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ZERO DIVISORS AND GROUP VON NEUMANN
ALGEBRAS

P. A. LlNNELL

Let G be a discrete group, let L2(G) denote the Hubert space
with Hubert basis the elements of G, and let W(G) denote the group
von Neumann algebra of G. The class of elementary amenable groups
is the smallest class of groups which contains all abelian and all finite
groups, is extension closed, and is closed under directed unions. If G
is an elementary amenable group whose finite subgroups have bounded
order, a is a nonzero divisor in CG, and β is a nonzero element of
L2(G), we shall prove aβ Φ 0 . We shall also consider the quotient
rings of CG and W{G).

1. Introduction. Let G be a group and let L2{G) denote the Hubert
space with Hubert basis {g\g G G}. Thus L2(G) consists of all
formal sums ΣgeGag8 where ag G C and ΣgeG\ag\2 < °°. If
a = ΣgeG agS € CG (so ag G C and ag = 0 for all but finitely many
g) and β = Σgeo bgg e L2(G), then

<*β = Σ
£,Λ€(J geG \h€G

is a well-defined element of L2(G). In this paper we consider the
following conjecture:

Conjecture 1. If G is a torsion free group, a G CG, β e L2(G),
and a, β φθ, then aβ φθ.

Results on this have been obtained in [6, 20, 21]. Recall that the
class of elementary amenable groups is the smallest class of groups
which contains all finite and abelian groups, is extension closed, and
is closed under directed unions (see [5, 13]). It is also closed un-
der subgroups and quotient groups, and contains all solvable by finite
groups. On the other hand any group which contains a subgroup iso-
morphic to a nonabelian free group is not elementary amenable. We
shall prove

THEOREM 2. If G is a torsion free elementary amenable group,
aeCG, β eL2(G), and α, β φθ, then aβ φθ.
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In [20] Rosset needed a special case of Theorem 2 to prove a van-
ishing theorem for Euler characteristics. Recall that the group G is
of type FP if the trivial ZG-module Z has a resolution

0 -* Pn -> Pn_x >/>!_> p 0 _> z -+ 0

where the P, are finitely generated projective ZG-modules. Then the
Euler characteristic χ(G) of G is defined to be the integer

i=0

If all the Pz can be taken to be free ZG-modules, then G is said to be
of type FL. One motivation for proving Theorem 2 was to use the
techniques of [20] to derive the following result.

THEOREM 3. Let H be a normal elementary amenable subgroup of
thegroup G. If G isoftype FL and Hφ 1, then χ(G) = 0.

In [20] Rosset proved Theorem 3 in the special case when H is
abelian. To establish the general version of Theorem 3, we make the
following two modifications to Rosset's paper. Firstly we require (2.3)
and (3.1) of [20] to remain valid when A is elementary amenable.
This means that we need CA to be an Ore domain [15, 2.1.14] when
A is elementary amenable, which is true by Theorem 1.3 of [13]. Sec-
ondly in (3.4) of [20], we want to allow A to be elementary amenable.
This step is also valid, by Theorem 2.

However, there is now a simpler method to prove Theorem 3. In an
earlier version of this paper, I posed the problem of giving an example
of a group G satisfying the hypotheses of Theorem 3 which does not
have a nontrivial normal abelian subgroup. This has now been shown
in [10] to have a negative answer, where it will be proved that a non-
trivial elementary amenable group of finite cohomological dimension
has a nontrivial characteristic abelian subgroup. The proof depends
on extending the notion of Hirsch length from polycyclic groups to el-
ementary amenable groups, which was worked out by Hillman in [9].
Thus if G is as in Theorem 3, then G has a nontrivial normal abelian
subgroup and so Theorem 3 follows immediately from the special case
when H is abelian.

It should be noted that Cheeger and Gromov have proved an
enhanced Theorem 3 with "elementary amenable" weakened to
"amenable" [4]. Their methods are different from, but related to, the
above methods. However, it is still an open problem as to whether
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there exists an amenable group of type FP which is not elementary
amenable. Also in [9], Hillman has used Theorem 2 to obtain results
on 2-complexes and 4-manifolds.

To describe our results further, we need to establish some notation.
Let S* denote the set of bounded linear operators considered as acting
on the left of L2(G). For αGCG,we have a bounded linear map
defined by β \-> aβ (multiplication by α) for all β e L2(G); thus
CG can be identified as a subring of &. More generally for n e P,
the ring of operators on L2(G)n is Mn(&)9 and Mn(CG) can be
identified as a subring of Mn{&). A nonzero divisor in a ring R is
an element s such that sr φ 0 Φ rs for all r e R\0. If G is a
torsion free elementary amenable group, then all nonzero elements of
CG are nonzero divisors by Theorem 1.4 of [13]. Thus the following
is a generalization of Theorem 2.

THEOREM 4. Let G bean elementary amenable group, let n e P and
let a G Mn(CG) be a nonzero divisor. Suppose the finite subgroups of
G have bounded order. IfOφβe L2{G)n, then aβ Φ 0.

We now want to discuss W*-algebras. Let L°°(G) denote the set
of all formal sums ΣgeGag8 (<*g € C) such that snpgeG \ag\ < oo.
Then CG C L2(G) C L°°(G) and if a = ΣgeG agS", β = ΣgeG bgS €
L2(G), we set

which yields a multiplication L2(G) x L2(G) - • L°°(G). We also have
an involution *: L°°(G) - • L°°(C?) defined by ( Σ % # ) * = Σ ^ ^ " 1 .
where " denotes complex conjugation, satisfying L2(G)* = L2(G)
and CG* = CG. By definition JF(G) is the weak closure of CG
in S* equivalently W(G) is the ίΓ*-algebra generated by CG in
&. Another description of W{G) is that it is the double commutant
CG" of CG in &, where for any subset S of Sf, its commutant
{0 e -SΊ0.S = sθ for all s € S} is denoted by S' [1, Theorem 1.2.1].
We have a *-monomorphism W{G) - • ^2(G) defined by 0 ι-+ 0(1).
Thus W(G) can be identified with a subspace of L2{G), where the
action of W(G) on L2(G) is left multiplication.

Since Mn(W{G)) is the double commutant of Mn(CG) in Af n(^),
we see that Mn(W(G)) is also a W *̂-algebra [1, Theorem 1.2.1]. Let
θ e Mn[W{G)) be represented by the matrix ( 0 y ) . Then 0* is rep-
resented by the matrix (0jz). Furthermore right multiplication makes
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L2(G)n into a right CG-module, and θ is obviously a continuous right
CG-map. Conversely we have

LEMMA 5. If θ: L2(G)n -> L2(G)n is a continuous right CG-map,
then θeMn{W{G)).

Proof. This follows from Theorem 1 of Part 1, Chapter 5 of [7];
alternatively we give the following direct argument. Certainly θ G
Mn(J&) because θ is a bounded linear map, so write θ as a matrix
with entries 0 y (1 < i9j < n). Then θu: L2(G) -* L2(G) is a
continuous right CG-map and it will be sufficient to prove that 0/y G
W(G) in other words we may assume that n = 1.

Write 0(1) = ΣgeGag8 € L2(G) where ag eC. Since θ is a right
CG-map, θ{a) - 0(1 )α for all α G CG. But 0 is continuous and
CG is dense in L2(G), so 0 is left multiplication by 0(1). Suppose
#> G CG' so that g#> = ψg for all g EG. Then for A G G,

(because 9? is continuous)

Since φθ, θφ e Jΐ? and CG is dense in L 2 (G), we deduce that
0>0 = θφ . Therefore θ G CG" so by the double commutant theorem
[1, Theorem 1.2.1], we deduce that θ G W{G) as required.

If a = £ ) % £ G W(G), then we define trα = a\, and if 0 G
A/ΛCWXG)) is represented by the matrix (0/7), then we define Tr0 =
ΣS=\teθa. Note that Ίrθφ = Ίrφθ for all 0, φ G M W ( ^ ( G ) ) .
Following [6], an L2(G)-module M is a closed right CG-submodule
of L2(G)n for some n G P, and a homomorphism of L2(G)-modules
is a continuous right CG-map. Let

e:L2(G)n-+L2(G)n

be the projection onto M. Then e is a continuous right CG-map; thus
e G Mrt(H^(G)) by Lemma 5 and we define UQM = Tr e. Propositions
3 and 4 of [6] show that dβM is a nonnegative real number, and does
not depend on the isomorphism type of M (or n). If φ G Mn{£?) is a
continuous right CG-map, then the closure of the subspace φ(L2(G)n)
is an L2(G)-module, so by the above we can define rank#? = T r / ,
where / is the projection onto the closure of φ{L2{G)n). If ψ is a
right CG-endomorphism of CGΠ , then ψ induces a continuous right
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CG-endomorphism ψ of L2(G)n , and hence we can define rank ψ =
rank ψ. As in [6], we let D(G) indicate the additive subgroup of R
generated by

{rank<9|<9 e ΈndcG(CGn) for some n e P}.

The following theorem is a variant of the Goldie rank conjecture [19,
13] and extends the results of [6, §5].

THEOREM 6. Let G be an elementary amenable group and assume
that the finite subgroups of G have bounded order. If I is the I cm of
the orders of the finite subgroups of G, then D{G) = (1//)Z.

We now consider quotient rings. Let R be a ring and let S be the
set of nonzero divisors of R. A classical quotient ring for R is a ring
Q which contains R as a subring such that every element of S is
invertible in Q, and

Q = {rs~ι\reR, s e S} = {s~ιr\r e R, seS}.

When a classical quotient ring exists, it is unique up to isomorphism.
Recall that a ring T is regular if for each r e T, there exists t G T
such that rtr = r. A regular ring is its own classical quotient ring,
and a semisimple Artinian ring is a regular ring. If R has a classical
quotient ring Q which is regular and n G P, then Mn(Q) is a regular
classical quotient ring for Mn(R) (use Exercise 12C on p. 232 of
[2]). Since W(G) is a finite W*-algebra by a well-known result of
Kaplansky (see [14, Proposition 9]), the results of [3] (in particular
the proof of Theorem 10) show that W{G) has a regular classical
quotient ring; hence Mn(W(G)) has a regular classical quotient ring
U. Suppose in addition that G is elementary amenable and that
its finite subgroups have bounded order. Applying [13, §5] and [8,
Exercise 3.D.9], we see that Mn(CG) has a classical quotient ring Q,
which is a semisimple Artinian ring. By Theorem 4 every nonzero
divisor of Mn(CG) is a nonzero divisor in Mn{W{G)) and hence
is invertible in U. Thus the inclusion map Mn(CG) -+ Mn(W(G))
extends uniquely to a monomorphism Q —> U [15, Lemma 2.1.4]
so we can view Q as a subring of U. Moreover the involution * of
Mn{W{G)) extends uniquely to an involution of U satisfying Q = Q*
[3, 8, Exercise 2.A.17]. Summing up this paragraph we have

THEOREM 7. Let G be an elementary amenable group, let n e P,
and assume that the finite subgroups of G have bounded order. Then
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Mn(CG) and Mn(W(G)) have classical quotient rings Q and U re-
spectively such that QC U. Furthermore Q is a semisimple Artinian
ring, U is a regular ring, and the involution * on Mn{W(G)) extends
to an involution {also denoted *) on U satisfying Q = Q*.

As expected, this paper relies heavily on the affirmative answer to
the zero divisor conjecture for elementary amenable groups. This was
recorded in Theorem 1.4 of [13], and was made possible by Moody's
remarkable induction theorem [16]. We give a brief outline of the
proof of Theorem 2 to illustrate the techniques employed in this paper.
Using the description of elementary amenable groups in §3 of [13], a
transfinite induction argument reduces to considering the case when
there is a normal subgroup H of G such that G/H is either finite or
infinite cyclic, and the theorem is true with H in place of G. If G/H
is finite, then the solution to the zero divisor conjecture implies that
there exists γ eCG such that γa G CH\0, and the result follows in
this case. If G/H is infinite cyclic, we use the methods of [21]. Write
G= (H9x) and let ζ G C with \ζ\ = 1. What will be important here
is that the map h^+h, x *-+ xζ for heH induces an automorphism
of CG which extends to an automorphism of W{G).

I would like to thank Dan Farkas for some useful comments on a
preliminary version of this paper.

2. Notation, terminology, and assumed results. All rings will be as-
sociative with a 1, and subrings will have the same 1. As usual P
will denote the positive integers {1,2, . . . } and if θ is a map, then
ker θ will denote the kernel of θ. Suppose R is a ring, n G P and
SCR. Then Sf will denote the commutant

{r G R\rs = sr for all s e S}

of S in i?, Rn the right i?-module which is the direct sum of n
copies of R, Mn{R) the ring of n x n matrices with entries in R,
which we shall also view as the i?-endomorphisms of Rn where the ac-
tion is left multiplication, GLn(R) the invertible elements of Mn{R),
\n the identity matrix of Mn{R), and 0n the zero matrix of Mn{R).
If t G P and At e Mn(R) (i = 1, 2 , . . . , t), then diag(^i ,...9At)
denotes the matrix in Mnι+...+nt(R)

0
0

A2

.
0

. <n

. 0

. 0
0 At)
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Suppose P is a finitely generated projective right i?-module. Then we
can write P®Pf = Rn for some right i?-module P' and some nev.
If e e Mn{R) is the idempotent satisfying e{P) = P, e{P') = 0,
then we shall say that e corresponds to P. Suppose Q is a right R-
module such that Q ~ P and Q@Q = Rm for some right i?-module
Q and some m e P. Let / e Mm(R) be the idempotent satisfying
f(Q) = Q, f(Q') = 0 so / also corresponds to P. Then

Pf
 Θ Rm ^ i?w Θ Q!

hence there is an automorphism 0 of JRW θ Rm such that 0(P) =
Q and θ(Pf ® Rm) = Rn ® Q'. Consequently 0diag(e, O^tf"1 =
diag(0rt, / ) . We can now state

LEMMA 8. Let R be a ring, let m, neΨ, and let P, Q be finitely
generated projective right R-modules such that P ~ Q. If P and Q
correspond to the idempotents e € Mn(R) and f e Mm(R) respec-
tively, then there exists u e GLw+m(i?) such that wdiag(e, 0m)u~x =
diag(/,0w).

If H < G are groups, then \H\ denotes the order of H, G : H the
index of H in G, and ^(G) the set of finite subgroups of G.

LEMMA 9. Let G be an elementary amenable group, let H<G with
G: H < oo, let n e P, and let a G Mn(CG) be a nonzero divisor. If the
finite subgroups of G have bounded order then there exists β e Mn (CG)
such that βa is a nonzero divisor in Mn(CH).

Proof. Let S be the set of nonzero divisors in Mn(CH). Then
Theorem 1.2 of [13] shows that Mn(CH) has an Artinian left quotient
ring of the form S~ιMn(CH) (= {s~ιγ\s e S, γ e Mn(CH)}) hence
S~ιMn(CG) is an Artinian left quotient ring for Mn(CG). This means
that in S~ιMn(CG), we can write α" 1 = σ~ιβ where σ e S and
β e Mn(CG) thus βa = σ as required.

LEMMA 10. LetH < G be groups, let ne¥, and let θeMn{W(H)).
If θa = 0 for some a e L2(G)n\0, then θβ = 0 for some β e
L2(H)n\0.

Proof. Let T be a set of right coset representatives for H in G.
Then we can write a = Σteτ

att where at G L2(H)n, and there
exists s e T such that as Φ 0. Since θa = 0, we see that 0α5 = 0,
as required.
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Let U be the classical quotient ring of Mn(W{G)) and let T CU.
Since U is a Baer *-ring (see §3 of [3]), there is a unique projection
e eU such that

{u e U\tu = 0 for all teT} = eU.

We shall write N(T) = e, LP(T*) = l-e (thus LP(T) is the "left
projection" of T in U\ cf. p. 13 of [2]), and LP(a) = LP({a}) for
a e U. We note that e e Mn(W{G)) because every projection of U
lies in Mn{W{G)) (see [3]). Then we have

LEMMA 11. Let G be a group, let neF, let U be the classical quo-
tient ring of Mn{W{G))> let TCMn{W{G)) and let aeMn(W(G)).

(i) If e is a projection such that eU = all, then e = LP(a).
(ii) The projection of L2{G)n onto kerα is N(a). In particular if

a is a nonzero divisor in Mn(W(G)), then kerα = 0.
(iii) Let F be the closure of ΣθeT θ(L2(G)n). Then the projection

of L2(G)n onto F is LP(T).

Proof. For (i) and (ii), see p. 13 of [2]. Now let / be the projection
of L2(G)n onto F, and let h = LP(T). Then / e Mn{W{G)) by
Lemma 5 and (1 - f)T = 0; hence Γ*(l - /) = 0 and we see that
(l-f)UC(l-h)U. Also Γ * ( l - λ ) = 0. Thus ht = t for all teT
and we deduce that h(L2{G)n) D F. Therefore hf = / , consequently
(1 - h)U c (1 - f)U and it follows that (1 - f)U = (1 - h)U. This
yields / = h, as required.

LEMMA 12. Lei G be a group, let neff let e, f be projections in
Mn(W(G)) andlet h = LP(e,f). IfeMn(W(G))nfMn(W(G)) = 0,
then Tr e + Tr / = Tr h.

. Let L = L2(G)n and let π be the projection onto eLnfL.
Since eL and fL are L2(G)-modules, eLnfL is also an L2(G)-
module. Hence π e Mn(W(G)) by Lemma 5. Now eπ = π = fπ,
thus π E eMn(W{G)) n /Afπ(ίΓ(G)) = 0 and we deduce that eL n

Define θ: eL® fL -> hL by 0(w, v) = w + v . Though θ is not
necessarily an isomorphism, it is certainly true that ker θ = 0 and
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θ(eL@fL) is dense in hL (Lemma 1 l(iii)); in the terminology of [6,
p. 133] θ is a weak isomorphism. Thus by von Neumann's theorem
([17, §21.1] and [6, p. 134]) eL@fL ~ hL as L2(G)-modules; hence
Tr e + Tr / = Tr h.

We note that this result could also be fairly easily derived from the
parallelogram law [2, §13].

LEMMA 13. Let G be a group, let n e P, let U be the classical
quotient ring of Mn(W{G)), and let e, f be projections in U. If
f = ueu~ι for some unit u e U, then f = vev~ι for some unit
veMn(W(G)).

Proof. Clearly e and / are algebraically equivalent in U (cf. Ex-
ercise 6A on p. 8 of [2]). Using the theory of §5 of [3], we see that
e and / are perspective in Mn(W{G)). Since Mn{W{G)) is a finite
W*-algebra by Kaplansky's Theorem [14, Proposition 9], it follows
from Exercise 12A(viii) on p. 109 of [2] that e and / are unitar-
ily equivalent in Mn{W(G)) in particular / = υev~ι for some unit
veMn(W(G)).

A division C-algebra is a division ring whose center contains C.

LEMMA 14. Let D be a division C-algebra and let f(t) e D[t]. If
/(0) φ 0, then f(z) = 0 for only finitely many z e C.

Proof. This is elementary.

LEMMA 15. Let D be a division C-algebra, let n e ¥ and let A(t) e
Mn(D[t]). If A(0) G Mn{D) is invertible, then A(z) is invertible in
Mn(D) for all but finitely many z e C.

Proof. According to Theorem 16 on p. 43 of [11], there exist X(t),
Y{t) e GLn(D[t]) such that X(t)A(t)Y(t) is a diagonal matrix, say
diag(/i(0, . . . , fn(ή) for some f(t) e D[t]. Since ,4(0) is invertible,
/i(0), . . . , fn(0) are all nonzero. Therefore f\(z), . . . , fn(z) are all
nonzero for all but finitely many z e C by Lemma 14, and hence
A{z) is invertible for all but finitely many z e C, as required.

3. Proofs. Let D be a ring and let σ be an automorphism of D.
Then we can form the skew polynomial ring D[x, σ] whose elements
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consist of all finite formal sums Σ"=o 0/*1 (#/ € D) with multiplica-
tion defined by

m+n

r=0 \i+j=r

(cf. 2.1 of [15]). If f{x) = Σtoaiχi e D[x, σ] and /? e D[x, σ],
then we set f(p) = £?=o <*#'

LEMMA 16. Let D be a division C-algebra, let σ be an automor-
phism of D, and let f{x) e D[x, σ]. // /(0) = 1, then for all but
finitely many ί G C ,

D[x, σ]f{x) + D[x, σ]/(ίx) = 2)[x, σ].

Proof. Extend σ to an automorphism of the polynomial ring E =
D[y] by setting σ(y) = y, and write f(x) = 1 + a\X + h anx

n

where Λ, 61> and an φ 0. Then /(yx) = 1 + axyx + ••- + any
nxn e

E[x, σ]. We want to show that for all but finitely many t e C,
there exist #(*) = b\X + h bnx

n and h(x) = 1 + c\x H h cnx
n

(bj, Cj eD) such that g(x)f(x)+h(x)f(tx) = 1 (g and h depending
on t). We consider the equation g(x)f(x) + h(x)f(yx) = 1 and
equate coefficients to obtain In linear equations in the In unknowns
b\, ... , bn, C\, ... 9 cn with coefficients in D[y]:

(1) bι + cι = -aχy9

bι(σa{) + b2 + cι(σa{)y + c2 = -a2y
2,

bι(σa2) + b2(σ2aι) + b3 + c{(σa2)y2 + c2(σ2a{)y + c3 =

+ ̂ (σ^^O^" 1 =0,

Let ^4(y) G M2n(D[y]) be the matrix of coefficients of (1). We note
that when y = 0, the above system has a unique solution, namely
bi = a = 0 for all /. Therefore ,4(0) e GL2n(D), and hence A(t) e
GL2n(D) for all but finitely many t e C by Lemma 15. Thus (1) has
a unique solution when y = t for all but finitely many ί e C, and the
result follows.

Proof of Theorem 4. We shall prove the result by transfinite induc-
tion, using the description of elementary amenable groups of §3 of
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[13]; we shall also adopt the notation of that section. Thus if y and
Z are classes of groups, then H e Ly means that every finite sub-
set of the group H is contained in a ^-subgroup, H e p2T means
that H has a normal ^-subgroup Y such that H/Y e Z, and 3S
denotes the class of finitely generated abelian by finite groups. Also
for each ordinal a, the class of groups Sfa is defined inductively by
Mfi = {1} 9 &a+ι = (L2a)& and #rb = \Ja<bSfa if b is a limit ordinal.
Following §3 of [13], choose the least ordinal a such that ( ? E ^ ,
and assume that the result is true whenever G e ^ and b <a.

Now a cannot be a limit ordinal, and the result is clearly true if
a = 0. Therefore we may assume that a = c + 1 for some ordinal c.
First suppose G G LSfc - Then a G Mn(CA) for some A G Sfc. Hence
aβ ψ 0 by induction and Lemma 10.

Now suppose there exists H<G such that G/H G 38 and H e
L ^ . Let 2?//ί be a torsion free abelian normal subgroup of finite
index in G/H. By Lemma 9 there exists 7 e Mn{CG) such that yα
is a nonzero divisor in Mn(CB). If the result is true for B, then
yα/? / 0 by Lemma 10; hence aβ Φ 0 as required. In other words
we may assume that G/H is finitely generated free abelian. A simple
induction argument on the rank of G/H allows us to assume that
G/H is infinite cyclic, say G = H(x) for some x e G.

Let Q and U denote the classical quotient rings of Mn(CH) and
Mn((W(H)) respectively. Since the result is true for H, every nonzero
divisor in Mn(CH) is a nonzero divisor in Mn(W(H)). Thus we may
view Q as a subring of U (cf. Theorem 7). Now Q is a semisimple
Artinian ring (cf. Theorem 7), so we may write

1=1

for some Λ, G P and division rings Z>/. Let 2) = 0 / = 1 A and note
that the map υ h+ χ~ιυx for υ eQ is an automorphism of Q. Since
an automorphism of Q permutes the AfΛ(A)? there exists r G P
such that χ-rMn(Di)xr = MΛ /(A) for all /. If the result is true
for #( .x r ) , then the result is true for H(x) by the argument of the
previous paragraph. Therefore we may assume that r = 1, in other
words x~ιMni(Di)x = Λίπ.(A) ft>Γ all /. The corollary on p. 237 of
[12] applied to each MΆχ (A) shows that there exists an automorphism
θ of D which fixes the A setwise, and a unit u e Q such that
x - ^ x = u~ι(θ*v)u for all i; G <2, where 0* is the automorphism
of Q induced by θ. If y = wx"1, then Q[y, j ; " 1 ] = Q[x, x~ι] and

" 1 = A for all /.
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Let V be the classical quotient ring of Mn(W(G)) and let

S = sup{Tr(JV(/))|/ is a nonzero divisor in D[y, y" 1]}.

We claim that every nonzero divisor in D[y, y~ι] is a nonzero divisor
in V. If this is false, then 0 < S < n by Kaplansky's theorem [14,
Proposition 9], so we can choose a nonzero divisor / in D[y, y~ι]
such that Tτ(N(f)) > S/2. Write / = fx + ••• + /, where ft e
Di[y, y~ι]. Note that ./i-^ 0 for all i because / is a nonzero divisor.
Now Dj\y] is a skew polynomial ring, thus applying Lemma 16 for
i = 1, 2, ... , t, we infer that there exists ζ e C, |C| = 1, such that

(2) D[y, jrM/OO + D[y, j r 1 ] / ^ ) = D[y, y " 1 ] .

Let ^ = N(f) and let ^ be the automorphism of V induced by h H->
Λ, x H+ xζ for all h e H. Note that φ(f(y)) = /(Cy), N(φ(f)) =
^(e) and Tr φ(e) = Ύr e > S/2. Using (2) we deduce that eV n
φ(e)V = 0, hence by Lemma 12

Tr LP(e, p(e)) = Tr e + Tr p(e) > 5.

Therefore if f0 e D[y, y~ι]f(y) n D[y, y~ι]f(ζy), then since
foLP(e, φ(e)) = 0, we see that ΊτN(f0) > S. But i)[j;, y'ι]f(y)
Π Z)[y, ^"^/(Cy) contains nonzero divisors in D[y,y~ι] and
the claim is established. It follows that every nonzero divisor in
D[y, y~ι] is invertible in V.

Let efj (1 < /, j < rik, 1 < k < t) be the standard matrix units of

Q, let ek = Σi eh ^ e ^ e primitive central idempotents of Q, and let

C = {ct/"1^, d € D[y, y"1] and d is a nonzero divisor

in D\y, y~1]}.

Notice that each Dk[y, y~ι] has a classical quotient ring which is a
division ring; thus each Cek is a division ring (1.2.9, 2.1 of [15]).
Since Cek centralizes all the efj, it follows that

a subring of V in which nonzero divisors are invertible. By construc-
tion Mn(CG) is a subring of Σi,j,k ^eu > a n c * a nonzero divisor in
Mn(CG) remains a nonzero divisor in Σij,k^eU' Therefore a is
invertible in V \ hence a is a nonzero divisor in Mn{W{G)) and the
result follows from Lemma ll(ii).
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For the proof of Theorem 6, we need the following technical result,
which depends ultimately on Moody's induction theorem [16].

LEMMA 17. Suppose G is an elementary amenable group whose fi-
nite subgroups have bounded order. Let Q be the classical quotient
ring of CG, let n e P, and let e e Mn(Q) be an idempotent. Then
there exist r, s e P, finite subgroups F\9 . . . , Fs of G and projections

fi e CFi (1 < / < s) such that

diag(e, l r , 05) = wdiag(/i, ... , fs, 0n+r)u~ι

where u e GLn+r+s(Q)

Proof. Write N = Δ+(G), the torsion subgroup of the finite conju-
gate subgroup of G (see p. 2 of [18]). We shall apply the theory of §5
of [13]. Write CN = R\ Θ.. .Θi?m where the i?z are matrix rings over
C. Then G/N permutes the Λ, by conjugation and by renumbering
if necessary, we may assume that {R\,... , Rt} is a set of orbit rep-
resentatives for this action. Let Gi/N be the stabilizer of Ri, and
write rii = G: G, . By Clifford's theorem

t

CG = CN * G/N = φMn(Ri * Gi/N).

Let Qi be the simple Artinian quotient ring of MHi(Ri * Gi/N) =
Mni{Ri) * Gi/N (1 < i < t), which exists by Lemma 4.1(i) of [13].
Then Q = 0 j = 1 Qt. Using Lemma 4.1 (ii) of [13], we see that the
natural induction map

Go{Mn(Ri)*FN/N)->Go(QΪ)

is onto (1 < / < t), and we can now infer that the natural induction
map

0 Go(CF) - Gb(fl)

is also onto. Furthermore, all Q-modules are projective. This means
that if P is the projective Q-module corresponding to e, then there
exist r , ί 6 P , finite subgroups F\, . . . , Fs of G and finitely gener-
ated CF -modules Pi (1 < / < 5) such that

ι Q (use [15, 12.1.4]).
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Since a finitely generated Ci^-module is isomorphic to a direct sum of
right ideals of GF}, we may assume that Pi c± fiCFj for some projec-
tion ft (ί<i<s). Then diag(e, l Γ )(β Λ + Γ ) * diag(/i , . . . , fs)(Qs)
as Q-modules; hence by Lemma 8

, l r y 05) = udiag(/i , . . . , / * ,

for some u e GLn+r+s(Q), as required.

Proof of Theorem 6. Suppose i ί is a finite subgroup of G. Then

is a projection so if ε: CC? —• CG denotes left multiplication by e,
then rankε = l/ | i/ | . Thus certainly (1//) c D{G).

Conversely suppose θ: CGn —> CGW is a right CG-map; equivalently
0 G Mn(CG). Let Q and U denote the classical quotient rings of CG
and W{G) respectively, and assume that Q c U (use Theorem 7).
Since Mn(Q) is a *-regular ring, there is a projection e e Mn(Q)
such that ΘMn(Q) = ^i»/Λ(β). Then flJI/π(C7) = eMn{U) and e e
Mn(W(G)), hence rankθ = Tr e by Lemma 11. Applying Lemma 17,
there exist r, 5 e P, finite subgroups i*Ί, . . . , Fs of G and projections
fi e CFt (1 < i < s) such that

diag(e, l r , 05) = u diag(/!, . . . , fs, (W)w- 1

where w e GLn+r+s(Q) - In view of Lemma 13, we may assume that
u e GLn+r+s(W{G)), hence

But Tr /- = l/\Fi\ e {111) for all /, and the result follows.
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