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DEPENDENCE OF DIFFERENTIAL EQUATIONS
UPON PARAMETERS IN THEIR STOKES’ MULTIPLIERS

WERNER BALSER

Given a system of meromorphic differential equations, an impor-
tant problem which has attracted increasing attention in recent years
is the computation of the Stokes’ multipliers. Only in few special
cases one can explicitly compute these matrices in terms of known
higher transcendental functions in the data of the equation. In gen-
eral, the non-trivial entries in the Stokes’ multipliers appear to be
“new” transcendental functions in the data of the equation whose an-
alytic resp. singular behavior should be made as clear as possible—for
example, for questions of stability of numerical computations, infor-
mation on the nature of singularities will certainly be of importance.
For the so-called hypergeometric system, fixing the formal invariants,
the Stokes’ multipliers are entire functions in the rest of the data.
Generally, an analogous result on the analytic dependence of Stokes’
multipliers for a family of “iso-formal” equations has been obtained
by Babbitt and Varadarajan, using more powerful methods.

Roughly speaking, this paper is devoted to a question converse to
the one above: Prescribing a Stokes’ phenomenon, can one construct
a family of equations analytic in the Stokes’ multipliers? In princi-
ple, this problem is solved positively by results of Birkhoff and, more
elegantly, Sibuya on the freedom of the Stokes’ multipliers. However,
in light of the Birkhoff-Turrittin Reduction Theorem, one should bet-
ter ask the following (harder) question: Can we construct equations
whose coefficient matrix is a polynomial in the independent variable
and depends analytically on the Stokes’ multipliers? In case of di-
mension n = 2, one can see that the entries in such a polynomial
equation are multi-valued meromorphic functions of the (two) param-
eters in the multipliers. In the present paper, this is shown to be
true in general. Moreover, we will explicitly find the branch points of
these functions and show how to calculate their power series expansion
about points of analyticity. In contrast to the situation of » =2, we
do not know the location and order of their poles.

In order to see how the above question may be phrased in a precise
and handy form, suppose that a linear system of differential equations
in the complex variable z

(0.1) zx' = P(z, u)x

is given, where P(z, u) is a matrix polynomial in z and depends
analytically upon a parameter u, for u € G, say. Furthermore,
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assume that for every such u, (0.1) admits a formal fundamental
solution

(0.2) H(z,u)=T(z,u)G(z),

where T(z, u) is a formal power series in z~! beginning with the
identity matrix I, and the remaining coefficients being analytic in u;
and G(z) is the formal Birkhoff invariant in the sense of [6] and does
not depend upon u . To every such u and every integer v, there exists
a unique normal solution [6] denoted by X, (z, u), so that

(0.3) Xv(z,u)=ZH(z,u) asz—ocoins,

(where S, is the vth normal sector), and so that the Stokes’ multipli-
ers (normalized connection matrices) V,(u) = X, (z, w)X,_1(z, u)
have a certain prescribed form (which can be made completely ex-
plicit in terms of G(z) and hence does not depend upon u; see [6]
for details). In addition to the above, assume for the moment that the
normal solutions (for fixed, but arbitrary z) and the Stokes’ multipli-
ers also are analyticin u, for ue G.

If e27iL denotes the formal monodromy factor, defined by G(ze?")
= G(z)e*™iL if ¢27iM, () is the monodromy factor for X, (z, u), i.e.

X, (ze?™  u) = X, (z, u)e*™ MW

and if m is such that the sectors Sy, ..., 8, cover the complex plane
(i.e. on the Riemann surface of the Logarithm, the sector S,., is
directly above S,), then the following identities hold (see [6]):

(0.4) Xyim(z, u) = X, (ze™ 2% | u)e?™L,
(0.5) Vyrm(u) = e MLV, (u)e? 'L |
(06) eZﬂ:iM"(u) — eZniLVV_’_m(u) e Vu+1(u) ,

for every u and every z (on the Riemann surface of the logarithm),
and arbitrary v .

Suppose that, without loss in generality, the region G contains
the origin, and let P(z), H(z), etc., denote the values of P(z, u),
H(z, u), etc., for u =0. Define

(0.7) F(z,u) =X, (z, X, (2);

then according to (0.3) and the fact that G(z) is independent of u,
each F,(z, u) admits an asymptotic power series expansion in z~!
with I as constant term, as z — oo in S, , and due to (0.1), we have

(0.8) zF)(z,u) = P(z,u)F,(z, u) — F,(z, u)P(z).
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Moreover, one easily shows

(0.9) Fooi(z,u) = B (z, w)(I + X, ()W, ()X, (2)),
where

(0.10) I+ W,(u)=V,w)V,”!, hence W,(0)=0,

and

(0.11) X, (2)W, (W)X, (z2)=0 asz—o00inS,_;NS,.

The question we are going to investigate is as follows: Given P(z),
G(z) and V,(u), the latter being analytic for u € G (for every v),
do there exist P(z, u) and X,(z, u) (or equivalently, P(z, u) and
F,(z, u)), analyticin u for every fixed z and v, such that the above
identities hold? To simplify notations, we will restrict to Stokes’ multi-
pliers ¥, (u) which have a very special u-dependence (as is explained
below, this is sufficient for answering the general question): For an
arbitrarily selected integer v, let

W,(u) =0 (hence Vy(u)=V,) forv=py+1,...,19+m-1,
w,, =uWw
for some constant matrix W, which according to (0.11) satisfies
(0.12) XWX Y(z)=0 asz—o0in s,

S=8,-1n8,, X(z)=X,(2).

The remaining W, (u) (i.e. ¥,(u)) then may be defined according to
(0.5). If F,(z, u) as above exist, and if F(z, u) =F, (z, u), then

F(z,uy=F(z,u), v=wy+1,...,1p+m-1,
and (using (0.6))
(0.13) F(ze*™ ,u) = F(z, u)(I + uX(z2)WX"(2)).

As the main result of this paper, we show that given P(z) satis-
fying an “eigenvalue assumption” (see §1), and a matrix W satis-
fying (0.12) (in some sector S = S(a, B), with some fundamental
solution X(z) of zx' = P(z)x), there exist matrices F(z, u) and
P(z, u) which are analytic in u, for |u| sufficiently small, and so
that P(z, u) is a polynomial in z, F(z, u) has a formal power se-
ries expansion in z~! with constant term I, as z — oo in the sec-
tor S(a, B + 2n), and satisfies (0.13) and the differential equation
zF'(z,u)=P(z,u)F(z,u)— F(z, u)P(z). We do so by recursively
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defining the coefficients in the power series expansions of P(z, #) and
F(z, u) (§2), and through estimates in §3 we show their convergence
for sufficiently small |#| (Theorem 1).

Obviously, the matrices W satisfying (0.12) form a vector space E
whose dimension only depends upon G(z) (since (0.12) is equivalent
to G(z)WG~1(z) =0 in §) and can be explicitly given [6]. More-
over, from the estimates in §3 one may easily see that the matrices
W for which the power series expansions of P(z, u) and F(z, u)
converge for |u| < 1 form a neighborhood of the origin. Moreover,
the crefficients in these power series (§2) are polynomials in several
variables vy, ..., Vg, if we select an arbitrary basis of £ and iden-
tify E with C? for suitable ¢. Hence we conclude from the uniform
convergence of the power series (in u) that P(z, 1) and F(z, 1) are
analytic in the variables v, ..., v, in a suitable polydisc about the
origin.

Applying this result to the original question, we have shown that
for a given equation zx’' = P(z)x, with a polynomial P(z) that sat-
isfies an eigenvalue assumption, if G(z), ¥}, ..., Vp, are its Birkhoff
invariants (corresponding to an arbitrarily selected formal solution of
the form H(z) = T(z)G(z), T(z) = I + Tyz"! +---), then P(z)
depends analytically upon the entries of any one of the Stokes® multi-
pliers V,, 1 < v < m. With some extra notational efforts, one may
see that the same techniques could be used to show that P(z) is, in
fact, analytic in al/l the parameters in V;, ..., V;, say, in a suitably
small polydisc (observe that the parameter space of the normalized
connection matrices is isomorphic to C°, with suitable s depending
only upon G(z)).

In the situation considered in §§1 through 3, we show in §4 that
the functions P(z, u) and F(z,u) are meromorphic in u along
every curve provided some polynomial p,(u) can (as a function of
u ) be analytically continued along the curve and satisfies the “eigen-
value assumption” (Theorem 2). Points at which the eigenvalue as-
sumption is violated are (in general) branch points of P(z, u) and
F(z, u). From arguments as the ones used above, the proof of Theo-
rem 2 implies that, given G(z), V;, ..., Vin, the polynomial P(z) is
a meromorphic function in all the parametersin V;, ..., V,,. Thusin
principle, one may construct P(z) having prescribed Birkhoff invari-
ants G(z), Vi, ..., Vj, by starting, say, at V; =--- =V, =1 (ie.
at the origin of the parameter space, where the corresponding P(z)
is equal to zG'(z)G~!(z)) and analytically continuing P(z) along a
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curve in the parameter space of V;, ..., V;,, which avoids possible
branch points. Due to the uniqueness of polynomial equations with
prescribed Birkhoff invariants and prescribed eigenvalues of the mon-
odromy matrix, it may be seen that in case a P(z) having invariants
G(z), 1, ..., Vi and satisfying the eigenvalue assumption exists, it
can be constructed by such a continuation process.

1. Polynomial equations as functions of the Stokes’ multipliers.
Throughout this paper, let P(z) denote an arbitrarily fixed polyno-
mial matrix

r
(1.1) P(z)=) Piz'™/, rx1,
=0
where Py, ..., P, are n x n constant matrices (n > 2). Let p(u) =

g pju) = det(P, — ul) be the characteristic polynomial of P,, and
Ui, ..., un denote the roots of p(u), repeated according to their mul-
tiplicity. We will say that P(z), or sometimes that a polynomial p(u),
satisfies the eigenvalue assumption, if no two roots of p(u) have a
non-zero integer difference.

Let X(z) be an arbitrarily fixed fundamental solution of

(1.2) zx' = P(z)x :
and consider a (likewise fixed) sector
S=S(a, f)={z#0la<argz < f}, a<f’

(here and throughout, the variable z is considered on the Riemann
surface of the logarithm, so that 8 — a might be larger than 27z, but
typically f—o is small). A constant matrix W is said to be admissible
(with respect to S and X(z)) iff

(1.3) Xz)WX 1 (z)=20 asz—oo0in.

It follows from the asymptotic theory of meromorphic equations
[6] that for sufficiently small positive f —a there exist W # 0 which
are admissible, except for the (trivial) case where z = oo is an almost
regular singular point of (1.2) (in the sense of [2]). Obviously, the
set of admissible W is a matrix algebra. The structure of this algebra
and its dependence upon S and X(z) can be made completely explicit
(see [6]), but there is no need to do this here.

For an admissible W and a complex parameter u, suppose that we
find P(z, u), a polynomial matrix in z, and F(z, u), analytic in z
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(on the Riemann surface of the logarithm), such that

o0
(14) F(z,u) =1+ F(uw)z™* asz—ooin8=5(a, f+27),

k=1
(1.5) F(ze®™ u)=F(z, w)I +uX(z2)WX~(2)),
(1.6) zF'(z,u)=P(z, u)F(z,u) — F(z, u)P(z)

(here and throughout, derivatives will always be with respect to z).
Then (1.6), (1.4) imply

P(z,u)= Zr: ZPj(u), Py(u)=hy,
=0

and X(z, u) = F(z, u)X(z) is a fundamental solution of
(1.7) zy' = P(z, u)y,
which according to (1.5) satisfies
X(ze¥ , u) = X(z, w)I + uW)e?™M
with
e2iM — x=1(7) X (ze¥™),

If p,(u) = 3 pr(u)u* denotes the characteristic polynomial of
P.(u), and uy(u), ..., un(u) its roots, then we conclude from the
theory of singularities of first kind that x;(u) = e (1 <j<n)
are the roots of

Tu(x) = det{(I + uW)e*"M _ xI} = i T (u)xk.
=0

Obviously, t,(x) = (-1)", 71o(u) = 79 = dete?™™ (observe that
(1.3) implies det(I + uW) = det(I + uX(z)WX~!(z)) = 1), and the
other 7;(u) are polynomials in u. Moreover, from Abel’s formula,

det X(z, u) = ¢ 2* W= = ¢ f(z, u) zhoe?(?)
with ¢y, ¢c; #0 and

f(z,u)=detF(z,u) =1+ filu)z '+.--- asz—ooin$,
u(u) =trP(u), po=trph,
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and polynomials p(z, #) and p(z). This implies p(z, u) = p(z),
u(u) = uo, f(z,u)=1, c; =cy; hence in particular

n n
(1.8) Smw)=po=Y e, i puoi(u) = pu_i.
k=1 k=1
Given u, a polynomial p,(u) with roots u i), 1 <j<n,wil
be called admissible iff (1.8) holds and e?™#) are the eigenvalues of
(I +uW)e?miM

LemMMA 1. Let P(z), X(z), and W be as above, and u a complex
number. If p,(u) is an admissible polynomial satisfying the eigenvalue
assumption, then there is at most one pair P(z,u) and F(z, u) as
above, so that p,(u) is the characteristic polynomial of P,(u).

Proof. If ?N(z , u) and F (z, u) also have the required properties,
then T(z) = F(z, u)F~!(z, u) is single-valued and has an asymptotic
expansion in a full neighborhood of z = oo, with constant term 7.
Hence T'(z) is analytic at oo with T(c0) =1, 1i.e. T(z) is a Birkhoff
transformation. Moreover,

zT'(z) = P(z, w)T(z) — T(2)P(z, u);
hence P(z,u) and P(z,u) are Birkhoff-equivalent standard equa-
tions (in the sense of [6]), and since P,(#) and P,(#) have the same

characteristic polynomial satisfying the eigenvalue assumption, we
conclude from [6] that 7T(z) = I. This completes the proof.

2. Power series expansions about the origin. We now show the ex-
istence of two sequences of matrices which will turn out to be the
coefficients of the power series expansions, near u = 0, of P(z, u),
resp. F(z, u).

ProrosiTiON 1. With P(z), X(z), and W as above, there exist
uniquely defined matrices Q(z,p), T(z, p), holomorphic in z (on
the Riemann surface of logz) (p > 0), such that the following holds:

(2.1) T(z,0)=1, Q(z,0)=0,

o0
(2.2) T(z,p) =Y 27 *Ti(p)asz—> o0 inS (p>1),
k=1

(2.3) Qz,p)=) Qi®z~ (21,
j=1
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(24) T(ze*™,p)=T(z,p)+T(z,p- NX(Z)WX ()
p=21),

(2.5)  zT'(z,p)=P(2)T(z,p) - T(z, p)P(2)

p—1

+Y.0(z,p-9)T(z,9) (p21).
g=0
Proof. Suppose that Q(z, p), T(z, p) exist as stated. Then (2.5)

implies inductively that 7(z, p) has a regular point at z = 0; hence
for y € (a, B), the integral

oo(y) Ck 1

/ A XOWXTOAE (argz # ¢ mod 2m)
0

exists for sufficiently large natural k (observe (1.3)). From (2.4) it

follows (for R > |z|, y < argz < y + 2m) with help of Cauchy’s

formula:

Re" é’k—l
_/O r5 T P~ DXQOWX ()t

RV pf_1 Re? rk—1
=_/0 f T(C, p)dC+/ g T(¢, p)de
k-1
=it T - [ ST pe

k-1
=2mizk! (T(z, DEDY Tj(p)z‘j)
=1
R ke k-1
-[ = )= S Ti(p)¢ w21,
j=1

t(r+2n)

Ré

(with the last two integrals taken along the circle |{| = R).
The last integral tends to zero as R — oo (due to (2.2)), hence

k-1

(26) T(z,p)= Y. Tj(p)z™
j=1

1-k k—1
-227/0 f T(, p - VXWX Q) dL,
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for a <y < B, y <argz < y+ 2xn, and sufficiently large natural
k. Replacing k£ by k + 1 in (2.6) and taking the difference of the
resulting and the original formulas, we find

1

VT, - DXOWX-IC) AL
271 Jo 24 ’

27  Tilp) =

for sufficiently large k (and y as above). From (2.5), replacing
T(z, p) by its formal expansion and equating coefficients, we obtain

(2.8) Ty, (p)(Pr — (k = )I) = P, T}, ()

r—1
= Z(Pka_J(p) - Tk-—}(p)PJ)
j=0

p—1 r
+ZZQ}(p_q)Tk-—j(q)’ k2r+1’p21y

g=1j=1

and
k-1
(2.9) Qi) = = > _(PjT_j(p) - Ti—;(D)P})
=0
.
-3 >3 0iw-a)Ti-j(9), 1<k<r, p>1.
q=1 j=1

Now assume 7(z,q), Q(z,q), for 1 < g < p-1, given as de-
sired. Then (2.7) determines 7} (p) for sufficiently large k, and (2.7),
together with (2.5) for p — 1 in place of p, can be seen to imply
(2.8) for sufficiently large k. According to the eigenvalue assumption
for P(z), (2.8) is a system of linear equations in the components of
Ty_,(p) which has a unique solution for k > r + 1; hence T;(p) is
uniquely defined for k > 1. From (2.9) we then obtain Q(z, p), and
from (2.6) we have T'(z, p). It is now straightforward to check that
(2.2), (2.4), and (2.5) hold. This completes the proof.

For a complex parameter s, define a sequence of matrices W (s, p)
by

(2.10) MM (5, 1) = W(s, 1)e?™M = —wemiM
and for p > 2:
(2.11) MW (s, p) ~ W (s, p)e*™™

= __WeZn'i(sI+M) W(S, p— 1).
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Obviously, the above equations determine W (s, p) recursively for
every s satisfying

(2.12) S# pj— g mod 1, 1<j,k<n;

hence W (s, p) (p > 1) is a meromorphic function in s, with possible

poles at the points excluded by (2.12).

PRrOPOSITION 2. Under the assumptions of Proposition 1, for p > 1
and s satisfying (2.12), let

—1 [0 ¢s .
213) T(z0.8) =50z [ 72T o= DXOWX (O dg

y+2m)

p-l 1 Re" s
+q§%%/ AT )X Q)

Re”
xW(s,p—aq) X 1(0)d¢,

with R>0, a<y<f, |z| >R, y<argz < y+ 2n (integrating in
the first integral along arg{ = y, in the remaining ones along |{| = R).
Then T(z,p,s) (for fixed s) is holomorphic in z and (for fixed z)
meromorphic in s with possible poles along the points where (2.12)
is violated. In particular, T(z, p,s) has removable singularities at
points of the form

(2.14) S=pj— W+ U, 1<j,k<n,
with u being a non-negative integer, and

(2.15) T(z,p,0)=T(z, p).

Proof. From(2.4), (2.10), (2.11) we conclude

p—1
> (L) T(Le®™, )X (Le™ )W (s, p - 9) X~ ((e™™)
qg=0

=-0°T(, p - VXWX (L)

p—1
+ 3 ETE )XW (s, p - )X ().
q=0

Therefore, T(z, p, s) does not depend upon the choice of R, and if
Res is sufficiently large, then

—1 o) s .
T(z.p.5) = 7 [ 75T 2= DXQOWA(O)dL.
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Consequently, T(z, p, s) has no poles in s for such values of s for
which the above integral exists, i.e. for Res > sy. For arbitrary s
with (2.12), let

(216) Ti(p)= lim z7(z, 0,5~ 1)

_ L[y xowx-()d
= 271 Jpr ¢ (€, p—1)X(0) (©)d¢
p—1 1 R o1
Yo [, T 9xQ

xW(s,p—-g)X'({)d¢,
then for N > 0 (integer)
N
(2.17) T(z,p,8)=)Y 2 *T k() + 2z VT(z,p, s+ N).
k=1

This shows that the poles of T'(z, p, s) are among those of T, .(p),
k > 1. But from (2.16), by means of integration by parts and (2.5),

r—1
Ts(p)(Pr = sI) = BTs(p) = Y _(PiTyir—j(p) — Tor— P)
j=0

p—1 r
+3.3"0i(0 - 9)Tesr—j(4),

g=1j=1

which gives the analytic continuation of T(p) to every point s except
s=uj—ur—v,1<j,k<n,and v=0,1, 2, .... This completes
the proof, in view of (2.6), (2.7).

3. Estimates. For arbitrarily fixed 6, 0<d < (f —)/2, let

Ss={z||z| 26, a+d <argz< B -4},
S;={z||z|] 26, a+d <argz < B +2n -5},

(on the Riemann surface of the Logarithm). For p > 0, define

(3.1) ¢, = max{||T(z, p)ll |z € s},

(32) ) =max{|T(z,p)|lz€4;}, Jj=1,2,3,
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with
Ay ={z|largz=a+9d, |z|]>2d+1},
Ay={zlargz=8+2n-7, |z| >J + 1},
A3 =CUB{UB,,
C={z||z|=6, a+d <argz< f+2n -6},

={zlargz=a+d, d <|z| < I+ 1},

By={z|largz=f+2n-0, 6 <|z|<I+1}

(here and throughout, as norm of a matrix or a vector, we use the
maximum modulus of its components). Note that obviously

o=c¢’=1, 1<j<3,

and due to (2.2), all the-maxima exist. Moreover, the Maximum Mod-
ulus Principle implies

¢p = max{c, M, cl(,z) , 61(’3)}’

since 4; U A, U A3 is the boundary of §5 .

LEMMA 2. With P(z), X(z), and W as above, there exist positive
constants K, , K, such that

p—1
(3.3) <K1Y Ki%,, pxL
q=0

Proof. From Proposition 2 and the Maximum Modulus Principle,

IT(z, p)ll < max{||T(z, p, s)|l|Is| = p},

if we choose p > 0 small enough. From (2.10), (2.11), we find for
Is| =
W, pll<w?, p2>1,

if we take w > 0 large enough. Using (2.13) we find for
R>6, a+d6<y<p-4d, |z|>R, y<argz<y+2m:

G4 ITE IS FEa | Z&RZ%Wq,
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with
di(z) =min{|z - {|||{| 2 R, arg{ =7},
dy(z) =min{|z - {|||{| =R, y<arg{ <y+2n}=|z|-R,
a; = max{[|I*PXOWX O |Is| = p, {=xe”, x >R},
ay = max{|C*| X ONIX 1N Is| = p, {=Re”?,
?< ¢ <y+2n}.

If we take |z| >0+ 1, argz=a+2n+J,thenfor R=9J, y=-0
we have

di(z) > d; > 0 (independent of z), dy(z) > 1;
hence for such z, there exist k;, k; > 0 (independent of p) so that
p—1
IT(z, D)l <ki > k§™%¢;,  p>0.
q=0
From (2.4), we find
cl(,l) < neprko + max{||T(z, p)||||z]| 26+ 1, argz=a+2n+d},
with
ko = max{|| X (2)W X! (2)|| |z € S5},
hence we find K;, K; > 0 (independent of p), so that

p—1
cl(,l) < K; ZKg'ch, p>1.
g=0

Analogously, one can show the same estimate for c,(,z) (enlarging K,

K, if necessary). To estimate c,(,3), we observe that the integrals
in (2.13) give sense for |z| < R and define an analytic function
T(z,p,s) (even entire, since R is arbitrary). Using Cauchy’s in-
tegral formula and deforming paths of integration, we find

(3.5) T(z,p,s)=T(z,p,5)

p-1

+2 Y T(z, X (AW (s, p - )X 1(2)

g=0
for 0 < |z| < R, y <argz < y+ 2xn. Estimating the integral formula
for T(z,p,s) (for R=60+2, y=a+d, and z € A43) it is then
easy to show that c,(,3 ) can be estimated analogously to c,()l) , c1(72) . This
then completes the proof.
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THEOREM 1. With P(z), X(z), and W as above, there exist
P(z,u), F(z,u), analytic in u for every u with |u| < p (for suffi-
ciently small p > 0, independent of z) and every fixed z, such that
(1.4), (1.5), (1.6) hold for every such z and u, and

P(z,0)=P(z), F(z,0)=1

Proof. With T(z, p), Q(z, p) as in Proposition 1, define
oo
F(z,u)= Zu"T(z,p).
=0

According to Lemma 2, the series Z;":O Jp# , with

p—1
fo=1, hHh=K> K, p>1,
q=0

is a majorant for the above power series, and
) 0 p—1
f) =" f# =1+> wP’Ki Y Kyf,
p=0 p=1 g=0

_ uKle
=1+ 1 —uKzf(u)

implies
_ 1- uKz
S(w) = 1 -uK)(1+Ky)’
i.e., f(u) is holomorphic for |u| < (K>(1 + K;))~!. This shows that
F(z, u) is analytic in u, for |u| < (Ky(1 + K;))~! and every fixed
z. Since (2.2) implies (1.4), hence F(z, u) invertible, at least for |z|
large enough, we may define

P(z,u)=F Yz, w[P(z)F(z, u)— zF'(z, u)],

and find that P(z, u), for fixed z, is analytic in u, for u as above.
Equating like powers of u, we find from (2.5)

P(z,u)=P(z)+ ) wQ(z,p), |ul<p;
p=1

hence P(z, u) is a polynomial in z, and (1.6) holds. From (2.4) it
is now easy to prove (1.6).
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4. The meromorphic nature of P(z, u). For an admissible polyno-
mial p,(u), there may not exist P(z, u), F(z, u) satisfying (1.4),
(1.5), (1.6), so that P,(u) = P(0, u) has characteristic polynomial
pu(u) . However, the following is true:

ProvrosiTION 3. With P(z), X(z), W as above and a complex num-
ber u, let p,(u) be an arbitrary admissible polynomial. Then tﬁere
exists a polynomial P(z) (generally of degree larger than r) with P(0)
having the characteristic polynomial p,(u), a matrix T(z), analytic
on the Riemann surface of the Logarithm, and a diagonal matrix K
of integer diagonal entries, with tr K = 0, such that

(4.1) T(z)’-EI+iTkz“k asz—ooin S,
k=1

(4.2) zY'(z) = P(2)Y(2),

with

(4.3) Y(z) =T(z)zXXx(2),

(4.4) Y(ze?™) = Y (z)(I + uW)e*™ M,

Proof. According to a theorem of Sibuya’s [7], formulated in [6],
p. 107, we deduce the existence of 7(z), analytic for |z| sufficiently
large (but not as z = oo ) and having a formal power series expansion
with leading term 7, as z — oo in S , S0 that

(4.5) T(ze*™) = T(z)I + uX(z)WX~(2)).
The matrix
A(z) = 2[T(2) X (2)]'[T(2) X (2)] !
=T(@2)P2)T Y z2)+ zT(2) T \(2)

is easily seen to be single-valued and analytic, for |z| large enough,
and has a pole of order <r at z = co. The meromorphic equation

zy' = A(z)y

is, according to the Birkhoff-Turrittin Reduction Theorem (compare
[6]), meromorphically equivalent to a polynomial equation

zx' = P(2)x,
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with ﬁ(O) having the characteristic polynomial p,(x). Hence there
exists a matrix 7(z), analytic on the Riemann surface of the Log-
arithm, having a formal meromorphic transformation as its formal
expansion, as z — oo in S, such that the matrix 17(2) = T(z)X (2)
satisfies

z¥'(z) = P(2)Y (z2),
Y(ze®™) = Y (z)(I + uW)e?™iM,
Applying [4], Lemma 2, to the formal expansion of T(z) , we find
T(z) = Q(2)T(z)z¥

with K and 7'(z) as in Proposition 3, in particular (4.1), and a poly-
nomial matrix Q(z), with constant non-zero determinant. Deﬁnmg
Y(z) = Q (z)Y(z) and P(z) by (4.2), one easily finds that P(z) is
again a polynomial in z, and P(O) has the same eigenvalues as P(O)
Moreover, (4.3) and (4. 4) hold. Finally, an application of Abel’s for-
mula and (1.8) show that tr K = 0. Thus, the proof is completed.

From Theorem 1 we conclude that, for every » with |u| < p, there
is an admissible polynomial p,(u) = 37 pi(u)u* which is the char-
acteristic polynomial of P,(u), and consequently p,(u) is an analytic
function for |u| < p, 1 <k < n. If we are given a curve along which
these functions p;(#) may be analytically continued, then the follow-
ing Theorem 2 shows that P(z, u) and F(z, u) are meromorphic in
u along this curve, provided that p,(u), for every u on the curve,
satisfies the eigenvalue assumption. The following remark shows that
the eigenvalue assumption is in fact closely related to the analyticity
of the pi(u).

REMARK 4.1. For P(z), X(z), and W as above, define 7,(x) =
S 1 (w)x* = [[(x —xi(u)) asin §l. Suppose that 7,(x) is irreducible
over the field of rational functions (otherwise, treat every irreducible
factor of 7,(x) separately). Then there is a finite set 4 so that for u ¢
A the roots xi(u), ..., x,(u) of 7,(x) are all distinct (and different
from zero). Therefore, one can easily see that

log x(u)
2ni
are analytic functions along every curve avoiding 4 (provided that we

decide upon a branch of the Logarithm, which may depend upon j,
at one end of the curve). Consequently, the p;(#) can be analytically

Auj(u)= ’ ISJSn,
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continued along every curve starting near the origin and avoiding A4.
For uy € A, consider a circle k around u, (positively oriented) of
so small a radius that no other point of A4 lies inside or on k, and
assume that we have analytically continued p; (1 < k < n) to some
u € k. If we analytically continue the algebraic function x;(u) once
around k, it may happen that we end up with, say, x,;(¥). The
analytic continuation of u;(u) (i.e. of logx;(#)) may lead to a value
jtj(u) which may or may not coincide with uy;(u) (since we may
or may not end up with the preselected branch logx,;,(#)). In any
case, there is an integer k; so that

fj(u) = pnjy(u) + kj.

Since u ¢ A, we have x;(u), ..., x,(u) all distinct; hence u;(u), ...,
Un(u) are all incongruent modulo one. Therefore, if k; # 0, then
jt;(u) cannot be a root of p,(u); hence at least one of the func-
tions p; cannot be single-valued. Conversely, if k; = 0 for every
j =1,...,n, then the analytic continuation of the p;(u) leads to
a polynomial having the same roots as p,(u), and hence p;(u) are
single-valued and therefore even analytic at ¥ = uy. For u — uy
along an arbitrarily fixed curve, we have x;(u) — x;(up) # 0, and
hence pj(u) — u;j(up), with x;(up) and u;(up) independent of the
chosen curve. Consequently, fij(«) also tends to u;(up), which im-
plies fi;(uo) = tn(j)(to) + k; (1 < j < m). Since x;(ug) = Xg(j)(Uo),
we find: if p, (4) = limy—, pu(u) (along that fixed curve) satisfies
the eigenvalue assumption, then k; =0 (1 < j < n), and hence all
pr(u) are analytic at u = ugy. The converse does not hold in general,
as one may see from examples (observe that #(j) = j may hold for
every j, which implies analyticity of every p;(u) at ug, even if the
eigenvalue assumption for p, (u) fails).

THEOREM 2. With P(z), X(z), and W as above, the matrices
P(z,u) and F(z,u) (which are analytic in u, for small |u|, ac-
cording to Theorem 1) are meromorphic in u, for u on an arbitrary
curve originating from u = 0, provided that the functions p,(u) can
be analytically continued along this curve, so that p,(1) = 37 pr(u)u*
satisfies the eigenvalue assumption for arbitrary u on the curve.

Proof. Let u(t), 0 <t <1, be a parametrization of some curve as
described in Theorem 2, and let #y be so that F(z, u) and P(z, u)
are meromorphic for u = u(t), 0 < t < ty, (with some # < 1).
Applying Proposition 3 with u = u(ty) = ug, we find 15(2), T(z),
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K ,and Y(z) as stated there. Applying Theorem 1 with P(z), Y(z),
W(I +uyW)~!, and & = u — ug replacing P(z), X(z), W, and u,
resp. (check that the matrix W = W (I + uo W)‘1 is admissible with
respect to Y (z) and S), we obtain P(z ), F (z, i@t), analytic in @,

for |it| < p, so that P(z, 0) = P(z), F(z,0)=1, and

y=1 ZFk -k asz—-o0in S,

F(ze*™ @)= F(z, a)(I + aY (z)WY " 1(2)),
P(z, a)F(z,u)— F(z, #t)P(z).
With
F(z,u) = F(z, nT(z),
X(z,u)=F(z, w)zXX(z) = F(z, #)Y(z),
P(z,u) = P(z, ),
one checks that for v with |u —ug| < p

(4.6) 2X'(z,u)=P(z, wX(z, u),
~ w —~ —~
(4.7) F(z,uy=I+) Fwz* asz—ocoin§,
k=1
(4.8) X(ze*™  u) = X(z, w)I + uW)e*™™,

Moreover, since ﬁr(u) = P(0, u) is analytic for |u—ug| < p, and since
the characteristic polynomial of P.(u) equals Pu,(4) , we conclude
tllat for every u with |u — ug| < p the characteristic polynomial of
Py(u) equals p,(u).

For fixed u, |u— ug| < p, assume that P(z, ) and F(z, u) sat-
isfying (1.4), (1.5), (1.6) exist, with p,(u) being the characteristic
polynomial of P.(u) = P(0, u). Defining

(4.9) T(z,u)=F(z,u)z XF Yz, u),

we obtain from (4.8), (1.5), (4.7), (1.4) that T(z, u) is single-valued
and meromorphic at z = co. Moreover, we conclude from (4.6) and
(1.6) that

zT'(z,u) = P(z, w)T(z, u) - T(z, w)P(z, u),

and since P.(#) and P.(u) have the same characteristic polynomial
pu(u) satisfying the eigenvalue assumption, this in turn implies that
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T(z, u) is a polynomial in z with constant, non-zero determinant.
From [4], Proposition 1 we conclude (replacing F(z, u) and F(z, u)
in (4.9) by their formal expansions) that such a 7(z, u) exists iff an
explicitly given function in the columns of (finitely many) Fj(u) is
non-zero; this function obviously is analytic in u, for |u — ug| < p,
and may be denoted by d(u). Since F(z, u), and hence T(z, u),
do exist for u = u(t), t < tp we observe that d(u) # 0. The formal
identity

T(z, u) (1 + i Fk(u)zk) K=r+00z7"
1

is a system of linear equations in the coefficients 73 (u) of the polyno-
mial 7(z, u), having a unique solution iff d(u) # 0, hence T'(z, u)
is a meromorphic function in u, for |u — uy| < p. Solving (4.9) for
F(z, u), and defining P(z, u) by (1.6), this completes the proof.
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