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A GENERAL BRAUER-FOWLER THEOREM
AND CENTRALIZERS IN LOCALLY FINITE GROUPS

BRIAN HARTLEY

A classical theorem of Brauer and Fowler, proved by quite elemen-
tary arguments, states that the order of a finite non-abelian simple
group G is bounded in terms of the order of the centralizer of any in-
volution in G. Here we use the classification of finite simple groups
to show that the order of such a G is bounded in terms of the order of
any automorphism a and the number of fixed points of α . It follows
easily that if a locally finite group contains an element with finite
centralizer, then it has a locally solvable subgroup of finite index.

1. Introduction. The main result of this paper is the following.

THEOREM A. There exists an integer-valued function f(n, k) such
that if G is a finite group containing an element x of order n such
that \CG{X)\ < k, then G has a soluble normal subgroup of index
dividing f(n, k).

It will be useful to say that a quantity is a, b, ... -bounded, if it
is bounded above by some function of a, b, . . . . We shall see that
Theorem A follows rather easily from the next result, the proof of
which occupies the bulk of the paper.

THEOREM A'. Let G be a finite non-abelian simple group admitting
an automorphism of order n with at most k fixed points. Then \G\ is
n, k-bounded.

This is the general Brauer-Fowler Theorem referred to in the title.
In sharp contrast to the real Brauer-Fowler Theorem [5], its proof de-
pends on the classification of finite simple groups. The case of inner
automorphisms was dealt with in [14, Theorem Al]. It is unclear
whether there is more to be said about the structure of the soluble
normal subgroup in Theorem A. Conceivably it should have a sub-
group of n, ^-bounded index and ^-bounded Fitting height. This is
the case when n is a prime power (see Theorem B below). See also
[13] for further discussion of this.
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A standard inverse limit argument, given in §2, establishes the fol-
lowing consequence of Theorem A.

COROLLARY Al. If G is a locally finite group containing an element
with finite centralizer, then G has a locally soluble normal subgroup of
finite index.

For elements of prime power order, one can say rather more than
Theorem A. Taking into account [12], the following may either be de-
duced from Theorem A, or deduced from Theorem A! by an argument
analogous to Brauer-Fong [4], We leave the details to the reader.

THEOREM B. If G is a finite group containing an element x of prime
power order pn with \CG(x)\ < k, then \G: FnOp'p{G)\ is pn,k-
bounded, where Fn(G) is the n-th term of the Fitting series of G.

COROLLARY Bl. If p is a prime and G is a locally finite group
containing an element of prime power order pn with finite centralizer,
then G contains a normal subgroup H of finite index such that H =

Here, Fn{H) is defined inductively by putting FQ(H) = 1 and
taking Fi+Ϊ(H)/Fi(H) to be the Hirsch-Plotkin radical of H/Fi(H).
Corollary Bl is deduced in a similar way to Corollary Al.

The methods used to prove Theorem A' enable us to improve [11]
Theorem 2 by removing some exceptions which we were not able to
deal with before.

THEOREM C. Let G be an infinite simple group of Lie type over a
locally finite field K of characteristic p, and let a be an automorphism
of finite order n of G. Suppose that p does not divide n. Then there
exist infinitely many primes q such that a fixes an element of order
q ofG.

This was proved in [11] provided that if G has type 2Bι,2 F4, or
2(?2, or if n is even and G has type (?2, then n is a prime power.
However, we will give a new and simpler proof of the general case
here.

An important ingredient in the proof of Theorem A' is the knowl-
edge of centralizers in G of elements in Aut G\ Inndiag G, where G
is a group of Lie type and Inndiag G the subgroup of Aut G generated
by the inner and diagonal automorphisms. Most of these centralizers
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are given in [9], except for involutory "graph automorphisms" in their
sense, and most of these have been worked out elsewhere. The case of
the even-dimensional orthogonal groups in odd characteristic does not
seem to be in the literature in a fully convenient form, though much
of it is in Dieudonne [8]. We give a brief discussion of this in §3.

The work for this paper was carried out at the University of Ore-
gon. The author is grateful to the SERC of the United Kingdom for
financial assistance. He also warmly thanks Gary Seitz for much hos-
pitality and kindness, as well as numerous conversations which were
essential to the development of the proof.

2. Deductions from Theorem A7.

Deduction of Theorem A. It is more convenient (but equivalent) to
think of x as an automorphism of G and work in the semidirect
product H = G(x).

Suppose first that G = G\ x x Gs is a direct product of non-
abelian simple groups G;. Then x permutes the direct factors in
orbits of lengths dividing n. If Gf , . . . , (?/ is such an orbit and
K = Gi x ••• x Gj , then Cκ(x) ^ CG (x*). It is a well known

1 / n

consequence of the classification of finite non-abelian simple groups
that no such group can admit a fixed-point-free automorphism (see
[11] Lemma 4.1 for example). Consequently, Cκ(x) Φ 1. Therefore
the number of orbits is at most k. Since \CQ. (JC')| < k we have a
bound on \Gi\ from Theorem A', and hence on \K\. Consequently,
\G\ is n, /^-bounded.

In general, we form part of a chief series of H passing through G
and consider a non-abelian chief factor U/V. We have \Cv/v(x)\ < ^
[2, VIII. 10.14], so by what has just been said, \U/V\ is n, ^-bounded.
Let N = f]CG(U/V) over all non-abelian chief factors U/V in our
fixed chief series. Then JV is soluble. As G/CQ(U/V) is embedded
in Aut U/V, its order is n, fc-bounded.

Passing to G/N, we may assume that TV = 1, and so G has a
family Λ of x-invariant normal subgroups L such that ΠLEΛ L = *
and \G/L\ is n, λ -bounded for each L e Λ. Now we use induction
on k. If k = 1, then G is soluble as we have remarked. Otherwise
we can choose L G Λ such that CQ{X) J£ L. Then by induction, L
has a soluble normal subgroup S of n, fc/2-bounded index, and since
\G/L\ is n, ^-bounded, so is \G:S\.

Deduction of Corollary Al. Let G be a locally finite group contain-
ing an element x, of order n say, with finite centralizer of order k.
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By Theorem A, we have a number / such that if F is any finite
subgroup of G containing x, then F contains a soluble normal sub-
group of index at most / . Let Σ(F) be the set of all such subgroups
of F and Φ the set of all finite subgroups of G containing x. If
Ft e Φ (/ = 1, 2) , Fx > F2, and S e Σ(F{), then S n F2 e Σ(F2).
Thus 7tFF2 : S *-+ SnF2 maps Σ(Fχ) into Σ(F2). We have an inverse
system Σ(F)FeΦ of finite non-empty sets. The inverse limit is non-
empty [15], and so we can choose SF G Σ(F), one for each F E Φ ,
such that ASJΓ ΠF2 = S>2 whenever Fγ > F2. Let 5 = UFGΦ ^ ^
is easy to see that this is a locally soluble normal subgroup of G of
index at most /

3. Some background results. Because of the classification of finite
simple groups, which tells us among other things that there are only
finitely many sporadic groups, the latter can be ignored in proving
Theorem A!. This leaves us with alternating groups and groups of
Lie type. The alternating groups are easy to handle and will be left
to the reader. We now set up terminology for groups of Lie type and
assemble some basic facts, many of which will be well known. For
general background in this area, see [3, 7, 17].

Notation. G denotes a connected reductive algebraic group over
an algebraically closed field K of characteristic p > 0 . Let σ be a
Frobenius map on G in the sense of [7, p. 31]. When G is semisimple,
this means precisely that σ is a surjective algebraic endomorphism of
G with finite fixed point group Gσ . Sometimes we denote the fixed
point group by C-^(σ). Let G = Op (Gσ). It is well known that σ fixes
a Borel subgroup B of G and a maximal torus T of G contained in
B. Let N = Nς{T) and W = N/T be the Weyl group. Let σ* be
the map induced by σ on the character group X = X(T) and on its
real extension XR = X ® R. There is a unique smallest integer δ > 1
such that σ*s is a positive integral multiple of the identity, and we
can write then σ* = qσ$, where q = q(σ) is a positive real number
and σξ=l. See [7], also [14, Section 3].

Suppose now that G is simple as algebraic group. . In this case, σ$
is an isometry of XR [17, p. E21]. The number q is an integral power
of p except in types 2B2,

2 F4,
2 G2, when q2 is an odd power of 2, 2

or 3 respectively, and G is considered as defined over Fq except in
the three cases just mentioned, when it is considered as defined over
Fqi (see [7, p. 36]). We often think of G as a Chevalley group
constructed from a complex simple Lie algebra. Let Chev denote the
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collection of all such groups G. If G is also of adjoint type, then G
is simple except in a few small cases, and all finite simple groups of
Lie type arise in this way.

Our notation and terminology for automorphisms of G is some-
times consistent with [6], [19] and sometimes with [9, p. 78 et seq].
This is unfortunate since their terminologies are sometimes in conflict,
especially as regards graph automorphisms, but seems inescapable.
When we use the undecorated terms "graph automorphism" and "field
automorphism", we do so in the sense of [6], [19]. In particular, we
have in mind a fixed parametrization of G as a Chevalley group.
We write "GL-graph automorphism" (for Gorenstein-Lyons), when
we wish to speak of a graph automorphism in the sense of [9]. We
have (see [9])

(3.1) A = AutG = GσΦGΓG,

where we have identified Gσ with the group Inndiag G it induces on
G by conjugation, ΦG is the group of field automorphisms of G, and
ΓQ is a canonical set of graph automorphisms constructed as in [19, p.
157] or [6], together with, and perhaps consisting only of, the identity
map. There is uniqueness of expression in the above.

We do not need to explain fully the terminology of [9], except to
clarify the term "GL-graph automorphism". An element a is a GL-
graph automorphism if and only if either (i) G is untwisted and not
of type 2?2, F4, or G2 > and a e GσΓG \ Gσ , or (ii) G is twisted, the
associated twist, or symmetry of the Dynkin diagram, has order d,
and a is an element of A \ Gσ of order divisible by d. This is not
quite what is said, but appears to be what is intended, in [9]. In partic-
ular, the groups 2?2 > FA a n d ^2 have no GL-graph automorphisms.
We need the following, which in most cases is well known.

LEMMA 3.1. Suppose that G is simple of adjoint type. Let a be an
element of prime order r in A\Gσ. Then CG(a) involves a finite
non-abelian simple group H such that \G\ is \H\, r-bounded.

Proof. This follows from [9, (9.1)] except in the case when r = 2
and a is a GL-graph automorphism. When G is untwisted this means
that a e Gσγ\Gσ, where γ is an element of order 2 in Γ^, and G
has type A\, D\ or £ 6 . In characteristic 2 these cases are covered in
[1]. Recalling that the graph automorphism of PΩ+(2l, q) is induced
by conjugation with an involution in <9+(2/, q) [6, p. 272], we find
the case /)/ in [1, (8.7), (8.10)]. Types Ax and E6 are in [1, (19.8),
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see also §13]. For types A\ and E$ in odd characteristic, see [10,
Lemmas 4.25 and 4.27 and Remark 4.28]. The orthogonal groups D\
in odd characteristic do not appear to be covered in the literature and
we deal with them in Lemma 3.2 below.

When G is twisted, the statement that a is a GL-graph automor-
phism of order 2 means that a e Gσγ \ Gσ , where γ is the element
of order 2 in ΦQ , and G has type 2A\,2 £>/,2 Eβ. In characteristic 2
we consult [1, (8.7), (19.8)]. In odd characteristic, types 2A\ and 2E6

are dealt with in [10], see Lemmas 4.26 and 4.29 and Remark 4.30.
This leaves the orthogonal groups 2Z>/ in odd characteristic, and they
are also dealt with in Lemma 3.2 below.

We now set up some background on the orthogonal groups, in prepa-
ration for Lemma 3.2.

For some of what follows, and general background, see [8]. Let
S = SO(2/, K), where K is an algebraically closed field of odd char-
acteristic p > 0. Then S is a group of invertible linear transforma-
tions of a 2/-dimensional vector space V over K, preserving a non-
degenerate symmetric bilinear form / o n F . Since all such forms
are equivalent, we may take / to have matrix

E2l =
0 JΛ

with respect to a suitable basis X\, . . . , X\, x_i, . . . , x__/ of V. Let
γ be given by

γ(χ±ι) = *τi r(χj) = xj U Φ /).

Then γ preserves / , and so γ e 0(21, K). From [6, p. 272], we have
that conjugation with γ induces on SO(2l, K) its canonical graph
automorphism (there is a natural root structure in this situation). We
have

O = (9(2/, K) = SO(2l, K) x (γ).

Let q be a power of p, think of G as a matrix group with respect
to the above choice of basis, and let σ be the #-th power map on
S. Then σ and σγ are Frobenius maps on S and induce Frobenius
maps on G = PSO(2/, K). The group G is the adjoint group of type
Dι,and

where the plus sign is taken if τ = σ and the minus sign if τ =
σγ. We are interested in the centralizers in Op' (Gτ) of involutions
in Gτ(γ), and in particular in the non-abelian composition factors of
these centralizers.
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LEMMA 3.2. Let G be as above, with / > 1, let w be any involution
in Gτ{γ), and let G = Op> (Gτ). Then CG(w) involves at least one {and
at most two) of the groups

PΩ±(/, q2), PSL(/, q), PSU(/, q), />Ω±(2/ - 1, <?),

PΩ£i(d,q)xPΩε2(2l-d,q) (β/G{±l}, 1 < d < I).

More detail can be extracted from the proof, but we have no need
of it.

Proof. Since Gτ/G is of order dividing 4 [6, p. 99], it suffices to

show that C-g (w) involves one of the above groups. Let Z be the

centre of S. Then Z = (-1). For any element x e (9, let

Then C*(x)/Z = <%(xZ). We calculate C*O) for each element
w e O such that wZ has order 2. If wZ is τ-invariant and C =
C*{w)/Z9 then

Q ( ι / ; Z ) - C τ

and our results will follow from standard facts about Frobenius maps.
Now wZ is an involution if and only if w is either an involution

different from — 1, or an element of order 4 whose square is — 1.
Suppose first that u is an involution, u Φ — 1. Then we have

V = V_ e Γ+ ,

where F_ and V+ are respectively the —1 and +l-eigenspaces of
u. These eigenspaces are orthogonal, and so the restriction of / to
them is non-degenerate. Let d = dim F_ , and C* = C*(u). Then C*
leaves F_ and V+ invariant if d Φ I, and permutes them if d = /.
We clearly have

C*(κ) - (<9(</, K) x 0(2/ - rf, K)) Π 5 (rf φ I),

and

C*(κ) = (0(1 ,K)lC2)Γ)S (d = l).

Some abuse of notation is involved on the right hand side, but it should
be clear what is intended.

Now let v be an element of order 4 in O such that v2 = - 1 . Let
ζ be a primitive 4-th root of 1 in K. Then

V =V
ζ
® V_

ζ
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is the direct sum of the £- and -C-eigenspaces of υ . These are easily
seen to be totally isotropic, and hence by Witt's Theorem they have
dimension at most /. Therefore dim Vζ = dim V_ζ = /. Each of these
spaces induces the full dual of the other with respect to / . An element
of C*(υ) either fixes both Vζ and V_ζ or interchanges them, and in
the former case, its actions on these two spaces must be mutually dual.
We see that

C*(υ) = (GL(l,K)(t))nS9

where t is an element of order 2 interchanging Vζ and V_ζ and
inducing the inverse transpose map on GL(/, K).

It follows that the semisimple part of C*(u)/Z is either a central
product (possibly direct) of two special orthogonal groups whose de-
grees sum to 2/ ,or SO(2/ — 1, AT) in case d — 1 or 2/ - 1, and that
of C*(υ)/Z is a central extension of PSL(/, K).

Now if w is any involution in Gτ(γ), then w has the form u or v
above, and wZ is τ-invariant. Hence C — C*(w)/Z is τ-invariant,
and τ induces a Frobenius map on it.

By standard facts, the perfect radical of Cτ will be a central product
of one or two central extensions of finite versions (possibly twisted)
of the simple components of C*/Z , defined over the field of q or q2

elements. See [14], Lemma 3.3 and proof of Theorem C: finite case.
The result follows.

The next result can be found for maximal tori of semisimple groups
in [16, (2.4)], but the present case needs a little work and seems worth
spelling out. Note that the possiblity S = G is allowed.

LEMMA 3.3. Let G be connected reductive, and S be an arbitrary
non-trivial σ-invariant torus of G. Let S have rank r. Then \Sσ\ =
\f{q)\, where f{X) is a real monic polynomial of degree r whose roots
are roots of 1 of degree at most r2 over the ratίonals. If G is simple,
then r2 can be replaced by 2r. Hence

(q-iY<\Sσ\<(q+iy.

Proof. The map σ induces a Frobenius map on C-^(S)/S and fixes
a maximal torus U/S of this group [8, p. 33]. Then U is a σ-invariant
maximal torus of G. Let W be the character group of U, and

S± = {χeW: χ(s) = 1 for all s e S}.

Then W = W/S1- is naturally isomorphic to the character group X(S)
of S [8, p. 26]. Let σ* be the map induced on the character group
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of W by σ, so that

σ*χ(u) = χ(σ(u)) for χeW,ueU.

Then S-1 is σ*-invariant, and Sσ is in duality with, and hence iso-
morphic to, W/(σ* - \)W. By standard facts, the order of this group
is |det(σ* - l)ψ\> where (σ* - l)ψ is the endomorphism induced
on W by σ* - 1. In calculating this determinant, we can replace
W by its real extension WR. Then σ* takes the form qσo, where
σo has finite order. For this is true of a maximally split torus, as is
well known, and in general we twist by an element of the Weyl group,
which just modifies σo by an isometry of finite order. Thus, if σo is
the map induced on WR by σo > then

\Sσ\ = I det(#σ0 - 1)| = | det(q - σ ^ ) | | det σo |

where / is the characteristic polynomial of <7Q 1 . Since CΓQ * has finite
order, the roots of / are roots of 1. We have f{X) = Π/=i(^ ~~ &') >
where the d are roots of 1, hence (q - l)r < \f(q)\ < (q + l ) r , by the
triangle inequality.

It remains only to give a (probably rather crude) estimate for the
degrees over Q of the eigenvalues of σo. If ζ is such an eigenvalue,
then qζ is an eigenvalue of σ*, so qζ is an algebraic integer of degree
at most r over Q. Taking the absolute value of its norm, we find that
q* e Z for some t < r9 whence ζ* has degree at most r over Q.
Hence ζ has degree at most r2 over Q. If G is simple, then q2 is
an integer, and the above argument yields 2r instead of r2 .

Much, if not all, of the next result is well known.

LEMMA 3.4. Let G be simple of adjoint type and let s be a semisim-
pie element of order n in Gσ. Then CQ(S) contains a product Y\-Ύt

ofpairwise commuting groups in Chev, defined over extension fields of
that over which G is defined. If G is of classical type and has rank I,

r{n) = n + [-

then for some i, the overlying algebraic group of Yι has rank at least
(I - n)/r(n). Further, t > 1 unless Cg(s)° is abelianf in which case
C-g(s) contains no element of order p.

Proof. Let Gsc be the universal cover of G and π : Gsc —• G the
canonical projection. Then s is the image of a semisimple element
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s' G Gsc, and π maps C^ (V) onto C-^(s)°. The structure of C^ (sr)
is given by [14, Theorem 4.2], and then applying [14, Lemma 3.3] to
{C-g(s)°)σ gives the result.

See also [16, (2.9)].

4. Generalities on fixed points of automorphisms of finite groups of
Lie type. We continue with the notation of §3, and assume throughout
that G is simple (but not necessarily of adjoint type) . We think of
G as realized in some explicit way as a Chevalley group over K. Let
Φ be the group of field automorphisms of G and Γ the set of graph
automorphisms constructed as in [6, §12.2-12.4], together with the
identity.

The first two results are very similar, but it seems better to deal with
the cases of B2, F4 and G2 separately.

PROPOSITION 4.1. Suppose that G is not of type B2,F4 or G2.
Let σ — vy, where v is a Frobenius map in Φ and y G Γ, and let
G = Op'(Gσ). Let a = gφδ G A = AutG, with g eGσ, φeΦG, and
δ G TQ - Let φ have order r, let a have order n, and let q = q(σ).
Then one of the following occurs.

(I) C£ (a) = C-^{g\)μ> where g\ = ar G GσΓG, and μ is a Frobe-
σ

nius map on G such that μ(g\) = g\ and q(μ)r = q. Further, gγ has
order n/r.

(II) γ Φ 1, δ = 1, and the order m of γ divides r. Let r = ms,
let as = gιφs, where gi G Gσ, and let γf be the element of Γ which
agrees with φs on G. Then there is a Frobenius map μ on G such
that μ{g2Y) = gif, q(μ)s = q, and C^ (α) = CG(g2γ')μ. Here, the

σ

order of g2γ
f is n/s.

Further, ifr — n and n is coprime to the order of γ (the latter
happens in particular if γ = I), then a is conjugate under Gσ to an
element of

In case (II), of course, γ' = γ unless G has type D4, in which case

The analogous result for types B2, F4 and G2 is as follows.

PROPOSITION 4.2. Suppose that G is of type B2, F4 or G2. Let
a = vy, where v is a Frobenius map in Φ and y G Γ, and let
G = Op'(Gσ). Let a = gφ G A = Aut G, w/ίΛ g G Gσ απrf (/>_G Φ G Γ G .
L^ί 0 have order r and a have order n, and let g\ = ar G Gσ. Then
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where θ is a Frobenius map on G such that θ(gγ) = gγ and q(θ)r =
q. Further, g\ has order n/r, andifr = n, then a is conjugate under
Gσ to an element of

Special cases of the above results, at least, are certainly known, see
[9] for example. Lang's Theorem is the main ingredient in their proof.
It is useful to separate out part of the argument as follows.

LEMMA 4.3. Let a = gθ eA, with g e Gσ and θ e Φ G Γ G . Let θ
have order r and ar = (gθ)r = g\ e Gσ . Suppose there is a Frobenius
map τ on G that induces θ on Gσ and satisfies τr = σ. Then

C-Q (α) = <%(#iV,
a

where ψ is a Frobenius map on G such that ψ(g\) = g\ and ψ is
G-conjugate to τ.

If, further, r = n, then a is conjugate to θ under Gσ .

Proof. We have

% {a) = Cc({σ, gτ)) = Cc{(τr, gτ)).
a

Now

(4.1) (gτ)r = g • gτ" • • • £ τ~< r~ Y = g • gθ~' • • • gθ'"'\r = gxτ
r,

whence τr = gj~ 1(gτ)r. So

Cτ (a) = C^((g^(gτ)r, gτ)) = C^((gί, gτ)).

By Lang's Theorem, working in the split extension (7ΦΓ, we have
that gτ is G-conjugate to τ . Also, gτ acts as a on Gσ and so
commutes with ar = g\. Letting ψ be the Frobenius map induced
by conjugation with gτ, we deduce that

Now suppose that r = n . Choose h G G such that

(4.2) (gτ)h = x.

Raising (4.2) to the r-th power and using (4.1) shows that h commutes
with τr = σ, that is, heGσ . Then we find that

ah = ( g θ ) h = gh[h , θ ~ ι ] θ = gh[h , τ ~ ι ] θ = θ

from (4.2).
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Proof of Proposition 4.1. We consider various cases.
Case 1. γ = 1, o(δ)\r. Let τo be the element of Φ such that

TQ = σ. Then τo induces an element φo of ΦQ of order r. Hence
(< 0̂) = (φ) 9 and φo = 05 with (r, s) = 1. Write a = a\a2 where
αi is an r-element, a2 is an r'-element, and aχa2 = α ^ i . We have
(α^, a2) = {a) and so if β — a\a2, then C^ (/?) = C^ (α). We have

a σ

β = g*φsδs with g* G G σ . Let τ = τ 0 ^ . Since δr = 1, we have
τ r = σ, and τ induces φsδs. Clearly (yffr) = (ar). By Lemma 4.3,

where μ is a Frobenius map G-conjugate to τ and gi is //-invariant.
Thus, q{μ)r = ήf. Lemma 4.3 also yields that if r = « in this case,
then /?, and hence a, is ^-conjugate to an element of ΦG^G

Case 2. y = 1, δ Φ 1, and (o(δ), r) = 1. Note that in this
case, r Φ n. Let τ e Φ be such that τr = σ. Then τ induces an
element of order r of Φ G , and by modifying the r-part of a as in
Case 1, we may assume that this is φ. Let m = o(δ). We can write
(a) = (αi) x (c*2), where αj is an m'-element, a2 is an m-element,
and OL\ = Xζ/>, α2 = }̂ (ϊ with I J E G J . Then

(4.3) {of) = (αj, α2)

Let Xi = a\ G Gσ . Then (xτ)r = X\τr as in Case 1, so τr = x1~
1(xτ) r.

We have

^ (α) = C^((τ^, xτ, ^ } ) = ^ ( x Γ ' ί x τ ) ' , xτ, yδ))
σ

, xτ, yδ)) = C^((αϊ, α 2 , ^ ) ) = C^(

from (4.3), where μ — xτ which, by Lang's Theorem, is G- conjugate
to τ . Since xτ — μ acts on g\ as xφ = α i , certainly ^ is μ-
invariant, and q(μ)r = (?.

Case 3. y Φ 1, (r, m) = 1, where m = o(γ) G {2, 3}. In this
case δ = 1. We wish to invoke Lemma 4.3. Let τ G Φ be such that
τr = v , and let v induce v\ G Φ ^ , so that z/i has order 2 or 3. First
suppose that γ has order 2. Then v\ has order 2. Consider the effect
of τγ on Gσ. Now τ r induces v\ on G σ , and since vy is trivial on
Gσ , y induces v\ also. So τy induces a field automorphism of order
r on Gσ , and by adjusting the r-part of a, we may assume that τγ
induces φ. Now everything, including the final conjugacy statement
if r = n , follows from Lemma 4.3.

When y has order 3 the situation is broadly similar. Arguing as
above, we find that (τγ)r induces v\~r on Gσ . If r = 1 mod 3, then
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we find that τγ induces a field automorphism of order r on Gσ , and
everything is identical. If r = -1 mod 3, we consider τγ2 instead.

Case 4. γ φ 1, m = o(γ)\r. Again <J = 1. Verification of the final
conjugacy statement does not arise here. Set r = ms, and let τ be the
element of Φ such that τs = v. Then τ induces on Gσ a field auto-
morphism of order ms = r, which is the order of φ. Now the natural
map GσΦΓ —> G^ΦG is monomorphic on the normal subgroup G^Γ,
and the element #2/ occurring in (II) is the unique element of GσT
mapping to as under it. Thus, replacing a by another generator of
(α) does not change (g2γ). This allows us to make such a replacement
and assume that τ induces φ on Gσ . Now we have / = γ~x, since
τ5 = v , τ5 induces 0 5 , and vy induces the identity on Gσ . We have

( * τ ) ' = g • **-' • • ^ V = g • g*~ι • • • * • • - V = g2τ
s,

since (gφ)s = gιΦs • Hence v — τs = g^ig^Y and

c - 1 , gτ)) = Cc

Now #2/ has order w/51 and commutes with gτ 9 since these state-
ments become true after applying the natural map GσΦΓ —> GσΦo,
and by Lang's Theorem, ^τ induces on G a Frobenius map μ con-
jugate to τ under G. Therefore q{μ)s = ^(τ5) = q(v) — q(σ), and
Cτ (a) = C ^ f t / ^ .

Proof of Proposition 4.2. This follows directly from Lemma 4.3,
since every element of ΦG^G is induced in the appropriate way by a
Frobenius map on G, when G has type B2, JF4 or G2 .

Now we extract from the above results the information that we need
for the proofs of Theorems A; and C.

THEOREM 4.4. Let G have rank I, let a be an automorphism of
order n of G, and suppose that p does not divide n. Then

(i) C-g (a) = Hψ, where H is an infinite reductive group and ψ
σ

is a Frobenius map on G such that H is ψ-invariant and q(ψ)m = q
for some m dividing n.

(ii) \C-Q (α)| > qλlm - 1 for some divisor m of n. Further, either
a

qχlm is an integral power of pf or G has type B2, F4 or G2, p =
2 , 2 , 3 respectively, and q2lm is an odd power of p.
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(iii) There is a polynomial f with real coefficients and a positive in-
teger m dividing n such that \f(qι^m)\ is an integer dividing \C Q (α)|.
The degree of f is at most I and its roots are roots of 1 of degree at
most 21 over Q.

Proof, (i) From Propositions 4.1 and 4.2, we see that C^ (a) has
the form C^{β)ψ , where β is a semisimple algebraic automorphism
of G and ψ is a Frobenius map on G commuting with β and so
leaving H = C^(β) invariant. Further, q(ψ)m = q, where m\n. By
a well known theorem of Steinberg [18, (8.1), (9.2)], H is an infinite
reductive algebraic group.

(ii), (iii) By another theorem of Steinberg [18, (10.1)], ψ leaves
invariant some maximal torus S of H. The rank of S is at most
/. We obtain (ii) and (iii) by applying Lemma 3.3 to Sψ. Since
qιlm = q(ψ) 9 it or its square is a power of p as stated.

5. Proofs of Theorems A' and C.

Proof of Theorem A1. We prove the theorem by induction on n. The
case n = 1 is trivial. Note that when Theorem A' has been proved
for all divisors of a given integer n, then Theorem A follows for all
divisors of n, by the proof of that theorem. When we say that a given
quantity is bounded during the course of this proof, we mean that it
is bounded in terms of n and k.

The classification of finite simple groups tells us that our simple
group G is either sporadic, alternating, or of Lie type. As there are
only finitely many sporadic groups, they can be ignored. The alternat-
ing groups will be left as a simple exercise for the reader, and so we
now assume that G is of Lie type and use the notation of §3.

It is sufficient to bound the rank I of G and the field parameter
q oϊ G. Let a be the given automorphism. Write n = p[ι \p[',
where the pi are distinct primes, and let a = a\ at, where α/ has
order p\ι and the α/ commute. Let βt be an element of order pi in

Suppose first that t — 1, p\ = p, and n = pr. Then a leaves
invariant some Sylow p-subgroup P of G. Let Φ(P) be the Frattini
subgroup of P and P be the elementary abelian group P/Φ(P). Then
| ? | is divisible by qι (see [6, 5.3, 13.6]). Also |C ? (α) | < k ([2,
VIII. 10.14]). We have ( α - l / = 0 o n ? , and it follows by well
known arguments using Jordan blocks or the like that \P\ divides
\C p{a)\pT < kpi. Hence qι is bounded, as required.
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Now we may assume without loss of generality that

P\ΦP-

We may further assume that

βieGσ for l<i<t.

For if some βι is not in Gσ, then Lemma 3.1 tells us that CG(βi)
involves a non-abelian simple group H such that \G\ is bounded in
terms of \H\. But applying induction to the action of a on CG(βι)
gives us a bound on \H\ and hence on \G\.

Now we show that

G has bounded rank.

This is because, if G has rank / and classical type, then by Lemma
3.4, CG(β\) involves a group of Lie type of the form H = Op>(Hτ),
where H is a simple algebraic group of rank at least (/ - n)/r(n) >
(/ - n)/2n, τ is a Frobenius map on //, and H is defined over
an extension of the field over which G is defined. By induction, we
have a bound on \H\9 and this gives us one on /. The ranks of the
exceptional groups are of course bounded in any case.

Since \C-^ (a)/G\ is bounded in terms of / (in fact it is at most
a

/ + 1, see [6, pp. 98-99] for example), we have

\C-g (α)| is bounded .
a

It remains to bound q. Now if Cg(βi)0 is non-abelian for some /
such that pi ψ /?, then again we find that Co(βi) involves a group
in Chev over some extension field of Fq (F i if G is a Suzuki or
Ree group). This group will be simple unless q is already very small,
and we obtain our bound on q by induction. If pi = p for some i,
then as /?/ e C^(β\)° 9 we have that C-^(βι)0 is non-abelian (see [14,
Theorem C], for example, for this well known fact ). We conclude
that we may assume that

Piφp for 1 < / < t.

By Theorem 4.4, \Cg (a)\ > qιln - 1. This bounds q and concludes
σ

the proof.

Proof of Theorem C. This is now rather straightforward. Most cases
were covered in [11], but we will give here a proof covering all cases.
For our simple group G we have, by [14, Lemma 4.3], a simple
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Chevalley group G over K, a Frobenius map σ on G, and a se-
quence of integers n(1) |n(2) | . . . such that

oo

G = ( J Gt , where G; = O ^ G ) ^ .

Let Φ and Γ be the field and graph automorphisms of G as at the
nn(i)

beginning of §4. Let Hi = G and H = (J£i #/. Then we can take
σ G ΦΓ and a to be induced on G by an element βθ ,where β
is conjugation by some element h of H and 0 e ΦΓ [19, p. 195].:

Further, θ commutes with σ. In fact, one of θ and σ will be in
Φ, which commutes elementwise with ΦΓ. Let h e i/, . Then /?#
leaves ϋ ) invariant if y > /, and so we may assume that βθ leaves all
Hi invariant. Further, (βθ)n is trivial on each //,-. This is because
CH.(GI) = 1 and so every non-trivial automorphism of Hi restricts
non-trivially to Gj.

Thus, we can think of a as an automorphism of order n of H
leaving all Hi invariant. Since the groups ////(?/ have order bounded
independently of / (in fact by / + 1 , where / is the rank of G), it will
suffice to show that the numbers |C/y (α)| have infinitely many prime
divisors between them.

Let q — q{σ) and / be the rank of G. By Theorem 4.4, |Cf/(α)| is
divisible by \fi(qn(<ι^m^)\ , where f\ is some real monic polynomial
whose degree is at most / and whose roots are roots of 1 of degree at
most 2/ over the rationals. The roots of /} are drawn from a finite
set, so only finitely many polynomials occur as fi. There are clearly
only finitely many possibilities for the m(ϊ). Thus, there is an infinite
sequence *Ί , ϊ'2 > a polynomial / and a divisor m of n such that
y; = / and mif = m for all r. By [11, Lemma 2.3], with s = ql>m,
the numbers f{qn^)lm) have infinitely many prime divisors between
them. This concludes the proof.
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