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ZERO DIVISORS AND GROUP VON NEUMANN
ALGEBRAS

P. A. LINNELL

Let G be a discrete group, let L?(G) denote the Hilbert space
with Hilbert basis the elements of G, and let W (G) denote the group
von Neumann algebra of G . The class of elementary amenable groups
is the smallest class of groups which contains all abelian and all finite
groups, is extension closed, and is closed under directed unions. If G
is an elementary amenable group whose finite subgroups have bounded
order, o is a nonzero divisor in CG, and B is a nonzero element of
L?*(G), we shall prove af # 0. We shall also consider the quotient
rings of CG and W(G).

1. Introduction. Let G be a group and let L2(G) denote the Hilbert
space with Hilbert basis {g|g € G}. Thus L2(G) consists of all
formal sums ), ;a,g where a; € C and Y, ;lagl* < . If
=3 ,c6428 €ECG (s0 a; €C and a; = 0 for all but finitely many

g)and B =Y ,.5be8 € L*(G), then

af = Z agbygh = Z Zagh_lbh g
g,heG geG \ heG
is a well-defined element of L?(G). In this paper we consider the
following conjecture:

Conjecture 1. If G is a torsion free group, a € CG, B € L*(G),
and a, f #0, then aff #0.

Results on this have been obtained in [6, 20, 21]. Recall that the
class of elementary amenable groups is the smallest class of groups
which contains all finite and abelian groups, is extension closed, and
is closed under directed unions (see [S, 13]). It is also closed un-
der subgroups and quotient groups, and contains all solvable by finite
groups. On the other hand any group which contains a subgroup iso-
morphic to a nonabelian free group is not elementary amenable. We
shall prove

THEOREM 2. If G is a torsion free elementary amenable group,
a€CG, BeL*(G), and o, B #0, then af #0.

349
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In [20] Rosset needed a special case of Theorem 2 to prove a van-
ishing theorem for Euler characteristics. Recall that the group G is
of type FP if the trivial ZG-module Z has a resolution

0O—-P,—-Pp 11— —>P—-Ph—>Z—0

where the P; are finitely generated projective ZG-modules. Then the
Euler characteristic x(G) of G is defined to be the integer

n
> (~1)! ranky(P; ®c Z).
i=0
If all the P; can be taken to be free ZG-modules, then G is said to be
of type FL. One motivation for proving Theorem 2 was to use the
techniques of [20] to derive the following result.

THEOREM 3. Let H be a normal elementary amenable subgroup of
the group G. If G is of type FL and H # 1, then x(G) = 0.

In [20] Rosset proved Theorem 3 in the special case when H is
abelian. To establish the general version of Theorem 3, we make the
following two modifications to Rosset’s paper. Firstly we require (2.3)
and (3.1) of [20] to remain valid when A is elementary amenable.
This means that we need CA to be an Ore domain [15, 2.1.14] when
A is elementary amenable, which is true by Theorem 1.3 of [13]. Sec-
ondly in (3.4) of [20], we want to allow A to be elementary amenable.
This step is also valid, by Theorem 2.

However, there is now a simpler method to prove Theorem 3. In an
earlier version of this paper, I posed the problem of giving an example
of a group G satisfying the hypotheses of Theorem 3 which does not
have a nontrivial normal abelian subgroup. This has now been shown
in [10] to have a negative answer, where it will be proved that a non-
trivial elementary amenable group of finite cohomological dimension
has a nontrivial characteristic abelian subgroup. The proof depends
on extending the notion of Hirsch length from polycyclic groups to el-
ementary amenable groups, which was worked out by Hillman in [9].
Thus if G is as in Theorem 3, then G has a nontrivial normal abelian
subgroup and so Theorem 3 follows immediately from the special case
when H is abelian.

It should be noted that Cheeger and Gromov have proved an
enhanced Theorem 3 with “elementary amenable” weakened to
“amenable” [4]. Their methods are different from, but related to, the
above methods. However, it is still an open problem as to whether
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there exists an amenable group of type FP which is not elementary
amenable. Also in [9], Hillman has used Theorem 2 to obtain results
on 2-complexes and 4-manifolds.

To describe our results further, we need to establish some notation.
Let .# denote the set of bounded linear operators considered as acting
on the left of L2(G). For a € CG, we have a bounded linear map
defined by B — af (multiplication by «) for all 8 € L?(G); thus
CG can be identified as a subring of .. More generally for n € P,
the ring of operators on L2(G)" is M,(%), and M,(CG) can be
identified as a subring of M,(.#). A nonzero divisor in a ring R is
an element s such that sr # 0 # rs for all r € R\0. If G is a
torsion free elementary amenable group, then all nonzero elements of
CG are nonzero divisors by Theorem 1.4 of [13]. Thus the following
is a generalization of Theorem 2.

THEOREM 4. Let G be an elementary amenable group, let n € P and
let a € M,(CG) be a nonzero divisor. Suppose the finite subgroups of
G have bounded order. If 0 # B € L2(G)”, then af #0.

We now want to discuss W *-algebras. Let L*(G) denote the set
of all formal sums 3 ,.;4d:8 (ag € C) such that sup,cq|ag| < co.
Then CG C L3(G) C L®(G) and if a = Y ecG %8s B=24ccbe8 €
L%(G), we set

aﬂ = Z agb;,gh
g,heG

which yields a multiplication L?(G) x L?>(G) — L*®(G). We also have
an involution *: L®(G) — L*®(G) defined by (3 agg)* = Y. G877,
where ~ denotes complex conjugation, satisfying L2(G)* = L%(G)
and CG* = CG. By definition W(G) is the weak closure of CG
in .Z; equivalently W(G) is the W*-algebra generated by CG in
< . Another description of W(G) is that it is the double commutant
CG" of CG in &, where for any subset S of .#, its commutant
{0 € Z|6s = 56 for all s € S} is denoted by S’ [1, Theorem 1.2.1].
We have a *-monomorphism W (G) — L2(G) defined by 6 — 6(1).
Thus W(G) can be identified with a subspace of L?(G), where the
action of W(G) on L?(G) is left multiplication.

Since M,(W(G)) is the double commutant of M, (CG) in M,(<Z),
we see that M, (W (G)) is also a W*-algebra [1, Theorem 1.2.1]. Let
0 € M,(W(G)) be represented by the matrix (6;;). Then 6* is rep-
resented by the matrix (67;). Furthermore right multiplication makes
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L?(G)" into aright CG-module, and 6 is obviously a continuous right
CG-map. Conversely we have

LEMMA 5. If 6: L2(G)" — L*(G)" is a continuous right CG-map,
then 0 € M,(W(G)).

Proof. This follows from Theorem 1 of Part 1, Chapter 5 of [7];
alternatively we give the following direct argument. Certainly 6 €
M,(Z) because 6 is a bounded linear map, so write € as a matrix
with entries 6;; (1 < i,j < n). Then 6;;: L>(G) — L?*(G) is a
continuous right CG-map and it will be sufficient to prove that 6;; €
W (G) ; in other words we may assume that n=1.

Write 6(1) = Y. ag& € L*(G) where az € C. Since 6 is a right
CG-map, 6(a) = 0(1)a for all « € CG. But 6 is continuous and
CG is dense in L%(G), so @ is left multiplication by 6(1). Suppose
@ € CG' sothat gp = pg forall ge G. Then for he G,

06(h) = p(6()h) = ¢ (3 ageh)
= Z agp(gh) (because ¢ is continuous)

=Y aggo(h) = 0(1)p(h) = 0p(h).

Since 96,09 € & and CG is dense in L2(G), we deduce that
90 = ¢ . Therefore 6 € CG" so by the double commutant theorem
[1, Theorem 1.2.1], we deduce that 8 € W (G) as required.

If « =Y asg € W(G), then we define tra = a;, and if 0 €
M, (W (G)) is represented by the matrix (6;;), then we define Tr6 =

? ,tré;. Note that Tr0p = Tref for all 8, ¢ € M,(W(G)).
Following [6], an L?(G)-module M is a closed right CG-submodule
of L2(G)" for some n € P, and a homomorphism of L?(G)-modules
is a continuous right CG-map. Let

e: LY(G)" — LY(G)"

be the projection onto M . Then e is a continuous right CG-map; thus
e € M,(W(G)) by Lemma 5 and we define d;M = Tre. Propositions
3 and 4 of [6] show that d;M is a nonnegative real number, and does
not depend on the isomorphism type of M (or »n). If ¢ € M,,(Z) isa
continuous right CG-map, then the closure of the subspace ¢(L?(G)")
is an L2(G)-module, so by the above we can define rankg = Trf,
where f is the projection onto the closure of @(L2(G)"). If v isa
right CG-endomorphism of CG”, then y induces a continuous right
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CG-endomorphism § of L2(G)", and hence we can define rank y =
rank 7 . As in [6], we let D(G) indicate the additive subgroup of R
generated by

{rank 6|0 € Endc(CG") for some n € P}.

The following theorem is a variant of the Goldie rank conjecture [19,
13] and extends the results of [6, §5].

THEOREM 6. Let G be an elementary amenable group and assume
that the finite subgroups of G have bounded order. If | is the Icm of
the orders of the finite subgroups of G, then D(G) = (1/1)Z.

We now consider quotient rings. Let R be a ring and let .S be the
set of nonzero divisors of R. A classical quotient ring for R is a ring
Q which contains R as a subring such that every element of S is
invertible in Q, and

Q={rs"!IreR,seS}={s"lrlreR, seS}.

When a classical quotient ring exists, it is unique up to isomorphism.
Recall that a ring 7 is regular if for each r € T, there exists t € T
such that rtr = r. A regular ring is its own classical quotient ring,
and a semisimple Artinian ring is a regular ring. If R has a classical
quotient ring Q which is regular and n € P, then M,(Q) is a regular
classical quotient ring for M,(R) (use Exercise 12C on p. 232 of
[2]). Since W(G) is a finite W*-algebra by a well-known result of
Kaplansky (see [14, Proposition 9]), the results of [3] (in particular
the proof of Theorem 10) show that W(G) has a regular classical
quotient ring; hence M,(W(G)) has a regular classical quotient ring
U. Suppose in addition that G is elementary amenable and that
its finite subgroups have bounded order. Applying [13, §5] and [8,
Exercise 3.D.9], we see that M,(CG) has a classical quotient ring Q,
which is a semisimple Artinian ring. By Theorem 4 every nonzero
divisor of M,(CG) is a nonzero divisor in M,(W(G)) and hence
is invertible in U. Thus the inclusion map M,(CG) — M,(W(G))
extends uniquely to a monomorphism Q — U [15, Lemma 2.1.4]
so we can view Q as a subring of U. Moreover the involution * of
M, (W (G)) extends uniquely to an involution of U satisfying Q = Q*
[3, 8, Exercise 2.A.17]. Summing up this paragraph we have

THEOREM 7. Let G be an elementary amenable group, let n € P,
and assume that the finite subgroups of G have bounded order. Then
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M,(CG) and M,(W(G)) have classical quotient rings Q and U re-
spectively such that Q C U. Furthermore Q is a semisimple Artinian
ring, U is a regular ring, and the involution * on M,(W(G)) extends
to an involution (also denoted *) on U satisfying Q = Q*.

As expected, this paper relies heavily on the affirmative answer to
the zero divisor conjecture for elementary amenable groups. This was
recorded in Theorem 1.4 of [13], and was made possible by Moody’s
remarkable induction theorem [16]. We give a brief outline of the
proof of Theorem 2 to illustrate the techniques employed in this paper.
Using the description of elementary amenable groups in §3 of [13], a
transfinite induction argument reduces to considering the case when
there is a normal subgroup H of G such that G/H is either finite or
infinite cyclic, and the theorem is true with H in place of G. If G/H
is finite, then the solution to the zero divisor conjecture implies that
there exists y € CG such that ya € CH\0, and the result follows in
this case. If G/H is infinite cyclic, we use the methods of [21]. Write
G = (H, x) and let { € C with |{| = 1. What will be important here
is that the map A — h, x — x{ for h € H induces an automorphism
of CG which extends to an automorphism of W (G).

I would like to thank Dan Farkas for some useful comments on a
preliminary version of this paper.

2. Notation, terminology, and assumed results. All rings will be as-
sociative with a 1, and subrings will have the same 1. As usual P
will denote the positive integers {1, 2, ...} and if 0 is a map, then
ker 6 will denote the kernel of 6. Suppose R is aring, n € P and
S C R. Then §’ will denote the commutant

{r € R|rs = sr for all s € S}

of § in R, R" the right R-module which is the direct sum of =
copies of R, M,(R) the ring of n x n matrices with entries in R,
which we shall also view as the R-endomorphisms of R" where the ac-
tion is left multiplication, GL,(R) the invertible elements of M,(R),
1,, the identity matrix of M,(R), and 0, the zero matrix of M,(R).

If tePand 4,€ M, (R) (i=1,2,...,1), then diag(4,, ..., 4/)
denotes the matrix in Mp 4...4n (R)
A 0 0
0 4, 0
0
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Suppose P is a finitely generated projective right R-module. Then we
can write P@ P' = R" for some right R-module P’ and some n € P.
If e € M,(R) is the idempotent satisfying e(P) = P, e(P') = 0,
then we shall say that e corresponds to P. Suppose Q is a right R-
module such that Q ~ P and Q& Q' = R™ for some right R-module
Q' and some m € P. Let f € M,,(R) be the idempotent satisfying
f(Q)=0Q, f(Q)=0 so f also corresponds to P. Then

PoR"~R"9(Q';

hence there is an automorphism 6 of R" & R™ such that 6(P)
Q and 6(P'® R™) = R" @ Q'. Consequently 6 diag(e, 0,,)07! =
diag(0,, f). We can now state

LEMMA 8. Let R be aring, let m,n € P, and let P, Q be finitely
generated projective right R-modules such that P ~ Q. If P and Q
correspond to the idempotents e € M,(R) and f € M,,(R) respec-
tively, then there exists u € GLy1m(R) such that udiag(e, Op)u~! =

diag(f, 0n).

If H < G are groups, then |H| denotes the order of H, G : H the
index of H in G, and ¥ (G) the set of finite subgroups of G.

LEMMA 9. Let G be an elementary amenable group, let H<G with
G: H< oo, let n€P, andlet a € M,(CG) be a nonzero divisor. If the
finite subgroups of G have bounded order then there exists B € M,(CG)
such that Ba is a nonzero divisor in M,(CH).

Proof. Let S be the set of nonzero divisors in M,(CH). Then
Theorem 1.2 of [13] shows that A, (CH) has an Artinian left quotient
ring of the form S~1M,(CH) (={s"ly|s€ S, y € M,(CH)}); hence
S~IM,(CG) is an Artinian left quotient ring for M,(CG). This means
that in S~!M,(CG), we can write a~! = ! where ¢ € S and
B € M,(CG); thus fa =0 as required.

LEMMA 10. Let H < G be groups, let n € P, and let 6 € M,(W (H)).
If 6 = 0 for some a € L*(G)"\O, then 6B = 0 for some B €
L2(H)"™\0.

Proof. Let T be a set of right coset representatives for H in G.
Then we can write @ = Y, o where o; € L*(H)", and there
exists s € T such that a5 # 0. Since fa = 0, we see that fa; =0,
as required.
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Let U be the classical quotient ring of M,(W(G)) andlet TC U.
Since U is a Baer *-ring (see §3 of [3]), there is a unique projection
e € U such that

{ueUltu=0forallte T} =el.

We shall write N(T) =e, LP(T*) =1—e (thus LP(T) is the “left
projection” of T in U; cf. p. 13 of [2]), and LP(a) = LP({a}) for
a € U. We note that e € M,(W(G)) because every projection of U
lies in M, (W(G)) (see [3]). Then we have

LEMMA 11. Let G be a group, let n € P, let U be the classical quo-
tient ring of M, (W (G)), let T C M,(W(G)) and let o € M,(W(G)).

(i) If e is a projection such that eU = aU, then e = LP(c).
(ii) The projection of L*(G)" onto kera is N(«). In particular if
a is a nonzero divisor in M,(W(G)), then kera = 0.
(iii) Let F be the closure of Y g1 0(L*(G)"). Then the projection
of L*(G)" onto F is LP(T).

Proof. For (i) and (ii), see p. 13 of [2]. Now let f be the projection
of L2(G)" onto F, and let A = LP(T). Then f € M,(W(G)) by
Lemma 5 and (1 — /)T = 0; hence T*(1 — f) = 0 and we see that
(1-AHAUC(1-h)U. Also T*(1—h)=0. Thus ht=¢ forall teT
and we deduce that #(L3(G)") D F. Therefore hf = f, consequently
(1-=h)U C (1= f)U and it follows that (1 — /)U = (1 — h)U. This
yields f = h, as required.

LEMMA 12. Let G be a group, let n € P, let e, f be projections in
M,(W(G)) andlet h = LP(e, f). If eM,(W(G))NfM,(W(G)) =0,
then Tre+Tr f=Trh.

Proof. Let L = L2(G)" and let n be the projection onto eLN fL.
Since eL and fL are L2(G)-modules, eL N fL is also an L2(G)-
module. Hence n € M,(W(G)) by Lemma 5. Now en =7 = f71,
thus 7 € eM,(W(G)) N fM,(W(G)) = 0 and we deduce that eL N
fL=0.

Define 6:eL @ fL — hL by 6(u,v) = u+v. Though 6 is not
necessarily an isomorphism, it is certainly true that ker 6 = 0 and
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O(eLa® fL) is dense in AL (Lemma 11(iii)); in the terminology of [6,
p. 133] 0 is a weak isomorphism. Thus by von Neumann’s theorem
([17, §21.1] and [6, p. 134]) eL® fL ~ hL as L?*(G)-modules; hence
Tre+Tr f=Trh.

We note that this result could also be fairly easily derived from the
parallelogram law [2, §13].

LEMMA 13. Let G be a group, let n € P, let U be the classical
quotient ring of M,(W(G)), and let e, f be projections in U. If
f = ueu=! for some unit u € U, then f = vev™! for some unit
v e M,(W(G)).

Proof. Clearly e and f are algebraically equivalent in U (cf. Ex-
ercise 6A on p. 8 of [2]). Using the theory of §5 of [3], we see that
e and f are perspective in M,(W(G)). Since M,(W(G)) is a finite
W*-algebra by Kaplansky’s Theorem [14, Proposition 9], it follows
from Exercise 12A(viii) on p. 109 of [2] that e and f are unitar-
ily equivalent in M, (W (G)); in particular f = vev~! for some unit
v € M,(W(G)).

A division C-algebra is a division ring whose center contains C.

LEMMA 14. Let D be a division C-algebra and let f(t) € D[t]. If
f(0) #0, then f(z) =0 for only finitely many z € C.

Proof. This is elementary.

LEMMA 15. Let D be a division C-algebra, let n € P and let A(t) €
M, (D[t]). If A(0) € M,(D) is invertible, then A(z) is invertible in
M, (D) for all but finitely many z € C.

Proof. According to Theorem 16 on p. 43 of [11], there exist X (¢),
Y(t) € GL,(D[¢]) such that X(¢)A4(¢)Y (¢) is a diagonal matrix, say
diag(f1(¢), ..., fu(¢)) for some f;(¢) € D[t]. Since A(0) is invertible,
f1(0), ..., f»(0) are all nonzero. Therefore fi(z),..., fu,(z) are all
nonzero for all but finitely many z € C by Lemma 14, and hence
A(z) is invertible for all but finitely many z € C, as required.

3. Proofs. Let D be a ring and let ¢ be an automorphism of D.
Then we can form the skew polynomial ring D[x, ¢] whose elements
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consist of all finite formal sums Y 7 ,a;x’ (a; € D) with multiplica-
tion defined by

n m m+n
(Za,x’) Yobixd | =31 Y aiayy) | x'
i=0 j=0 r=0 \i+j=r
(cf. 2.1 of [15]). If f(x) = Y\ ,aix' € D[x, o] and p € D[x, o],
then we set f(p) =Y 1 oap’.

LEMMA 16. Let D be a division C-algebra, let ¢ be an automor-
phism of D, and let f(x) € D[x, ¢]. If f(0) = 1, then for all but
finitely many t € C,

D[x, a]f(x) + D[x, d]f(tx) = D[x, a].

Proof. Extend o to an automorphism of the polynomial ring E =
D[y] by setting o(y) = y, and write f(x) = l +a;x + -+ + a,x"
where a; € D and a, #0. Then f(yx)=1+ayx+---+apy'x" e
E[x, c]. We want to show that for all but finitely many ¢ € C,
there exist g(x) = b x+ -+ b,x" and hA(x)=1+cix+ -+ cpx"
(b;, c; € D) suchthat g(x)f(x)+h(x)f(tx) =1 (g and h depending
on t). We consider the equation g(x)f(x)+ A(x)f(yx) = 1 and
equate coefficients to obtain 27 linear equations in the 2n unknowns
bi,...,bn, 1, ..., cn with coefficients in D[y]:

(1) bi+c=-ay,
bi(oar) + by + c1(cay)y + ¢ = —apy?,
bi(cay) + by(aay) + by + c1(0ax)y? + ca(02ay)y + ¢3 = —azy?,

bn-1(0"" an) + bn(0"an-1)
+ Cno1(0" 1 an)y" + cn(0"an_1)y" "' =0,

bn(c"ay,) + cy(a"a,)y” = 0.
Let A(y) € M,,(D[y]) be the matrix of coefficients of (1). We note
that when y = 0, the above system has a unique solution, namely
b; = c¢; =0 for all i. Therefore A(0) € GL,,(D), and hence A(¢) €
GL,,(D) for all but finitely many ¢ € C by Lemma 15. Thus (1) has
a unique solution when y = ¢ for all but finitely many ¢ € C, and the
result follows.

Proof of Theorem 4. We shall prove the result by transfinite induc-
tion, using the description of elementary amenable groups of §3 of
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[13]; we shall also adopt the notation of that section. Thus if % and
Z are classes of groups, then H € L% means that every finite sub-
set of the group H is contained in a %-subgroup, H € ZZ means
that H has a normal %-subgroup Y such that H/Y € 2, and &
denotes the class of finitely generated abelian by finite groups. Also
for each ordinal a, the class of groups 2, is defined inductively by
2 ={1}, 2441 = (L22)# and 24 =, if b is a limit ordinal.
Following §3 of [13], choose the least ordinal a such that G € 27,
and assume that the result is true whenever G € 2}, and b <a.

Now a cannot be a limit ordinal, and the result is clearly true if
a = 0. Therefore we may assume that a = ¢+ 1 for some ordinal c.
First suppose G € LZ;. Then o € M,(CA) for some A € 2. Hence
af # 0 by induction and Lemma 10.

Now suppose there exists H < G such that G/H € & and H €
L%.. Let B/H be a torsion free abelian normal subgroup of finite
index in G/H . By Lemma 9 there exists y € M,(CG) such that ya
is a nonzero divisor in M,(CB). If the result is true for B, then
yaf # 0 by Lemma 10; hence aff # 0 as required. In other words
we may assume that G/H is finitely generated free abelian. A simple
induction argument on the rank of G/H allows us to assume that
G/H is infinite cyclic, say G = H(x) for some x € G.

Let Q and U denote the classical quotient rings of M,(CH) and
M, ((W(H)) respectively. Since the result is true for H, every nonzero
divisor in M,(CH) is a nonzero divisor in M,(W (H)). Thus we may
view Q as a subring of U (cf. Theorem 7). Now @ is a semisimple
Artinian ring (cf. Theorem 7), so we may write

t
Q= @Mn,(Di)
i=1

for some n; € P and division rings D;. Let D = @'_, D; and note
that the map v — x~!vx for v € Q is an automorphism of Q. Since
an automorphism of Q permutes the M, (D;), there exists r € P
such that x~"M, (D;)x" = My, (D;) for all i. If the result is true
for H(x"), then the result is true for H(x) by the argument of the
previous paragraph. Therefore we may assume that » = 1, in other
words x~'M, (D;)x = My (D;) for all i. The corollary on p. 237 of -
[12] applied to each My (D;) shows that there exists an automorphism
6 of D which fixes the D; setwise, and a unit ¥ € Q such that
x~lvx = u=1(6,v)u for all v € Q, where 6, is the automorphism
of Q induced by 8. If y =ux~', then Q[y, y~!]= Q[x, x~!] and
yD;y~! = D; for all i.
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Let V' be the classical quotient ring of M,(W(G)) and let
S = sup{Tr(N(f))|f is a nonzero divisor in D[y, y~!']}.

We claim that every nonzero divisor in D[y, y~!] is a nonzero divisor
in V. If this is false, then 0 < S < n by Kaplansky’s theorem [14,
Proposition 9], so we can choose a nonzero divisor f in D[y, y~1]
such that Tr(N(f)) > S/2. Write f = fi +--- + f; where f; €
D;[y, y~1]. Note that f; # 0 for all i because f is a nonzero divisor.
Now D;[y] is a skew polynomial ring, thus applying Lemma 16 for
i=1,2,...,t, we infer that there exists { € C, |{| =1, such that

(2) Dly,y '1f») +Dly, y~'1f((y) = DIy, y~'1.

Let e = N(f) and let ¢ be the automorphism of ¥ induced by 4 —
h, x — xC for all h € H. Note that ¢(f(»)) = f({y), N(o(f)) =
p(e) and Tr g(e) = Tre > S/2. Using (2) we deduce that eV’ N
p(e)V =0, hence by Lemma 12

Tr LP(e, ¢(e)) =Tre+ Tr g(e) > S.

Therefore if fy € D[y,y '1f(») n DIy, y~11f(¢{y), then since
foLP(e, p(e)) = 0, we see that TrN(fy) > S. But D[y, y~11f(»)
N D[y, y~'1f({y) contains nonzero divisors in D[y, y~!] and
the claim is established. It follows that every nonzero divisor in
D[y, y~!] is invertible in V.

Let ef; (1<i,j<m, 1<k<t) bethe standard matrix units of

Q, let ek =Y, ek be the primitive central idempotents of @, and let

C ={cd'|c,d e Dy, y~!] and d is a nonzero divisor
in D[y, y~'1}.

Notice that each Di[y, y~!] has a classical quotient ring which is a
division ring; thus each Ce* is a division ring (1.2.9, 2.1 of [15]).

Since Ce* centralizes all the e{‘j , it follows that

Y Cefi = P M, (Ce),

ij.k k
a subring of V' in which nonzero divisors are invertible. By construc-
tion M,(CG) is a subring of 3, ; & Celkj , and a nonzero divisor in
M,(CG) remains a nonzero divisor in Y, ; ; Cef;,. Therefore a is
invertible in V'; hence o is a nonzero divisor in M,(W(G)) and the

result follows from Lemma 11(ii).



ZERO DIVISORS AND GROUP VON NEUMANN ALGEBRAS 361

For the proof of Theorem 6, we need the following technical result,
which depends ultimately on Moody’s induction theorem [16].

LEMMA 17. Suppose G is an elementary amenable group whose fi-
nite subgroups have bounded order. Let Q be the classical quotient
ring of CG, let n € P, and let e € M,(Q) be an idempotent. Then
there exist r, s € P, finite subgroups Fy, ..., F; of G and projections
fi €CF; (1 <i<s) such that

diag(e, 1,, 05) = udiag(fi, ..., fi, Opsr)u™"
where u € GL,4r15(0).

Proof. Write N = A*(G), the torsion subgroup of the finite conju-
gate subgroup of G (see p. 2 of [18]). We shall apply the theory of §5
of [13]. Write CN = R; ®...®R,, where the R; are matrix rings over
C. Then G/N permutes the R; by conjugation and by renumbering
if necessary, we may assume that {R;, ..., R;} is a set of orbit rep-
resentatives for this action. Let G;/N be the stabilizer of R;, and
write n; = G: G;. By Clifford’s theorem

t
CG =CN * G/N = @ M, (R; » Gi/N).
i=1
Let Q; be the simple Artinian quotient ring of M, (R; *x G;/N) =
M, (R;) * G;/N (1 <i < t), which exists by Lemma 4.1(i) of [13].
Then Q = @!_; Q;. Using Lemma 4.1(ii) of [13], we see that the
natural induction map
@ Go(My(R)* FN/N) — Go(Q:)
FeF(G)
isonto (1 <i <t), and we can now infer that the natural induction
map

B Go(cF) - Go(Q)
FeF(G)
is also onto. Furthermore, all Q-modules are projective. This means
that if P is the projective Q-module corresponding to e, then there
exist r, s € P, finite subgroups Fi, ..., F; of G and finitely gener-
ated CF;-modules P; (1 <i<s) such that

)
PoQ ~@PPerQ (use[l5 12.1.4]).
i=1
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Since a finitely generated CF;-module is isomorphic to a direct sum of
right ideals of CF;, we may assume that P; ~ f;CF; for some projec-
tion f; (1 <i<s). Then diag(e, 1,)(Q""") ~ diag(f;, ..., f5)(Q°)
as Q-modules; hence by Lemma 8

diag(e, lr, Os) = udiag(ﬁ s seey fg , On+r)u_1

for some u € GL,+,+5(Q), as required.

Proof of Theorem 6. Suppose H is a finite subgroup of G. Then
1
=T

heH

is a projection so if ¢: CG — CG denotes left multiplication by e,
then ranke = 1/|H|. Thus certainly (1//) C D(G).

Conversely suppose §: CG" — CG" is a right CG-map; equivalently
0 € M,(CG). Let Q and U denote the classical quotient rings of CG
and W(G) respectively, and assume that Q C U (use Theorem 7).
Since M,(Q) is a =-regular ring, there is a projection e € M,(Q)
such that 0M,(Q) = eM,(Q). Then 0M,(U) = eM,(U) and e €
M,(W(G)), hence rank § = Tr e by Lemma 11. Applying Lemma 17,
there exist 7, s € P, finite subgroups Fi, ..., F; of G and projections
fi €CF; (1 <i<s) such that

diag(e, 1,, 05) = udiag(fi, ..., f5, Onr)u™!

where u € GL,4,45(Q). In view of Lemma 13, we may assume that
u € GLyyr+5(W(G)), hence

Tre+r=Tr fi+---+Tr f.
But Tr f; = 1/|F;| € (1/I) for all i, and the result follows.
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