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NICE DIMENSIONS
FOR THE /o EQUIVALENCE RELATION

OF DIAGRAMS OF MAP GERMS

ISAO NAKAI

In this paper we give geometric characterisations for finite determi-
nacy with respect to the various equivalence relations for convergent
diagrams of smooth map germs. Using those results and known re-
sults on nice as well as semi-nice dimensions for smooth mappings
due to Mather and Wall, we determine nice dimensions for some di-
agrams of smooth map germs. For manifolds with nice dimension
finite /o determinacy holds in general for diagrams of map germs
and topological stability holds in general in the space of diagrams of
proper smooth mappings.

0.1. The main theorems, and some relations with ordinary singularity
theory, Mather's nice and semi-nice ranges. Let G = ( F , L, Λ) be a

\
convergent finite tree with a root v0 G V: ^ ^ -> v0, where V is the

/
set of vertices, L the set of edges and A = (a, β):L -+ V x V is

the orientation: a{l) -U β(l), I e L. Let P = (pv) be a tuple of

positive integers. In the paper [Nl], the author introduced some new
equivalence relations, called / equivalence, for diagrams

/ = (//) e βr(G, P) = © m{Pa{l))*(Pa(l), Pβ{l))
leL

of map germs //: (R^o , 0) —> (Rpw>, 0) along G, for tuples I = (aυ),
where each aυ is either a non-negative integer or one of the sym-
bols oc, *. These generalize the idea of contact equivalence due to
Mather. Our Thorn-Mather theory for diagrams [Nl] works effectively
for generic diagrams of smooth mappings

/ = ( / / ) G C°°(G, M) = Π C ° ° ( C α ( / ) , Mβ(l))9

leL

provided that finite /Q determinacy holds in general for multi germs
of / of any combinatorial types where 7o = (av), aVo — 0 and av = *
otherwise.
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In this paper we will determine a range of dimensions P for which
this determinacy holds in general, and also obtain some properties
of various critical point sets of finitely IQ determined diagrams. For
manifolds Mv with dimensions in this nice range, the topological
stability theorem is proved in the paper [N2].

In the first chapter, we give a geometric characterization for finite IQ
determinacy in terms of critical point sets. The finite /o determinacy
of diagrams of map germs / = (f{), in other words C/o(/) < r <
oo, is an algebraic condition on their jets of the order e(P + r) + 1
(denoted e(r))9 depending on P and r and increasing with r. This
condition defines algebraic sets Σe^ in the jet spaces Je^(G, P).
So the set Σ c &{G9 P) of non-finitely IQ determined diagrams is
the pro algebraic set defined by Σe^, r = 0, 1, . . . (Proposition
2.2.2). We say that finite /o-determinacy holds in general if codimΣ =
limr_^ooCodimZe(r) = oo. This condition is independent of whether
we are in the real or complex case.

In §1.3, we define various critical point sets for diagrams, which
are, in the complex case, rephrased in terms of the coherent sheaves
Θ(UV)9 θ(fι) of holomorphic vector fields on Uv9 sections of the
bundles f^TUβ^ -> Ua^ (//: Ua^ -+ Uβ^) 9 and the morphisms
tfi 9 tofi Then finite /o determinacy is equivalent to the finiteness
of stalks of certain coherent sheaves Na^, β(l) = VQ considered as
modules over #(Uυ) via fι\ in other words, the fi | sup^ ( /) are
finite to one (supρΛ^(/) is the non-trivial locus of /) (Proposition
1.5.2).

Using this geometric characterization, our problem is reduced to
one of estimation of the set of non-trivial as well as non-stable jets.
In particular for the graph of height 2 (unions of two compositions)
our nice range is completely determined using the function 2σ(n, p)
due to Mather.

Now we recall some known results in the singularity theory of single
mappings. The function mσ(n, p) is roughly defined to be the codi-
mension of the union of X orbits of modality > m in the jet space
J°°(n, p), and Mather showed that the set Σ u n s c J(n, p) of unstable
jets has codimension> n (resp. > n) if and only if ισ(n9 p) > n:
nice (resp. 2σ(n, p) > n: semi-nice). He also determined the range of
such nice pairs (n9p) for which C°° stable mappings are dense in the
proper mapping space C™(Nn, Pp) [Ml-2]. The range of semi-nice
pairs was recently determined by Wall [W3], and in these dimensions
the spaces C™(N, P), J(N9 P) possess some remarkable properties,
which we now briefly describe.
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Gaίfney proved in his thesis that a holomorphic map germ /: Cn ,
0 —• Cp, 0 is finitely si (= RL) determined (given that / is finitely
3£ determined, i.e., / | Σ(/) is finite to one) if and only if / is
infinitesimally (C°°) multi-stable on a deleted neighbourhood of 0 G
C. Later du Plessis proved that finite si determinacy holds in general
if and only if codimΣu n s >n<=ϊ2 σ(n, p) > n [P].

From our point of view, a composition f,g:Cn,0 —• Cp, 0 —•
Cr, 0 is regarded as a family of mappings of varieties:

parametrized by u G C r . By definition, two compositions (/, g),
(/', S1) are ô equivalent if and only if fo, JQ are RL equivalent in
a certain algebraic sense (see §0.2), and then the compositions are C°°
equivalent if each is infinitesimally stable [Nl]. This suggests that IQ
determinacy holds in general if and only if the pair (n - r, p - r)
of dimensions of the varieties is semi-nice. In fact, this is a part of
Theorem 1.

Let G = (K, L, Λ) be a tree with orientation Λ = (α, β):L -»
V x V. The relation < given by a(l) < /?(/), I e L, generates a
partial order relation on the set of vertices V, i.e., v < vf if and only
if there is an oriented path υ —> —• v' by edges joining υ to υ'. We
say a finite connected tree G is convergent if V has only the maximal
element in the order < and call the maximal element the sink or root
of the tree G, denoted by ^o e V. It is then easily seen that any
vertex v Φ VQ has just one edge lυ e L with a(lv) = v. We denote
β(lv) = β(v) and define βn(v) G V and the function h{v) inductively
by βn+\v) = β(βn(v)) and h(βn+ι(v)) = h{βn(v)) - 1, A(t;0) = 0.
We call max{h(v) \ v G V} the height of G. Henceforward the graph
G is always connected and convergent.

The branch Gv — (Vv, Lv, Λ) of G <w υ e V is a subgraph of
G consisting of vertices vf < v and edges / G L, /?(/) < v. The
prolongation G~ of G^ is the union of Gυ and the edge /v: v -+ β(v).

Let P = (Pv)vev be a tuple of positive integers and let £*(G, P) =
0 / G L m{Pa{i))%{Pa(i) > Pβ(i)) denote the set of diagrams of smooth map
germs / = ( / /) / € L , //: (Rp'^ , 0) - • (Rp/»o , 0). Here m(p) denotes the
maximal ideal of function germs on (RP, 0) vanishing at 0 in the local
ring %?{p) of smooth function germs, and If (w, p) = φ ^ &(n). The
Cr equivalence relation of these diagrams is defined in the same way
as for global diagrams in C°°(G, M) = UleL C°°(Ma{l), Mβ{l)).



328 ISAO NAKAI

THEOREM 1. Let G — (V, L, Λ) be a convergent diagram of height
2 with root VQ, and let P = (pυ)vev be a tuple of positive integers.
Then finite 1$ determinacy holds in general if and only if, for any
triple v-χ < υ\ <VQ, one of the following conditions holds:

(1) Aι, <Pv0,
(2) Pv2 < Pv0,
(3) A>, , Pυ2 > Pv0 and 2σ(pV2 - pVo, pVχ - pv) > pVj - pVo.

THEOREM 2. For a convergent diagram G, finite IQ determinacy
holds in general if one of the following conditions holds for each vertex
veV:

(1) Pv <pv' for υ <υ',
(2) Pβ(v)<Pv> for β(υ)<υ',
(3) pβ2{υ) <pv> for β2(v) < v' and

2σ{Pυ -Pβ\υ) > Pβ(υ)-Pβ\v)) > Pυ -Pβ2(v)

THEOREM 3. Let G = (V, L, Λ) be the union ofk edges l\,... , 4
with a common root vx and let p = (pv) be a tuple of positive integers.
Then for any infinitesimally stable diagram f= (fι) e^(G, P) {resp.
<fκ(G, P), <fc(G, P)) and any generic smooth germ g:(Rp"ι, 0) —>
(Rp"o, 0) (resp. real or complex analytic germ), the composition (/, g)
along the prolongation G~ — G\JV\ —• vo (of height 2) is finitely IQ
determined if and only if one of the following conditions holds for each
i=l,...,k:

(1) Pv0 <Pa{it),Pv{ and

Pa(l/)-Pv0 < 2σ(Pa(l,) -Pv, , Pυχ ~ Pvo)

(2) pvo > min{pVι, pa{ι}}.

Here we recall a result on the function 2σ(n, p) from the paper
[W3]: (4<n)

ισ(n,p) =

-Ί(n-p) + l if n-p< - 4 ,
-4(n-p)+\6 i f - 3 < « - / > < - 1 ,
13 i f O ,
11
13
2(n-p)

\{n-p) +

if 1,
if 2,
if 3<n-p<7,
if 1 <n-p.
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0.2. Terminology and preliminaries. The k jet spaces of C°°(G9 M)
and I?(G, P) are respectively

leL

leL

and the projection ev: Jk(G, M) —• Π/GL(M>(/) X Mβ{i)) *s given by
w({Jkfι(xι))ιeL) = ((*/, //(X/))/6L)

 N o t e that ev has the canonical
fibre Jk(G, P). Sometimes Jk(G, P) is identified with

&(G,P)/mk&(G,P)

= φ ™(Pa(l)W(Pa(l) >
leL

We denote by πk:(G, P) -+ Jk(G, P)9 πkl:J
k(G, P) -> Jι{G, P)

(k > I) the natural projections.
The unfoldings of / € &(G9 P) used in this paper are diagrams

F = (F/) G r(C?, P + r ) , P + r = (pv + r ) v € F , such that cβ{l) o ft =
Fι ° *α(/) holds for / e L and ^.'R^o —• R/?ϋo+r is transversal to
all compositions FVVQ:RPV -• R^o, where sυ:R

pv -> R ^ + r , v e K , are
the natural inclusions. It is easily seen that, after a suitable coordinate
transformation, we may assume F is of the following normal form:

u), fιo = fι, xeRp^9 ueRr, leL.

For unfoldings of the normal form above, the jet sections

7kF: IjR^ω xRr-> Jk(G, Rp), R̂

are defined by

* ) , u) = /V,((^/)) for (x/) E Π R^), u G R',

where fu = (/ / M) / € L .
We now introduce the new / equivalence relations for tuples of

"integers" I = (av)vey, 0 < av < oo, *, in terms of C°°R algebra.
A C°°R algebra is an R algebra i£ with the following properties:
(1) for any smooth function germ / G &(n), n = 0, 1, . . . , and

elements X\, . . . , xn G R, the composite /(JCI , . . . , xn) G R is given,
(2) the morphism evx: ^ ( Λ ) —• i? given by ev x(/) = f(x\, . . . , xn)

is an R algebra homomorphism for any x = (x\, . . . , xn),
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(3) for any smooth functions g\9 ... 9 gn € ί?(p), / G <?(ft) and
jeR, i = 1, . . . , n, j = 1, . . . , p, the equality

holds, i.e., evx oevg = evev ^ .
A morphism of C°°R algebras of R to R! is an R algebra homo-

moφhism h\R-+ R! with the property:
(4) h{f{xu ... ,xn)) = f{h{xx), ... ,h{xn)) for any / e ? ( n ) and

Xj , . . . , Xn G i? .

It is an easy exercise to see that any quotient !?(/?)// of the R
algebra *?(/?) by an ideal / is a C°°R algebra, and the pullback
/*: &(p)/J -+ &(n)/f*J induced from a smooth map germ /: (Rn , 0)
-» (R^7,0) is a C°°R algebra homomorphism. Moreover all C°°R
algebra isomorphisms of ί?(w) are given by pullbacks 0* of germs of
diίfeomoφhisms of (Rw , 0).

As a convention we introduce a symbol * with the properties, *+/ =
* 9 * + oc = * and /, oc < * for / e N. We write N* = N U
{oc, *}, and define m(n)* = 0. Also, we denote by f*mI+ι^(pυ) the
ideal of £{pv) generated by f*υ>m(pv')

av'*1, v < υ'. The pullbacks
//*'&{Pβ(i)) —• &{pa(i)), I €L, induce C°°R algebrahomomorphisms

We denote the tuple of f) by Q/ ( / ) Then two diagrams f,ge
g(G, P) are defined to be / equivalent if the tuples Q}(f), Q}{g)
are equivalent as diagrams of C°°R algebra homomorphisms on the
dual diagram G* of G with the reversed orientation, in other words,
there are C°°R algebra isomorphisms

Φv:P(Pv)/g*mI+ιgr{pv)
 I ι

such that φay) o ff = ^* o 0^(/) for / € L . Clearly the / equivalence
class of / depends only on max{^} jets of fι, I e L, when the
aυ are all finite. Note that the / equivalence relation for / = (*)^GF

coincides with the ordinary C°° equivalence relation.
Let / G r ( G , P) (C°°(G, Λf)) be a diagram of smooth map germs

(global mappings). Let θ(n) (Θ{N)) denote the gr(n) (C°°(iV)) mod-
ule of smooth vector fields on (Rπ, 0) (N) and θ\fi) the &(pa(i)%
(Coo(Afα(/))) module of sections of the pullback bundle ff
R^> (f;TMβ{l) -+ Ma(l)). The morphisms tfr.θ(pa(i))
ωfι' θ(Pβ(i)) —• ̂ (7/) are defined by the differential and the pullback

of ,// and similarly for the global case.
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For simplicity we write

Θ(P) = 0 θ(pv), Θ(M) = 0 θ(Mυ), θ(f) = 0 θ(fι)
vev vev leL

and define the morphism

T{f):θ{P)->θ{f) (:θ(M)^θ(f))

by

T(f) ( 0 Xv) = 0 tfl(Xad)) - CύMχβ{l)).
S GF ' leL

We say / is infinitesimally stable if T(f) is surjective.
The / equivalence class of / is denoted by &r(f) and nk(^I(f)) =

&Ik(f). By a result in the paper [Nl], the &Ik{f) are all semi alge-
braic submanifolds of Jk{G9 P) and locally C°° trivial if av Φ oc for
v G V (Theorem 2.4.1-2 [Nl]). For infinitesimally stable diagrams,
the 70 equivalence relation, 70 = {av), aVo = 0, α^ = * otherwise,
and the ordinary C°° equivalence relations are the same (Theorem
4.2.1 [Nl]). By this fact together with Proposition 0.3.1 and Theorem
0.3.2, we see that finitely IQ determined diagrams / , g with C/o(/),
Cio(s) < °° a r e ô equivalent if and only if they admit unfoldings
equivalent with each other.

By definition we have

PROPOSITION 0.3.1. Let aVo = 0. Then unfoldings F, G e
^ ( G , P + r) of diagrams / , g G £?(G, P) are I equivalent if and
only if f and g are so.

Now we recall a criterion for infinitesimal stability.

THEOREM 0.3.2 {Theorem 5.1.1 [Nl]). Let F e ^{G, P + r) be
an unfolding of f e ^(G, P) of the above normal form: F(x, u) =
{fu{x), u). Then the following conditions are equivalent.

(1) F is infinitesimally stable.

(2) The jet section 7kF:ϊlleLRp«w xW -> Jk(G, Wή is transversal
to &Ik(f) x Δ for a tuple I = (av) and a k such that eυ(F) <av, k,
where

Δ = {(Xι, y{) e Y[{W x R̂ (/)) I Vι = xv , ifβ(l) = α(/')}

and the e(F) = (eυ(F)) is a tuple of integers such that eVo(F) = 0 and
all entries are bounded by the function e(G, P + r) depending on P
and r and increasing with r.
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(3) (dflu/dUi(u = 0))leL9 i=l,...,r,span θ(f)/T(f)(θ(P))
over R.

With the above condition (3) in mind, we define the / codimension
Q{f) by

leL
for a tuple I = (aυ) of integers α^ = 0, 1, . . . , oo, *.

The following is a consequence of Theorem 0.3.2.

THEOREM 0.3.3 (Proposition 2.1.1, Theorems 3.1.1, 3.2.1 [Nl]). Let
fe&(G, P) and QQ(f) < r < oo. Then f is finitely IQ determined:
there is an integer e(G, P + r) depending only on P, r with the prop-
erty that if g G !?((?, P) has the same e(G9 P + r) jet as f then g
is IQ equivalent to f and Cj (g) <r.

More generally we have

THEOREM 0.3.4 (Theorem 3.2.1 [Nl]). A diagram f is finitely (resp.
finitely 70) determined if C*(F) < oo (resp. Cj (f) < oo), where
* = (*)vev-

1. Trees and branches of convergent diagrams of smooth mappings.

1.1. Triviality and irreducibility of convergent diagrams of map
germs. Let G — (V, L, Λ) be a (finite, connected) convergent dia-
gram, with root t>o. Let P = (pυ)vev be a tuple of positive integers
and / = (fi)leL e ^{G, P). For any subgraph Gf = (V, Z/, Λ') c
G, Λ' = A\L', we denote by fG, = {fi)leL, e ^(Gf, P'), P = PG, =
(Pv)vev' 9 Λe restriction of / t o Q . We say / is trivial if

holds. Clearly trivial diagrams are infinitesimally stable. By Lemma
1.2.2 [Nl], / is trivial if and only if

(**) T(f)(®θ(pv)®m(pVo)θ(pVo))=θ(f).

We say / is irreducible if, for any vertex υ e V - v0 , the restriction
fG- of / to the prolongation G~ (= GVU lv:υ -^ β(l)) of the branch
Gv is not trivial, otherwise, we say / is reducible or decomposable.



NICE DIMENSIONS FOR DIAGRAMS 333

PROPOSITION 1.1.1 {Lemma 4.2.2 [Nl]). A convergent diagram f e
!?((?, P) is trivial if and only if the following conditions hold'.

(1) The compositions fVVo:(Rpv, 0) —• (RPvo , 0 ) , v < VQ, along the
paths from v to VQ are all submersive.

(2) The restriction to fibres f0 = (/ 0 /)/ G L,/? ( /)^ V

foi = fi I f'm (0): (f~m (0), 0) -> (f~)λ (0), 0)

is infinitesimally stable.

PROPOSITION 1.1.2. Assume that G has more than pVo stalks
branching off the root VQ . Then any infinitesimally stable diagram
f € <^(G, P) is decomposable.

Proof Let

^ = θ(pVo)/m(pVo)θ(pVo)

- Θ(f)/T(f) ( 0 θ{pv) Θ m(pυ)θ(pυ)

be the morphism induced from the restriction Γ(/):0 Θ θ(pVo) c
Θ(P) -> θ{f). If / is infinitesimally stable (Γ(/) is surjective), °J(/)
is also surjective. Let v\, . . . , ^ G F be all vertices of G of height
1. Then the morphism induced from δ(f)

k k

δ{f) = φS(fG-):Rp^ -+Qθ{fG-)/T(f)( 0 θ(pv)®m(pVo)θ(pVQ)\

is surjecture. If k > pVo then

/G-) = T(f) ( 0 θ(pv) Θ m(/7,o)

holds for some /, and the prolongation fc- is trivial by the second

criterion (**) for triviality.

By the proposition above we have immediately the following corol-
laries.

COROLLARY 1.1.3. If a pair (G9P) admits an infinitesimally stable
and irreducible diagram f e <?(G? P), then G is a P tree, i.e., any
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vertex v e V has less than pv + 1 edges I e L with β{l) = v, and
consequently G has at most Πh(υ)<h-\Pv vertices of height h.

COROLLARY 1.1.4. If a pair (G,P) admits an irreducible diagram
f e ^ ( G , P) with C/(/) < r, then G is a P + r tree, i.e., any vertex
υ eV has less than pv + r + 1 edges I e L with β{l) = v.

Proof. By Theorem 0.3.3 / admits an infinitesimally stable unfold-
ing F e %(G, P + r) of dimension r. If G is not a P + r tree, by
Corollary 1.1.3, some prolongation Fr- in F is trivial, from which it

follows that the prolongation fG- is trivial by Proposition 1.1.1. This

is a contradiction to the assumption that / is irredicible.

1.2. Maximal trees and branches of convergent diagrams of smooth
mappings. Let G = (V, L, Λ) be an oriented graph, M = (Mυ)vey
a collection of smooth manifolds, and / = (fι)ιeL Ξ C°°(G, M) a
smooth mapping on (G, M). Let X = U/GL^/ > %ι c M*(/) > be a
disjoint union of finite sets, and write f{X) — (J/ez, fι(^ι) The #ra/?A
Gpr = (FY , Lχ, Λ) of f is the oriented graph consisting of the set
of vertices Vx = V U /(X) αnd the set of edges Lx = fx = {flx \
x e X\, / e L}, and the orientation A(flx) = (x, //(x)) e Vx x F^,
where yĵ  denotes the germ of// at x G Afα(/). The multigerm fx is
naturally regarded as a diagram of map germs along the graph GfX .
Clearly if G is a convergent tree then all graphs GfX are also unions
of convergent trees: forests. (We call a forest sometimes a tree.)

From now on, we assume G is a finite convergent tree (connected),
and we call fx simply a tree of / (possibly disconnected). The pro-
longation of a connected tree fx with root x is the tree fx- , where
X~ = XU f(X) = XUx, i.e., the union of fx and the edge fίx:x -+
fι(x), x £ Λfα(/). A connected tree / r of / is maximal if fx is
irreducible and any connected tree fx> with X ^ X' is reducible. A
maximal tree fx is called the maximal tree of x if x £ X U /(ΛΓ),
and denoted by /^ . The maximal branch fχ^ on x e Afv is the

branch of the maximal tree / r of x on x: X£Γ = Xx Π (Ut/<?; M O
By definition the maximal tree of x always exists (possibly empty),
and its uniqueness is easily seen.

Let Xf = Xx U {x, xι, . . . , xh} U Xχh, where xi = f{x)

fvβ'(v)(x) e Mβ'(v) a n d h = h(vϊ> f o r any x G M v , t; e V (pos-

sibly Xx = 0 , or XVΛ = 0 for generic x ) . The tree /FCh is called

the characteristic tree of * . If J ^ , J A ^ 0 , then /FCh is the union
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of the maximal trees fχχ, fx h of x, xh and the path xa -> xa+ι -*

• —> x^ from the root xα of / ^ to a vertex xb of fx h.

1.3. Critical sets of convergent diagrams. Let / = C / / ) / € L , fhMa{i)
-> Af̂ (/) be a convergent diagram of smooth (complex analytic) map-
pings of manifolds Mυ, v e V. Let Q = ( f t ) ^ F be a tuple of
positive integers. We call a tree fx of f a Q tree if its underly-
ing tree Gfx is a Qxu/w tree, where QχΌf{X) = (<2χ)xexυf(X) and
qx = qv for x e (Xuf(X))Γ)Mv , i.e., for any vertex fι{xα(i))
of /V there are less than <3̂ (/) + 1 edges fι>x> t :xf

αn^ —* fr(x'απ'))

M' f
Now we define the critical set CVQ(f) c Mv for v Φ v§ to be the

set of roots of connected Q trees /* such that the prolongation fx-
is non-trivial.

If Q = oc we simply write C^ (/). We define the discriminant sets

DvQ(f)= U //(cβ(/)e(/)), A , ( / ) = U

and conventionally we define Cυ ρ(/) = DVOQ(/)
 a n c ^ CVo(f) =

A, o (/). By definition, a Q tree°/x> X = U/eL^/?

 x / c Ma(l)/

is irreducible if and only if X\ c Cα(/)ρ(/) for all / E L. It is
worth noting that the maximal branch on x e Mυ is the tree fχbr,
Xbr = y^ ;<^ ^ ( χ ) n cv>(f). We define the unstable set SV(F) c M v

to be the set of roots of noninfinitesimally stable trees of / in Mv .
Let fx be a connected tree of / . We say / is a good representative

of fx if / satisfies the following conditions (l)-(4):
(1) fx is a maximal tree, if fx is irreducible.
(2) If Qo{fχ) < r then for any tree fχ, of / , Qo(fr) < r (for

the definition of the /Q codimension Cj {fx), see §0.2).
(3) Cυ{f), Dv{f) C Afv are closed, and the restrictions fι\Ca^{f)\

Ca{i){f) -+ Dβ(i){f) •> I €L, are proper and uniformly finite to one.
(4) For any subgraph & = {V, L', Λ') of G, the restriction fG> =

(fι)ieL' i s a g°°d representataive of the tree fx>, X' = U/GL' ̂ /
By condition (3) all maximal trees of / are Q trees for a common

tuple of positive integers Q.
In the next section, we show that any finitely /Q. determined (C/o(/)

< oc) convergent diagram of (either C°° or complex analytic) map
germs admits a good representative in which it is embedded as a tree.

1.4. Other definitions of the critical sets by fitting ideals for the com-
plex case. First we remark that the results stated in §0.2 and also in
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the paper [Nl] are all valid for the real and complex analytic cases as
well as the smooth case. In this section all concepts and symbols are
defined in the complex case. For example a diagram of map germs
on a pair (G9 P) of an oriented graph G = (V9 L, Λ) and a tuple
of positive integers P = (pv)vev means a collection of holomorphic
map germs

We denote the set of diagrams / by @c{G, P), the local ring of holo-
morphic function germs on (Cp , 0) by &(p)> and its maximal ideal
by m(p). Note that m(p)°° = m{p)* = 0.

Let / E @(G, P) and let / = (j/)/€χ, be a representative defined on
open neighbourhoods Uυ of 0 in Cp«. Let #(UV) denote the sheaf
of germs of holomorphic functions on Uυ , Θ(UV) the sheaf of germs
of holomorphic vector fields on Uυ and θ(ffi the sheaf of germs of
holomorphic sections of the bundle f*TUβ^ -> C/α(/). Clearly Θ(UV),
θ(fι) (α(/) = v) are finitely generated sheaves of ^f([/^-modules.

Now we recall the notion of fitting ideals. Let R be a commutative
ring with 1 and M an i?-module presented by the exact sequence

Rp JU RQ _ M -+ 0.

The /-th ,/zίί/Λg /έfefl/ σz(Λf) of Λf is the ideal of R generated by all
(q - i) x(q- i) minors of the matrix μ. The /-th fitting ideal σι(M)
is independent of the choice of free resolution, [ΓQ , Te].

The /-th fitting ideal of a coherent sheaf of ^f(C/)-modules M is
defined locally by the /-th fitting ideals of free resolutions, and globally
by patching them up to a sheaf of ideals on U by the uniqueness of
the /-th fitting ideals (for details, see [Ti]). Since σι(M) is finitely
generated over #(U), ol(M) is a coherent sheaf of ideals. We remark
that V(σ°(M)) = suppΛf holds as topological spaces.

In the following we construct coherent shaves Na^(f) (Mβ^η(f))
of ^(C/α(/)) (^f(C/^(/)))-modules, by shrinking the open neighbourhoods
Uυ if necessary, for any finitely /o determined / G 0{G 9 P). We
define Na^η(f) by the exactness of the following sequence

for / E L such that a(l) is a minimum with respect to the order <
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on V, and by the exactness of the following sequence

θ{Ua(l)) - ^

337

for other / e L, where ω/^ are the 0(C/^(/'))-homomorphisms in-
duced from ωfi'iθiUβy')) -+ 0(/r). And we define Mβ^(f) by the
exactness of the following sequence

fi*Na{V) -> Mβ(l)(f) -+ 0

for / € L.

PROPOSITION 1.4.1. Let f e <f(G,P) be finitely 70 determined,
i.e., C/o(/) < oo. Then f admits a good representative f = {fι)ιeL>,
fi' Ua(i) -> Uβ(i), defined on open neighbourhoods Uv ofOe Cp«, and
the sheaves Na^(f), fι*Na^(f), Mβ^(f) are coherent sheaves with
stalks

a(l) = fl*Na(l)(f)j ι ( x )

Mβ{l)(f)x = θ (fκ) I Im T

Further,

X € Uam ,

Dβil)(f) = fr*Na<n(f),

= sappMβil)(j).

Proof. We argue by induction on the height of G. So we assume the
statement for any convergent diagram lower than G. Let l\,..., 4 €
L be all edges with /?(/,) = vo, v, = α(/, ) and Gv the branch on w,.
(By the assumption that Q (/) < oo, we see that Cj (fg ) < oo for

0 0 vt

all /.) So by the induction hypothesis, we may assume the branches
fgv are good representatives of fcv . The summand ^
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is coherent so Nυ(f) is also a coherent sheaf of #(UVι)-modules by
Oka's theorem and with stalk

θ{fG-)infG-) i © β{pυ.)

at 0 G KJ . Again by the assumption that Cj (/) < oo, we have

άϊmcθ{fG-)IT{fG-) φ θ(pVι) + f m ( A J 0 ( / c - ) < C/o(/) < oo.
\ — / J

This shows that Nυ(f)o is finite over &(UVQ)O via // and also 0 E ί7v

is an isolated point in Supp(Λ^ (/)) n f~ι(0). So by shrinking UVι

and UVo if necessary, the restriction fυ : Supp Nυ (/) —• C/̂  is proper

and uniformly finite-to-one and SuppiVv (/) Π ^ ^ O ) = 0. Then by

Grauert's coherence theorem, frNυ(f) is coherent so MVo(f) is also
coherent by definition.

Next we check the properties of supports of those sheaves involving
trees of / . By the induction hypothesis, the maximal branch fχ^ of

/ on x e UVι is given by X%r = \Jυ<υ f~ι(x)Πsupp Nυ(f). So we see

that x E CVt (/) if and only if the prolongation fχbr, X%r~ = X%τ U x

is not trivial. Again by the induction hypothesis,

\

θ(Uy)

x'exb

x

τnuv

V vev J

fι*Na{i)(f)χ ® θ(fι)x = θ (fχT) IT (fχj

so we have

T
V vev

by definition.
Therefore we have

and

Supp Nυ (/) = Cv (/)

= U//,(S UPP^,(/)) =
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Similarly, we see that MVo(f) has the stalk

o n i G UVQ, where Xx is the maximal tree of x. Therefore we have

= Svβ).

Next we show the condition (2) for good representatives. It suffices
to show that if C/ (/) = r < oo, then Cj (fx) < r for any maximal
tree fx of x G UVQ , by the induction hypothesis. As we have seen
above,

Ch{fx) = dim c MVo(f)x/m(UVo)xMVo(f)x

which is the rank of Mv (f)x over <?(Uυ)x. Since MVo(f) is a co-
herent sheaf of <?(UV)-modules, the rank of stalks is upper semi-
continuous. This shows condition (2).

The conditions (1), (4) for good representatives are clear by the
argument above.

This completes the proof of Proposition 1.4.1.

The germs of Cv(f), Dυ(f), Sv(f) at OeUv are independent of
the choice of representative / , so we denote them by Cv(f), Dv(f),
Sυ(f) respectively.

1.5. Geometric characterization of finite IQ determinacy. In this
section we prove

LEMMA 1.5.1. Let / = ( / / ) G tfc(G9 P) be irreducible and assume

that all branches fg on vertices v, G V of height 1 are finitely TQ

determined. Then f is finitely IQ determined (i.e. C/o(/) < oo) if

and only if Cα ( / )(/) Π /^^O) = 0 for all I e L with β{l) = υ0,

i.e., there is a representative f, f: Ua^ -> Uβ^ of f such that any

connected tree fx with the root 0 G UV and the vertices of height 1 in

fj~ι(O) - 0, /?(/) = i o is trivial.

From this we have the following propositions.

PROPOSITION 1.5.2. A convergent diagram f €@c{G, P) is finitely
Io determined if and only if Cα(/j (/) Π ff1 (0) = 0, for any I e L, i.e.,

f admits a representative f9fι
m. Ua^ —• Uβ^f 0 e Uυ c Cp*, such

that the tree f = fo, 0 = (0)/GL is maximal.
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PROPOSITION 1.5.3. A convergent finitely IQ determined diagram

f e t?c(G> P) is finitely determined if and only if SVQ(f) = 0, i.e.,

f admits a representative f, f: Ua^ -> Uβ^)y 0 e Uυ c Cp«, such

that any connected tree fx with root x in UVQ - 0 is infinitesimally
stable.

Proof of Lemma 1.5.1. If / is finitely IQ determined, / admits a
good representative / , f: Ua^ —• Uβ^ defined on open neighbour-
hoods Uυ of 0 in Cpv. This has the required property. Conversely we
assume that / admits such a representative. By Proposition 1.4.1, we
may assume that the branches fe are good representatives of fg .

Then, by definition the sheaves NVι (/) are coherent. By the property
in the lemma, we see

supp NVι (/) n fϊ~1 (0) = CVχ (/) n fi-ι (0) = 0, α(/,-) = Vi

and by the Nullstellensatz (NST) for coherent sheaves, the stalks
NVι(f)o are finite over θ(pVo) via // . By the equality

we see that

C/o(/) = dime Θ(f)/T(f) ( 0 θ(pυ)\ +®Pm{pVQ)θ{fι) < oo;
\vev ) ΐeL

hence / is finitely IQ determined.

Proof of Proposition 1.5.2. The "only i f part follows from the ex-
istence of a good representative (Proposition 1.4.1), and the " i f part
is given by applying Lemma 1.5.1 to branches Gv on vertices v e V
inductively descending along G to the root VQ .

Proof of Proposition 1.5.3. By Proposition 1.4.1, / admits a good

representative / , //: Ua^ -> L^ (/). Then the sheaf MVo(f) is a co-

herent sheaf of Θ(UVQ)-modules with stalk MVo(f)o = θ(f)/Im τ(f)

By NST, SuppMVo{f) c {0} if and only if dim c θ(f)/ Im T(f) < oo

if and only if / is finitely determined, by Theorem 0.3.4.
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1.6. Existence of good representatives of finitely IQ determined
smooth diagrams.

PROPOSITION 1.6.1. Finitely IQ determined convergent diagrams of
smooth map germs f e &{G, P) admit good representatives.

Proof. Let F e <T(G, P + r), i7/: ( R V , 0) -+ ( R W , 0) be an
infinitesimally stable unfolding of / . If F admits a good represen-
tative i7/: Ua(i) —• Uβfj), defined on open neighbourhoods Uv of 0
in R ^ + r , then the restriction / = ( / , ) , f = Ft \ Ua{ί) Π Rp«» x 0 is
automatically a good representative of / .

By Theorem 0.3.2, F is in particular finitely determined so we
may assume that F is a diagram of polynomial mappings. Therefore
its complexification F G @Q{G , P + r) is also infinitesimally stable,
since infinitesimal stability is an algebraic condition on finite jets. By
Proposition 1.4.1, we can take open neighbourhoods Uυ of 0 in Cp»+r

such that -F/(t/α(/)) C Uβ^η and the restriction F~ = (i7/: Uay) -» Uβ(j))

is a good representative of F e t?c(G, P + r).
Now we claim that the restriction

Ffj = & Ua(i) n R ^ + r -> ϋfi(l) n R W ' )

is a good representative of F e &(G, P + r). The properties (1), (2)
for good representatives are obvious (since the condition Ci{fχ) < r
is an algebraic condition on a finite jet of fx by Theorem 0.3.2 and
0.3.4). Clearly Cυ{F~) c C v ( F - ) n R ^ + Γ by definition. Let F%χbr9

F~ v b r denote the maximal branches of F~, F~ o n x e ^
Uβ{l)λx U U

β)

Note that (X*r c
By descending induction on the height of υ e V, we prove ^ ( i 7 - )

C % n R p f + Γ is a closed subset, so we assume Cυ>{F~) c C/v' ΠR^ / + r

are closed for v' < υ . Since F/i Cα ( / )(F-) —• Dβ^(F-) are proper and

finite-to-one the restrictions i7/ | Ca(η(F~), α(/) < v are also proper

and finite-to-one. Let Xi e Cυ(F~) be a sequence convergent to x.

Then the set X*?r converges to X%τ. But if the prolongation F~χbr. is

trivial the prolongation F~ vbr. must also be trivial for any sufficiently
ux*t

large /, by the geometric characterization of triviality (Proposition
1.1.1). Therefore CV(F~) c Uυ nRp«+r is closed. This completes the
proof of the induction.
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The unions of proper images of closed subsets

= U *Ί'(

are closed and the restrictions F[:Ca^(F-) —• Dβ^(F-) are proper
and uniformly finite-to-one. This completes the proof of the property
(3) of F~. Condition (4) is clear.

We remark that the argument in the proof above goes the same way
for the subsets CυQ(f) c Cυ{f), DυQ(f) c Dυ(f), SυQ(f) c *
so we have

PROPOSITION 1.6.2. Let f e &{G, P) be a finitely IQ determined

convergent diagram and let Q = {qv)vev be a tuple of positive integers.

Then f admits a representative f, J}: Ua^ -> Uβ^ defined on open

neighbourhoods Uv O / O G R ^ such that the subsets CVQ(f), DVQ(f),

SVQ{J) C UV are closed and the restrictions fr. C α ( / ) β (/) -~> Dβm(f)

are proper and uniformly finite-to-one.

Similarly to the case qv < oo, we can define the notion of maximal
Q tree of / e C°°(G, M) as follows: a tree fx is Q maximal if fx
is irreducible and any Q tree fx>, X § X1, is reducible. In fact, for
any x e Σ(fι) 9 I G L, a maximal Q tree containing x as a vertex
exists. However its uniqueness should not be expected.

2. Genericity of finite /Q determinacy.

2.1. Preliminary and some properties of pro sets in i*(G,P) and
<?(G, P). Let G = (V, L, Λ) be a finite oriented graph, and let
Jk(G, P) = ΠιeLJk{pa{i) * Pβ{i)) denote the real or complex k jet
space, and πk:£(G, P) -> /^(G, P) (or πk:d?κ(G, P) -• /^(G, P ) ,
K = R, C), πkl:J

k(G, P) -> / ' ( G , P ) , / < k, the natural projec-
tions.

We call a subset Σ c <T(G, P) (or Σ c έ%(G, P)) a pro algebraic
set if there are algebraic sets Σr in / r ( G , P) for r = 0, 1, . . . (or
r — r\ < r2 < "-) such that

(1) Σ r + 1 c π;lχ r(Σr) for all r and

(2) pr(ΛT 1 (Σ Γ ) = Σ.
Sometimes we call Σ simply a pro set. We define

codimΣ = lim codimΣ r.
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We say a property P for / e &(G9 P) (resp. / e <%((?, P)) holds
in general if it holds outside a pro set of infinite codimension.

To introduce some properties of pro sets, let Σ z , / = 1, 2, . . . ,
be pro sets in (G, P) or £%((?, P). Then the countable intersection
f)°l{ Σ/ is a pro set. In fact, this is a projective limit of the finite
intersections Σ r = f]r

i=ι Σr

t of algebraic sets Σr

t defining the pro sets
Σ z . Conversely a finite union of pro sets is a pro set. So we see
immediately countable products and finite sums of generic properties
are again generic.

LEMMA 2.1.1 {Lemma 0.4 [P]). Let Σ c &(G9 P) (resp. Σ c
&k(G, P)) be a pro algebraic set. Then Σ has infinite codimension
if and only if any z e Jr(G, P) has a representative f φ Σ.

We recall Theorem 0.3.3 which says that there is an increasing pos-
itive integer-valued function e such that the property C/o(/) < r of
/ G %{G, P) (or / E <%((?, P)), in other words, having°a stable r-
parameter unfolding is dependent only on the e(r)-jet of / . So the set
γe(r) c je(r)^Q^ p^ o f those which do not admit stable r-parameter
unfoldings is an algebraic set. Conventionally, for all r £ N, we define
Σr c Jr(G, P) appropriately so that πrs(Σr) c Σs for any s < r.

Then the set Σ c g(G9 P) (or Σ c &k(G, P)) of non-finitely 70

determined diagrams / (C/o(/) = oc) is cut out by these sets Σr. So
we have

PROPOSITION 2.1.2. The set Σ c &(G, P) (%(G, P)) of non-finitely
70 determined convergent diagrams is a pro algebraic set.

Now we give briefly the definition of the number mσ(n, p). Let
Wr

d[n , /?) denote the set of r jets in Jr[n, ^) with 3?r codimensions
> d. Then Wr

d{n,p) is algebraic. Let mWj(n, p) denote the union
of all irreducible components of Wr

d with codimensions <d-m and

let mWr(n, p) = UcKd ^/( Λ » P) T t i s e a s Y t 0 s e e t h a t t h e codimen-
sion of m Wr(n , p) is decreasing to a constant value denoted mσ(n, p)
as r tends to infinity (for the details of these definitions, see [Ml-2],
[Wl-2]).

Let Z/ c Jr(n,p) denote the set of jets of rank > /. Now we
define a germ of a C°° submersion λr\ Z[ —• /r(/ι - /, p - ΐ) at any
point z G Z/ with the property: any two jets z', zr/ e Zz close to
z are ^ r (contact) equivalent if and only if λr(z'), λr(z") are ^ r

equivalent. Here we may assume that z e Zz is an r jet of map
/ of the form f(x9u) = (fu(x), u), fu:K

n~l, 0 -> K^ z, 0. Let
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Hιr = 0 x K<, Hn-1 = K"-z x 0 and HP'1 = K^"z x 0. Then any map
germ / ' with r jet z' close to z is transversal to Hi at the origin.
Let Hf — Z'""1 (//"') and n:H^ —> //r~/ be a linear projection onto
Hr~ι. Then π is the germ of a diίfeomorphism. We define λr(xf) to
be the r jet of the map germ (/' | Hf>) o π-χ\Hn~ι, 0 -> i ^ " ' , 0.
Now it is an easy exercise to see λr is well defined and possesses the
required properties.

By the above properties of λr, we have

Zi Π Wr

d{n, p ) - W 1 {Wr

d(n -i,p- i))

as germs at z G Z/ and consequently we have

LEMMA 2.1.3.

codim™ Wr(n, p) n Z/ - codim m H^r(n - / , / ? - / )

- >»σ(n-i9p-i)

and in particular
mσ(n-r,p-r)< mσ(n,p).

2.2. Proofs of the main theorems. We begin by explaining the struc-
ture of the proofs of the theorems. In this section we will prove the
" i f part of Theorem 3, the implication from the " i f part of Theorem
3 to the " i f part of Theorem 1, and the "only i f part of Theorem
1. The sets Σ in f (G, P), £%(G, P) are pro algebraic defined by
common algebraic conditions (Proposition 2.1.1). So the " i f parts of
Theorems 1, 2 and 3 for the real cases follow from the complex case,
respectively. The "only i f part of Theorems 1, 3 for the other cases
can be proved similarly to the complex cases, so we omit those proofs.

By Theorem 0.3.2 and Proposition 1.1.1, we see that whether a
diagram / e ^ ( G , P) {@κ{G, P)) is trivial or not is determined by
the jet of / of order k (= i(G, P)) depending only on (G, P). We
denote Σf (G, P), or simply by Σt(G9 P), the set of non-trivial jets
in Jk(G, P) germs, we see k = pVχ — pv + 1 if G is the graph
v2 -* V\ —> VQ. We denote by Σ u n s (π, p) the set of non-stable jets in

LEMMA 2.2.1. Let G be the graph υ2 -> v\ -+ vo Let P =
(Pv^Pv^PvJ, Pv0 < PυrPv2, be a triple of positive integers, and
k = pVχ -pVo + 1. Then the set of non-trivial jets Σ? (G, P) c Jk(G, P)
isaunionofconstructίblesets Σ',(G, P), Σχ(G, P), Σ 2 (G, P) defined
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as follows:

Σ't(G, P) = {(Jkf(0), Jkg(0)) € Jk(G, P)

and{Jkf(0), Jkg(0)) is not trivial},

Σ,(G, P) = {(Jkf(0), Jkg(0)) e Jk{G, P) I xmkdgoφp%},

Σ2(G, P) = {(Jkf(0), Jkg(0)) e Jk(G, P) | τankdg0 = pVo

and Ta.nkd(gof)0jipVo}.

And

codim Σ,< = codim Σuns(Λ;2 -Pυ0, Pυ, ~Pv0),

codimΣj = pV[ -pVo + 1 and codimΣ2 = p V l - pVg + I.

Proof of Lemma 2.2.1. We d e n o t e p v . =pι for / = 0 , 1 , 2 , a n d de-
note by ZPo the open set of A>jets z = (Jkf{0), Jkg(0)) e Jk(G, P)
such that rank d(g o / ) 0 = p0. In a similar way to the definition
of λk in §2.1, we define a germ of C°°-submersion λk:ZPo(G, P) -*
Jk(Pi -Po,P\ -Po) at z G ZPo(G, P) such that z' is trivial if and
only if λk{z') is stable.

Let / = (,/i, / 2 ) : (K^2, 0) -» (K?i, 0) -^ (K^o, 0) be an analytic
representative of z = (z2, zx) e Jk(G, P), let H2 = d{fχ o / 2 )ό 1 (0),
H\ = ύf(/i)o'(O) and let π 2 :K^ - . H2, n^W -» /fi be any lin-
ear projections. Let f = {f{, f[):{W*, 0) -> (K? , 0) -»• (K"o, 0)
be a map germ with A: jet {Jkf[{0), Jkf[(0)) close to z. Then the
restrictions π2 \ (f{ ° f2)~ι(0), τt\ \ f[~x{0) are germs of diffeomor-
phisms at the origins. We define λk(z') to be the fc-jet of the map
germ

λ(fί, Λ) = *z o/2'| (ΛfirHo) o (τr2

We can see easily that λk is well defined and C°°-submersion. Now
we show the other properties of the submersion.

The germ of the restriction f2 | (fiof^)-l(0):(f{of[)-^0) -+ f~ι(0)
at 0 is si equivalent to λ{f[, ft).

By Proposition 1.1.1, {f[, //) is trivial if and only if

is infinitesimally stable if and only if λk(zf) is infinitesimally stable.
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By the above properties of the submersion λk , we have the equality
of germs at zeJk(G,P)

Σ't(G,P)=Σt(G,P)nZPo(G,P)

from which we have codim Σ'^G, P) = codim ΣunsCP2 ~Po>P\ - Po)
The complement of ZPQ(G, P) in Σt(G, P) is the union of Σ\(G, P)
and Σ2(G, P) which have obviously codimensions p2 - Po + 1 and
P\ ~ Po + 1 > respectively. This completes the proof of Lemma 2.2.1.

The following theorem is essentially due to Mather (for the proof,
see [P]).

THEOREM 2.2.2. codim Σuns(tf, p) > n if and only if 2σ(n, p) > n.

Proof of the "only if part of Theorem 2.1.1. We consider only the
complex analytic case. Let / e &c(G, P) be a diagram of complex
analytic map germs. If the restriction fG< of / to a subgraph G' of
G is not finitely /o determined then / is not finitely 1$ determined,
since if / is finitely /o determined then / has a stable unfolding
F (Theorem 0.3.2), and its restriction FG> is a stable unfolding of
fG>. So it suffices to prove that finite /Q determinacy does not hold in
general for the graph G: υ2 -• v\ -• v0 and triples P = (pυ) = (pi),
if 2σ(p2 -Po,Pι- Po) <Pi-Po- Then we have

by Theorem

by Lemma 2

2.:

.2.

codim Σuns(/>2 ~/

12 and

codim Σt(6

1.
Let Δ denote the diagonal set

We write

Jk{G 'P) = σ>xJk(p2,

>o,Pι- Po)

KP)< Pi-

rn C2P> .

A)xC2 p.

<Pi

-Po

xJk

—

(P

Po

ι,Po)x

and define for map germs / = (/2, fx) e @C{G, P), Jk(f2,
CΛ -+Jk(G,Cη by

= (X2 ,
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By assumption we have

codim(C^ χΣ/(G, P) xΔxO) = Gθά*mΣt(G9 P)+px + Po<Pi+P\

so there is a map / = (/2, ft) e @C{G, P) such that (π*(/ 2 ), π*(/0)
eΣt(G,P) and codim(C^ xΣ,((?, P) xΔxO) at / * ( / 2 , / i ) ( 0 , 0) is
less than p 2 +Pi We denote

Mfi > f\) = ^ ( / 2 , / i ) " 1 ^ 1 x Σ,(G, P ) x Δ x 0).

Then we see d i m Σ , ^ , ft) > 1, P 2 : Σ / ( ^ , /i) —• Cp2 is an isomor-
phism into Cp2 and Pj = / 2 o P 2 holds on Σ,(g2, / i ) , where Pz:C

p2 x
C î -> Cp> is the /th projection. If / is finitely 70 determined then ft
are finitely X determined and the restrictions of ft to the set CVι (/)
are proper and finite-to-one by Proposition 1.4.1 (for the definition of
CΌ see §1.3). So dimΣ f (/ 2 , /i) > 1 implies d i m / 2 ( P 2 ( ^ ( / 2 , /i))) >
1.' By definition we have / 2 (P 2 (Σ,(/ 2 , /i))) c CV i(/) and /i o / 2 o
Pi{Σt(f2 > /i)) = 0, so by Proposition 1.5.2, / is not finitely 7Q de-
termined.

We have shown above that if the codimension of Σt(G, P) 2X z
is smaller than pi - p0 then any representative / is not finitely 70

determined. Then Lemma 2.1.1 shows that finite IQ determinacy does
not hold in general.

Proof of the implication: "if " of Theorem 3 => "if " of Theorem 1. We
ove this for the complex case. It suffices to prove the genericity forprove

the tree:

V = {v0, vι, α(//), / = 1, . . . , r}, L = {/0, A , . . . , lr},

Λ(/o) = (vi, i>o)> Λ(/| ) = (α(//), Vi) (because a union of diagrams
/ U g with a common root is finitely 70 determined if and only if /
and g are).

First we assume that for any vertex α(/, ) the condition (3) holds.
By the pro algebraicity of Σ (Lemma 2.1.1), we have only to find
a finitely 70 determined representative ( / i , . . . , / Γ , g ) G @Q(G , P)
for a given /: jet z = (zi, . . . , zr, z 0 ) . By the genericity of finite
X determinacy of single map germs, (z\, . . . , zr) admits finitely X
determined polynomial representative / = (ft , . . . , ft). Let F =
(F{9 . . . , 7v), F / : C ^ ) + r , 0 ^ C^ + r , 0 be an infinitesimally sta-
ble unfolding of / , and let g: (Cp^+r, 0) -^ ( C ^ + r , 0) be the trivial
unfolding of g:~g(x 9 u) = (g(x), u). By Theorem 3, we can take
another representative g ' : ( C / V , 0) -* (Cp"o+r, 0) of the A: jets of
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~g such that (F, ~gt) G @Q{G , P + r) is finitely 70-determined where
p + r = (A; + OυeF Since | o f , g Ό F are transversal to Cfo x 0
in Cp?;o x Cr their preimages are smooth.

Let

and

be some linear projections. Then %\, . . . , πr and πo are germs of

diffeomorphisms. We define the diagram (/", g") e 0Q{G , P), / " =

(//',...,Λ") by

f!' = πooF.oπ 'iigoF,)-1^ x 0) -> g-ι(C?<o x 0)

and
^ - r o πΰι:g-ι(Cp»o x 0) -> (C^o x 0).

It is easy to see that (/", g") has the same /c-jets as (/, g). The com-
position (F ,~gf) is a finitely /Q determined unfolding of (/", g"), so
(/" ? ^/;) als° is finitely 7Q determined, because a stable unfolding of
(F, g;) is a stable unfolding of (/", g"), and (/ ;/, g/;) is finitely 70

determined if and only if (/", g") has a stable unfolding (Theorem
0.3.2). Now we have proven the " i f part of Theorem 1 for the case
(3) holds for all vertices of height 2.

Secondly, we assume G has a vertex vf

2 of height 2 such that
Pv' < Pv0. By Theorem 2.2.4 (transversality theorem), a generic map
germ f2 e ^c(Pv'2 -> Pv{) is transversal to g'ι(0) - {0} and 0 e Cp^
on a deleted neighbourhood of 0 in Cp?;2 and f£~l(g~l(0)) is home-
omorphic to an algebraic set. By comparing those dimensions, we see
that 0 is an isolated point of (gof^)'1 (0). By NST, there is an integer
k such that

m(pv>)kc(gof2)*m(pVQ)-<?(pv>)9

from which we have

(1) m(pVi)
k o θ{f2) c (g o f2rm(pυQ) θ(f2).

Thirdly we assume pv> < PVQ . Then, for generic g1 G &c(Pυ' > Pυ0) ?
there is an integer k such that

(2) m(pυ[)
kcg*m(pυo).<?(pυι).

By the theory of single map germs ([Gl]), for a generic map germ
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f'i £ &c(Pa(i )> Pυ')> there is an integer fcz such that

m(Paiφk • θ(f!)

from which together with (2), we have

** θ(f!)
f 4 ) m(

c tf!(θ(Pa{lι))) + (g o fiym{pVQ) θ(f!).

The above inclusions (1), (4) show the finiteness of IQ codimension
of (/, g) for the case where either of the conditions (1) or (2) occurs.
This completes the proof of the implication.

Proof of Theorem 2. Let VQ denote the set of vertices v £ V for
which condition (1) in Theorem 2 holds.

Firstly we show that f~υ

ι (0) = 0 for generic diagrams fe#c(G>P)
and υ £ V, where fVVo denotes the composition of ft along the
oriented path joining v to the root υ0. Let υ £ VQ , v = vk <
υk_ι < - - < V\ < VQ and let ft € &c(Pvt, Pvt_x) for / = 1, . . . , k.
The condition that dim#(pVk)/f*v m(pVo) #(pvk) < ^ is an algebraic
condition on finite jets of f\, . . . , fk , so by NST, the set K of those
map germs such that

is a pro algebraic set in Π/=i^c(Λy> ^ v J # B y L e m m a 2.1.1, to
say Γ̂ is of infinite codimension it suffices to show that any jet z £
Π/=i ^ ( i ^ , > Λλ_,) has a representative (f\, . . . , fa) such that

In general, for an analytic subset C of Cp and an r-jet zf, there
is a representative / £ t?c(n>P) of z' such that codim/" 1 (C) >
min{«, codim C} by the transversality theorem (Theorem 2.2.4). Ap-
plying this to f\, . . . , fa , we see that z has a representative (/i, . . . ,

such that

codim(/i o o f)-x (0) > min{Λ;o, ... , pv } = pv ,

which shows that {f{ o o Λ ) " 1 (0) = 0.
Let Gυ denote the subgraph of G consisting of all vertices v1 <v

such that pυ < pv» for any vertex v", v1 < v" < v , and of all edges in
the paths joining such v' to v . By the conditions (l)-(3) of Theorem
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2, the height of Gv is at most 2 for any vertex υ G V. Here we
remark that / G @Q{G , P) is a union of those subgraphs ^ .

As we have already seen above, for generic / G @Q{G , P) and
vertices satisfying condition (1), we have fj~υ

ι(0) — 0. By NST, there
is an integer /c?, such that

(1) m{Pv)k» C fi9Vom(pV{) <?(pv).

By Theorem 1, the restriction f^ is finitely /o-determined for generic

/ G ̂ ( G , P), so we have
\

(2)

where

as an

(3)

Θ(PV')

v'ev

c ) <oo,

denotes the set of vertices of G^ and θ{fe ) is regarded
V

ϊ ;) module via / * . By (1) and (2), we have
\

v'ev,,
J

m(pv) θ(fTτ ) <oo,

from which the finiteness of /Q codimension of / follows.
This completes the proof of Theorem 2.2.2.

Proof of the "if" part of Theorem 3. The "only i f part follows that
of Theorem 1. In this proof, we use an idea due to du Plessis. Firstly
we introduce a result in the theory of stability of single map germs
due to Mather, which is explicitly stated in [P].

We write pa{lι) = nι•, i = 1, . . . , j , pVχ = p and PVQ = p0 . Let / =
(fi)i=ι ,...,k > fi: (Cn' > °) -* (Cp , 0), be a stable polynomial map germ
on the graph G (of height 1). Then there are germs of constructible
stratifications Ai, i = 1, . . . , k, B of Cn>, Cp respectively, which
possess the following properties:

(1) S G Aj are foliated by contact classes Kx , x G S, and rank dfx

is constant for x e Si, and f\S, S G Ai, are non-singular (i.e., of
full rank).

(2) Σ(fi) is a union of strata of positive codimension in Ai.
(3) fi9 i = l ? . . . ? k, are multi transversal with respect to the

foliations of S G Ai, i.e., if Xij G Cn>, j = 1, . . . , ax 9 and f(Xij) =
y then ύf/i ( ΓJC Λ^ ) are in a general position at y .
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(4) Let

and
A'i^&eFr'WlSieAi, S'eB}.

Then (A'j, B) is a Thorn regular stratification of / = (.//)/= 1 ,...,& and
Sf G B is foliated by constructive manifolds defined as follows:

Ly = {/ G S" I the multi germ (^y;-V)nΣ(/))ι=i,...,*

is contact equivalent to (fιf-^y)nΣ{fι))i=ι,...,k}

(5) Let r. (Cp , 0) —• (Cp ,0) be a germ of an imbedding transversal
to / and let f/. (/,/)/= 1 ,...,& be defined by the following diagram of
fibre product

f,j:(X,0) > (&,0)

where X is a smooth submanifold in Cπ' x Cp of codimension /?/ —
p + pf. Then / is infinitesimally stable if and only if ί is transverse
to the leaf Lo, O G C ^ .

Let / be as above and Σ' c &c{p , Po) denote the set of map germs
g for which the composition (/, g) is not finitely /Q determined. By
the same argument as in the proof of Proposition 2.1.2, we see that
Σ' is a pro-algebraic set. By Lemma 2.1.1, we have only to show that
any r-jet z e Jr(p, Po) has a representative g e &c(p > Po) fo r which
the composition (/, g) is finitely 7Q determined. Now we have the
following lemma.

LEMMA 2.2.3. Let Σ* e Jι(Cp, C7o) denote the set of 1 jets z =
Jlg{0) whose graphs graph(^):Cp —> Cp x Ĉ o are not transversal to
the leaves Ly xO, y e S, S € B. 77zeπ Σ* is a constructible set and

codimΣ* = max{/?o + codimS, p - codim Ly + 1, S G B, y e 5}.

For the proof of Lemma 2.3.3, see [P]. Note that a connected tree
(/> <?)̂ r of the composition (/, g) with one vertex x of height 1 in
g~ι(0) and root 0 G Ĉ o is trivial if and only if Jιg(x) i Σ* (by
Proposition 1.1.1 and the property (5) of the stratification B).

Now we claim that codim Σ* > p . So now we assume that codim Σ*
< p. By Lemma 2.2.3, this occurs only if codimL y > 2, y G S, for
some S e B . This may occur only in the following two cases.
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(i) There is a stratum S' e A\ such that fi{S') = S and S1 is
foliated by contact classes of codim > 2.

(ii) There are two strata S* e A\, S" e A) with fi{S') = /}(£") =
5 foliated by contact classes of codim > 1.

First we assume that rank*///* , rf//*. > /?o> for any x, e 5",
x7 E 5" and the condition (1) of the theorem holds for /, j . Then,
in case (i), we have

codimS >p - Πi +2 a(nι —po, p -Po) >P ~ Po (Lemma 2.1.3)

and in case (ii), by the property (4) of Ai9 B, we have

codim S >p -Πi+ ισ(ni - p0, p - ρ0)

+ p-rij+ ισ(nj-po,p-po),

and by the inequality p -n+ 2σ(n9p)>2-(p — n+ ισ(n, p)) ((0.6)

in [P])? we have

Secondly we assume that rank dfix < p0 - 1 for any point x; e Sf.
Then, in both cases (i) and (ii), we have dimS < min{π/, p, po - 1},
and by Lemma 2.2.3, codimΣ* > p. However this contradicts our
assumption. So we have proven the claim.

Let S* be a Whitney regular stratification of Σ*. By Theorem 2.2.4,
there is a pro algebraic set Σ" c <9Q{P , /?o) with infinite codimension
such that for any g £ Σ", Jιg is transversal to 5* off 0 e Cp.
For dimensional reasons, we have (Jιg)~ι(Σ*) = 0, which implies
Cυ{f, g) n g~ι(0) = 0 and, by Lemma 1.5.1, (/, g) is finitely 70

determined.
This completes the proof of Theorem 3 for the case where / is

polynomial and g is complex analytic. Infinitesimally stable map
germs are finitely determined. So the statements for the other cases
follow from the polynomial case.

THEOREM 2.2.4 (Trαnsversαlity theorem). Let S beα semi algebraic
(resp. constructible, complex analytic) stratification of Jk(Rn,W)
(resp. Jk(Cn, Cp)). Then there is a pro semialgebraic (resp. prd-
constructible, pro-complex analytic) subset Σ in %{n, p) (resp.
&c(n 9 P)) of infinite codimension with the following property: any
f φ. Σ admits a representative f defined on an open neighbourhood
U ofO in Rn (resp. Cn) for which the k jet section Jkf is transversal
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to S outside 0 and the inverse image (Jkf)~ιS is homeomorphic to
a semialgebraic (resp. constructible, complex analytic) stratified set If
the restrictions of the projection π: Jk(Rn , W) —• W to strata of S
are submersive, then Jkf \ U - {0} is multi transversal to S.

For the proof of Theorem 2.2.4, see [F].
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