5.1

5.1

5.2

5.6

5.5

AMONG MONODROMY GROUPS

P

3

3,

5,

9,

9,

Case 3

P,

3,

3,

3,

3,

3,

5,

5,

5,

5,

7,

7,

7,

9 '

t TμC

3D

A

h
7

3D

1

3

Tϋ

1
5

7
Tϋ

i

T4

13
42

TO

Case 4

,t

,0

• TO

1 1
1 3D

1
1 18

• TO

r,.,
π 2

T

13π2

~8T"

1

I .

3 '

3 '

I

3 *

3 '

I

1
3

8

8

4
3 '

lέ

37π2

IF

*

61π2

441

16π2

12T

π2

"35

13π2

ir
23π2

~W

π2

"25

π2

"23

π1

" 49

2

π
"35

"44Γ

π2

' 8T

I

I .

4

3 '

16

4 .

π2

" T

13π2

~FΓ

16π2

125"

. π !

13π2

~8Γ

383
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