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For certain even order cyclic and some non-cyclic abelian groups G
we construct smooth actions on homotopy spheres Σ with exactly two
fixed points, ΣG — {p, q}, such that the tangential representations
TPΣ and TqΣ are not isomorphic.

1. Introduction. Two real representations V and W of a finite
group G are called Smith equivalent if there is a closed smooth mani-
fold Σ which is homotopy equivalent to a sphere and G acts smoothly
and effectively on Σ with exactly two fixed points, ΣG = {p, q}, such
that the tangent spaces TPΣ and TqΣ at p and q are isomorphic
to V and W as representations of G. Several authors have stud-
ied the question of which groups do and which groups do not have
non-isomorphic Smith representations. We shall recall their results
below.

In this paper we want to contribute two other classes of groups
which have non-isomorphic Smith equivalent representations. The
first one is as follows. Let H be a cyclic group of odd order, and
G = H x Z2k, k > 0. Below we shall give a list of conditions (see
Condition 2.2) for a pair (A, B) of representations of H. There are
cyclic groups H of odd order and non-isomorphic representations A
and B of H such that these conditions are satisfied. In Theorem 2.3
and Theorem 2.4 we quote two results from [DP2] and [DW] which
provide examples. Theorem B of [DP2] shows that such groups H
have non-isomorphic Smith equivalent representations. In §4 we will
prove our first principal result, which extends the just quoted theorem.

THEOREM A. Suppose H is a cyclic group of odd order which has
non-isomorphic representations satisfying the conditions in 2.2. Assume
that the order of H is divisible by at least three distinct primes. Then
G — H x Z2k has non-isomorphic Smith equivalent representations.

In particular, if A and B are two representations of H which satisfy
Condition 2.2, then there exists an action of G on a homotopy sphere
Σ with exactly two fixed points x and y, and TXΣ - TyΣ = I (A - B)
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for some I Φ 0. Here A and B are considered as representations of
G with trivial action of Z2*. // AφB then TXΣ φ TyΣ.

We give the details of the proof only in the case k = 1. For k > 1
more notation is needed but the argument is basically the same.

In our second result we consider abelian groups G with at least three
non-cyclic Sylow subgroups. Let A and B be real representation of
G such that

Condition. 1.1. (I) Aκ = Bκ = 0 whenever G/K is of prime

power order.
(2) Resp A = Resp B whenever P c G is of prime power order.
(3) dim,4* = dim Bκ for zλ\ K c G.

We shall show in Lemma 5.1 how to construct non-isomorphic rep-
resentations A and B for any such group G. Our second principal
result generalizes one of T. Petrie [PI] which we recall below.

THEOREM B. Suppose G, A and B as in Condition 1.1. There
exists an action of G on a homotopy sphere Σ with exactly two fixed
points x and y such that TXΣ- TyΣ is a non-zero multiple of A-B.
In particular, if AφB then TXΣ φ TXΣ.

This is not only an improvement of Petrie and Randall's result, but
we also give a proof which shows that Σ may be chosen to be equiv-
ariantly cobordant to a product of surfaces as they are constructed in
§3 of [DP2]. (See also §3 of this paper.) This will be used in [DKS].
In the proof of Theorem B we will use information about a surgery
obstruction group for which we thank A. Bak.

The study of Smith equivalent representations is motivated by a
question of P. A. Smith [Sm] who asked whether Smith equivalent
representations are linearly isomorphic. Atiyah-Bott [AB] and Milnor
[M] established an affirmative answer to the question for semi-free
actions and for actions of cyclic groups of odd prime power order.
By definition, a semi-free action has the whole group and the trivial
group as its only isotropy groups. Sanchez [Sz] showed that the an-
swer is also affirmative for cyclic groups of order pq, where p and q
are odd primes. Additional elementary considerations show that the
answer is affirmative for any group whose order is a product of two
primes. Bredon [B] showed for 2-groups that Smith equivalent repre-
sentations are isomorphic if their dimension is large in comparison to
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the order of the group. Two Smith equivalent representations are said
to be s-Smith equivalent if the action is semi-linear, i.e., we require in
addition that the fixed point sets Σκ are homotopy spheres for every
subgroup K c G. Sanchez's result also implies that s-Smith equiva-
lent representations of any cyclic group of odd order are isomorphic.

Petrie announced the first negative answer to Smith's question [PI],
see [PR1] for the details of the proof,

THEOREM. Suppose G is an odd order abelian group with at least
four non-cyclic Sylow subgroups. There are non-isomorphic Smith
equivalent representations of G.

In this reference Petrie also posed the problem of finding all groups
which have non-isomorphic Smith equivalent representations. Our
Theorem A is a contribution to the solution of this problem. Since
Petrie's announcement several authors provided classes of groups
which have non-isomorphic s-Smith equivalent representations. One
such class are cyclic groups of order Am, where m > 1. See the
work of Cappell-Shaneson [CS1], Petrie [P2], Siegel [Si], and Dover-
mann [D]. Non-isomorphic s-Smith equivalent representations were
also constructed by Suh [Sul] for some non-cyclic abelian groups and
by Cho [Cl] and [C2] for certain quaternion and dihedral groups.
Non-isomorphic Smith equivalent representations of odd order cyclic
groups were constructed by Dovermann-Petrie [DP2]. The groups
were of rather large orders. Dovermann-Washington [DW] showed
that such non-isomorphic Smith equivalent representations also exist
for cyclic groups of small orders. The topic of Smith equivalent rep-
resentations was surveyed in [DPS], [MP], [CS2], and Petrie-Randall
[PR2] wrote a book about it.

This review of the history shows that, basically, Petrie's question
has been answered for cyclic groups, except for those groups whose
order is of the form 2m where m is odd, and this is the class of
groups we are treating in this paper. In Theorem A this is the case
when k = 1. In case k > 1 the result is interesting for the discussion
in [DKS], because we get some additional conclusion based on the
specific construction. There we conclude that the actions described in
Theorems A and B can be chosen to be real algebraic.

In the construction of s-Smith equivalent representations for groups
Z 4 m , with m > 1, the papers mentioned above use in an essential way
that the subgroup Z2m occurs as isotropy group. This implies that the
s-Smith equivalent representations restrict to the same representation
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of Ίj2m. This is not the case in [Sul], [Cl], and this paper. Here
one supposes non-isomorphic Smith equivalent representations of the
group H, and then one uses them to construct such representations for
the group G in which H is an index 2 subgroup. In fact, if V and
W are Smith equivalent representations of a cyclic group G, and H
is an index 2 subgroup which is an isotropy group of either V or W,
then V and W are isomorphic (see [Su2]). Thus the non-isomorphic
representations of G in Theorem A must also be non-isomorphic as
H representations.

Based on the different constructive approaches it happened that the
technique of proof implied if one constructed non-isomorphic (s-)
Smith equivalent representations for the group H, then one could also
construct such examples for the group G in which H is a subgroup.
These groups G had to be again of the same form as those groups
one started out with. In [PR1] one would assume that H and G are
abelian of odd order with at least four non-cyclic Sylow subgroups. In
[DP2] and [DW] one would assume that H and G are cyclic of odd
order and that H has non-isomorphic representations which satisfy
2.2. More generally we like to conjecture:

Conjecture. Let H be a subgroup of G. If H has non-isomorphic
Smith equivalent representations, then so does G.

2. Preliminary material. We shall formulate Condition 2.2 which is
the essential assumption in our Theorem A, and we shall describe how
to satisfy it. Let us fix some notation. For any group G we denote by
3°{G) the set of all subgroups of G of prime power order. Also, let 3?
denote the set of all groups of prime power order. We use the follow-
ing standard notation for the complex 1-dimensional representations
of a cyclic group Zw of order n. Consider Zw as being identified with
the ft-th roots of unity, so Z n c C . The underlying vector space of
the representation tk is C, and under the action (g,v) is mapped
to gkυ. For any cyclic group G of order n the complex represen-
tation ring R(G) is isomorphic to Z[t]/(tn - 1). Thus any complex
representation can be written as a linear combination of the elements
i n { t k \ k = 09... , n - 1 } .

Let G be cyclic of order n, and let V = Y^a^tk be a complex
representation of G. For g e G such that the fixed point set Vg =
{0} Atiyah and Bott [AB] defined a complex number
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Note that v carries sums to products; so we can define

for any two representations V and W of G for which v is defined.
Suppose V and W are Smith equivalent representations of Zn sup-
ported by an even-dimensional homotopy sphere Σ, i.e., ΣG = {p, q)
and TpΣ = V, TqΣ = W. The Atiyah-Singer G Signature Theorem,
the Lefschetz Fixed Point Theorem, and Smith Theory imply

Condition. 2.1. (1) Sign(G, Σp) = 0 for Pe^(G). In particular,
v(Vp - Wp)(g) = ±1 if K<p>s> = W<p>s) = 0. Here (P, g) denotes
the group generated by P and g G G .

(2) The Euler characteristic /(Σ*) = 2 for all subgroups K cG.
(3) Res/> F = Resp PF for each P e &>(G) of odd prime power

order.

An easy computation shows that v(V)(g) = ±v{V'){g) whenever
V and V are isomorphic as real representations. Let U and U' be
real representations of G such that Ug = £/'£ = 0. We write

v(U)(g) = ±v(U')(g) or v(U - U')(g) = ±1

if C/ and t/' are realifications of complex representations V and V
such that v{V){g) = ±ι/(F /)(g). This explains our notation in 2.1(1).

In order to find non-isomorphic Smith equivalent representations
we have to start out with two non-isomorphic representations which
satisfy 2.1(1) and 2.1(3). Actually we will make some additional as-
sumptions in 2.2 which will allow us to carry out the construction of
the homotopy sphere which supports the Smith equivalent represen-
tations.

From now on, unless specifically stated otherwise, G denotes a
cyclic group of order 2n where n is odd and H is the index two
subgroup of G. Sometimes H just denotes an odd order cyclic group.

Consider pairs (A, B) of real representations of H satisfying

Condition. 2.2. (1) Ah = Bh = 0 for each h eH which generates
a subgroup of prime power index in H.

(2) dim Aκ = d i m B κ whenever \H/K\ is divisible by at most 3
distinct primes.

(3) Resp A = Res/> B whenever P e &>{H).
(4) v{Ap - Bp)(h) = ±1 when ever P e & and heH generate a

subgroup of prime power index in H.
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Observe that 2.2 (3) and some of the conditions in 2.2 (4) are nec-
essary if we have Smith equivalent representations V and W of G
which restrict to the representations A and B of H. For this com-
pare the reference to [Su2] in the introduction. There are two ref-
erences which guarantee the existence of groups H which have non-
isomorphic representations satisfying all conditions in 2.2.

THEOREM 23 ([DP2, Corollary C]). There are odd order cyclic groups
which have non-isomorphic real representations satisfying Condition
2.2. If Z m has non-isomorphic representations which satisfy Condi-
tion 2.2 and m divides an odd integer m!, then Zm> has also non-
isomorphic representations which satisfy Condition 2.2.

The groups in this theorem are rather large, and the representations
cannot be given explicitly. The next reference improves on this result.
In [DW] the reader can also find examples of non-isomorphic repre-
sentations which satisfy the conditions in 2.2 for groups as in the next
theorem.

THEOREM 2.4 ([DW, Theorem A]). Let m=p\, ...9Pk be a square-
free odd integer such that p\ is congruent to 5 modulo 8, the Legendre
symbols [ĵ ] are 1 for j > 2, and k > 4. Then the group Z m has
non-isomorphic representations which satisfy 2.2.

3. One fixed point actions on manifolds. Our starting point is the
construction of cyclic actions on surfaces. We shall use the following
conventions. A real representation U of L is L oriented if Uκ is
an oriented vector space for all K c L. A smooth L manifold X
is L oriented if for all K c L each component of Xκ is oriented.
Since a complex vector space understood as a real vector space has a
canonical orientation, the realification of a complex representation of
L is canonically L oriented. If X is an L oriented manifold, then
TXX is an Lx oriented representation. Here Lx = {g e L \ gx = x}
is the isotropy group at x. Let U be a representation. A product
bundle X x U over X is denoted by U_ when the base space X is
understood from context.

Let L = Zm be a cyclic group of order m, and tk the complex
representation of Zm from the previous section, (fc, m) — 1. Let A+
and A- be finite Z m sets of the same cardinality, \A+\ = \A-\.
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PROPOSITION 3.1. (See [DP2, 3.15].) There exists an oriented closed
surface S with smooth orientation preserving action of Zm such that

(1) Sκ = A% U A* for all proper subgroups K of L.
(2) The tangent bundle TS is stably isomorphic to the product bun-

dle Sxtk.
(3) TXS = Resκt

±k if x e Aξ and K c L. (Observe that TXS
and Res t±k are oriented representations, and the isomorphism is as-
sumed to preserve orientations.)

The problem in the application of Proposition 3.1 is the choice of
the sets A+ and A- . To indicate our choice we need some more
notation. Let tk = ψ be an irreducible representation of G = Z2n.
We suppose that 2n/(k, 2ή) is divisible by at least two odd primes.
We assign to it the group L(ψ) which acts effectively on ψ. It is
obtained as follows. Let ker(^) be the kernel of the homomorphism
ψo'. G —• 17(1) associated with ψ. This kernel is also the isotropy
group of any non-zero vector in ψ. Then L(ψ) = G/kcv(ψ). Let
m(ψ) be the order of L(ψ). Then m(ψ) = 2n/(k, 2ή). Observe
that (m(ψ), k) = 1. Now A+ and A- are chosen as L(ψ) — %m(ψ)
sets. The choice will depend on m(ψ) only.

Choice 3.2. (1) If m(ψ) is odd we decompose m(ψ) as a product
m(ψ) = r(ψ)s(ψ) such that (r(ψ), s(ψ)) — \. If m(ψ) is divisible
by four primes we suppose that r{ψ) and s(ψ) are divisible by at least
two primes. Choose a(ψ) and b(ψ) as natural numbers such that
a(ψ)r(ψ) + b(ψ)s{ψ) + 1 = 0 (mod m(ψ)).

(2) If m(ψ) is even, we set mr(ψ) = m(ψ)/'2. As in (1), we decom-
pose mf(ψ) as r(ψ)s(ψ) such that (r(ψ), s(ψ)) = 1. Then we choose
natural numbers a(ψ) and b(ψ) such that a(ψ)r(ψ) + b(ψ)s(ψ) + l =
0 (mod m(ψ)).

In case (I) we set

A+(ψ) = b(ψ) - [Zm{ψ)/Zr{ψ)]ua(ψ) [Zm{ψ)/Zs(ψ)] u [Zm{ψ)/Zm{ψ)]

In case (2) we set

A+{ψ) = b(ψ) - [Zm{ψ)IZlr{ψ)] υa(ψ) - [Zm{ψ)/Z2siψ)] u [Zm{ψ)/Zm{ψ)].

In either case \A+(ψ)\ = 0 (mod m(ψ)) such that we can choose
A-(ψ) as free Zm(ψ) set with the same cardinality as A+(ψ).

In the second step we assign to each irreducible complex represen-
tation ψ = tk , for which m(ψ) is divisible by at least two primes, a
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surface X{ψ) with G action. First we use Lemma 3.1 to define an
L(ψ) action on a surface which we call X'(ψ). Reduction modulo
m(ψ) defines a homomorphism G—> L(ψ) and this induces a G ac-
tion on X'{ψ). The surface with this induced G action is denoted
by X{ψ).

We describe the properties of these surfaces X(ψ), which are al-
most identical with those listed in [DP2, Corollary 3.5]. As before we
suppose that m(ψ) is divisible by at least two odd primes.

LEMMA 3.3. Let X{ψ) be as above, and G{ψ) = ker(^).

(1) ResG(ψ)X(ψ) (with its trivial G{ψ) action) is a G(ψ) oriented
boundary.

(2) There is a representation A of G such that TX(ψ)®A = ψ_®A.

For all subgroups K of G such that \G/K\ = 1, 2, an odd prime, or
twice an odd prime

(3) X{ψ)κ is a finite set
(4) \X{ψ)G\ = 1, and \X(ψ)κ\ = 1 whenever \G/G(ψ)\ = \L(ψ)\

is divisible by at least four distinct odd primes.
(5) \X(ψ')κ\ = \X{ψ")κ\ whenever G{ψf) = G{ψ").
(6) If G(ψ) = 1 or G(ψ) D Z2 then every isotropy group of X{ψ)

is 1, or it contains Z 2 . Thus G acts freely on X(ψ) - X{ψ)zz.

Proof Only (6) does not occur in [DP2]. It is an immediate conse-
quence of our choice of A+ and A- . D

Let U be a complex representation of a cyclic group G such that
UG = 0 and Uκ = 0 whenever \G/K\ = 1, an odd prime, or twice
an odd prime. Then U is a direct sum of non-trivial irreducible
representations, U = Σaw(U)ψ. For each irreducible representation
ψ for which aψ(U) Φ 0 the assumption on m(ψ) is satisfied and
X(ψ) is defined. We now define a G oriented manifold

(3.4)

The exponent aψ indicates an α^-fold cartesian product of X(ψ)
with itself. Next we study the properties of this manifold. They are
derived from Lemma 3.3. These properties are exactly those in [DP2,
3.6-3.11], and the proof is unchanged as well.

COROLLARY 3.5. Let U be a complex representation of G satisfying
JJK = 0 if and only if \G/K\ = 1, 2, an odd prime, or twice an odd
prime. Let X{U) be the G oriented manifold in 3.4. Then
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(1) There is a representation C of G such that TX(U) Θ C and
U_®C_ are isomorphic G vector bundles.

(2) άimX(U)κ = 0 if and only if \G/K\ = 1, 2, an oddprimef or
twice an odd prime.

(3) If \G/K\ Φ 1, 2, not an odd prime, and not twice an odd prime
Resx X(U) bounds as an oriented K manifold.

(4) χ(X(U)G) = 1 and χ{X(U)κ) is even whenever \G/K\ is not
1, 2, an odd prime, and not twice an odd prime.

(5) Suppose \G/K\ = 1, 2, an odd prime, or twice an odd prime.
Then X(U)K is a finite set and if y e X(U)K, then TyX(U) = Res* U
as K oriented real representation. The cardinality of X{U)K depends
only on {{K, dim Uκ) \ K c G and \G/K\ is divisible by at most three
distinct odd primes }.

To obtain Theorem A we will start with a collection S? of complex
representations of G — H x Z2 where H is an odd order cyclic group.
If U is a representation of G we denote its Z2 fixed point set UZ2 by
U2 which we also consider as representation of H. The complement
is denoted by Uf, so U = U2 Θ Uf. The representations in ^ are
assumed to satisfy

Condition. 3.6. (1) If U e <9> and # c G, then I/* = 0 if and
only if \G/K\ = 1, 2, an odd prime, or twice an odd prime.

(2) If K e lso(U) then K = 1 or K D Z2 .
Each pair (Z), is) of representations in 5? satisfies

(3) dimDκ = dimJS^ if \G/K\ is divisible by at most three distinct
odd primes. Furthermore dim/) = dim is and dimZ)2 = dim is2 .

(4) v(Dξ-Eξ)(g) = 1 whenever Pe^(H) and g e H generates
a subgroup of prime power index in H.

(5) Df = Ef as representations of G.

Note on Condition 3.6 (2). This condition expresses that if ψ is an
irreducible summand of U then ψ is a summand of U2 or G acts
freely on ψ - {0}. Hence G acts freely on U - U2.

We list the essential properties of the manifolds X{U) obtained
from a collection of representations 5? as in 3.6 when £/ e *5*\ It
should be compared with [DP2, Theorem D on page 289]. We denote
X(U)Z2 by X2(U) and consider it as an oriented H manifold.

THEOREM 3.7. Let G = Z2 w (n odd) and S? a collection of rep-
resentations of G which satisfy 3.6 (l)-(4). There is a collection of
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closed G oriented manifolds {X(U)\U eS?} such that

(1) X(U)G = x consists of exactly one point and TXX(U) = U as
G oriented real representation.

(2) There is a representation C of G such that TX(U) θ C and
U_®C_ are isomorphic G vector bundles.

(3) G acts freely on X(U)-X2(U).
(4) χ{X{D)κ) = χ{X{E)κ) (mod 2) for all KcG and D, Ee<9>.
(5) Sign(//, X2(DP)) = Sign(i/? X2{EP)) for all P e &{H) and

for all D,Ee<9>.
(6) Sign(G, X{D)) = Sign(G, X{E)) for all D, E e<9>.

Proof. The first two properties (1) and (2) are repetitions of 3.5 (1)
and (2). Property (3) follows from 3.3 (6) and 3.6 (2). See also above
note on 3.6 (2). To see (4) observe that X{U) = X(U2) x X(Uf). It
follows from [DP2, Theorem D (ii) page 289] that

χ(X(D2)
κ) = χ(X(E2)

κ) (mod 2)

for all K c H c G. Furthermore

χ(X(Df)
κ) = χ(X(Ef)

κ) (mod 2)

because of 3.6 (2) and (5) and 3.5 (4)-(5). These two congruences
imply our claim (4).

To see (5), let Sp denote the singular set of X(Df). It consists of
the non-free orbits in X(Df), which is a finite set. Thus

X2(D) = SD x X(D2) and X2(E) = SE x X{E2)

It has been verified in [DP2, Theorem D (iii)] that X(D2) and X(E2)
have the property stated in (5). By construction Sp = Sg. From this
it follows trivially that (5) holds.

To see (6) one proceeds in exactly the same way as in the proof of
[DP2, Theorem D (iii)]. D

3.1. Addendum. There is another property which we may impose
for the surface S in Lemma 3.3. This has an implication for the
conclusion in Corollary 3.5 which is elementary, and which we leave
to the reader. We state them.

Additional Properties.
3.3 (6) We may choose the surface X(ψ), the zero cobordism W,

and the stable G trivialization of the tangent bundle TX(ψ) such
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that it extends (after restriction to a G(ψ) trivialization) to a stable
G(ψ) trivialization of TW.

3.5 (6) If we assume a choice as in 3.3 (6), then there is a sta-
ble K trivialization of the tangent bundle of the zero cobordism of
ResχX(U) which extends the stable trivialization of TX(U) in 3.5
(1), restricted to a K action.

Proof of 3.3 (6). Consider the surface X'{ψ) with smooth L(ψ)
action which give rise to the surfaces X(ψ). Abbreviate X'(ψ) by
X1 and L{ψ) by L. Let L2 be the 2-Sylow subgroup of L. Let
W be an oriented manifold which bounds X1. We may suppose that
TW1 is trivial. Define

X" = X'uLxLiX' and W"=W'uLxL2W.

Then W" bounds X". The stable L trivialization of TX' induces
one on TX", and we show that this one extends to a non-equivariant
stable trivialization of the tangent bundle of some manifold which
bounds X".

There may be an obstruction for extending the stable trivialization
of TX' to one of TW1 (after forgetting the action), and such obstruc-
tions lie in Uj(SO) for 0 < j < 2. Among these πχ(SO) = Z2, and
the other groups vanish. After some zero-dimensional surgeries we
may assume that W" is connected, and in this case a possible ini-
tial obstruction for the extension of the bundle trivialization has been
multiplied by 1 + \L/L2\ = 0 (mod 2). Thus for this modified W"
and our original X" with its stable trivialization of its tangent bundle
the obstruction vanishes. So the trivialization of TX" (without group
action) extends to one of ΊW".

Again we use the projection G -» L to induce a G action on X"
and the trivial G(ψ) action on W". With these induced actions
the manifolds are denoted by X(ψ) and W. They have all of the
properties listed in 3.3 (l)-(6). D

4. Proof of Theorem A. Throughout the section we will use k = 1,
which means that G = H x Z2. The case k > 1 causes only some
additional notational effort, but otherwise it is identical.

Sketch of Proof of Theorem A. We start out with a sufficiently large
collection S? of representations of G = H x Z2 which satisfies Con-
dition 4.3. Using Theorem 3.7 we associate to each pair (V, W) of
representations in 5? a smooth G manifold X(V, W) with exactly
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two fixed points and tangent representations V and W. The choices
will be such that Xs = XZ2, where Xs denotes the set of non-free
orbits of X. It follows from [DP2] that for a certain subset ZΓ of 5?
and V, W e ZΓ that X(V, W) is equivariantly cobordant relative
to the fixed point set to a G manifold Y(V, W) such that Ys = Yτi
is a homotopy sphere. The cardinality of F is at least a fraction of
the one of 5^. The surgery obstruction which tells whether Y(V, W)
is G cobordant to a homotopy sphere lies in L§(Z[G], 1). In fact, it
lies in a finite subgroup <J due to the signature computation in 3.7
(6). We choose \S?\ such that \T\ > \J"\. Based on the additivity of
the surgery obstruction and the pigeon hole principle we find V and
W such that the obstruction vanishes for Y(V, W), which is then G
cobordant to a homotopy sphere.

Before we can prove Theorem A we need two technical definitions.

DEFINITION 4.1. A G manifold X is defined to be stable if for
each x e X and K — Gx, the multiplicity mχ(TxX) of each non-
trivial irreducible representation χ in TXX = V is either zero or
dχmχ{V) > dimR Vκ . Here dχ = dimuDχ , and Dχ is the algebra of
real K endomorphisms of χ.

DEFINITION 4.2. A representation V of G satisfies the gap hypoth-
esis if for any two representations L c K c G either Vκ = VL

or 2 dim Vκ + 1 < dim VL. A smooth G manifold X satisfies the
gap hypothesis if TXX satisfies the gap hypothesis with respect to the
induced Gx action for every x e X.

To prove Theorem A we proceed as in §7 of [DP2]. We consider
a collection S? of complex representations of G = H x Z2 and a
representation U. Together they are assumed to satisfy

Condition 4.3. (1) U is stable, satisfies the gap hypothesis, and the
isotropy groups of U are all the subgroups of G which contain Z 2

and the trivial group. If dim Uκ Φ 0, then dim Uκ > 6. Further-
more dim Uκ = 0 (mod 4) for all K c G.

(2) D € 5? is stable, satisfies the gap hypothesis, and K is an
isotropy group of D if and only if K = G, # = 1, or Z2 C K
and Gyi£ £ ^ . If dimD* ^ 0 then ά\mDκ > 6. Furthermore
dimUκ ΞΞ 0 (mod 4) for all K c G.
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(3) With the induced H action we have Res/> UZ2 = RespZ>z2 for
all D e & and for all P e &>{H).

(4) Each pair (D, E) e<9? satisfies Condition 3.6 (3)-(5).

LEMMA 4.4. Given a pair of non-isomorphic representations {A, B)
of real representations of H which satisfies 2.2 and any number N,
there exists a collection S? of non-isomorphic representations of G
which satisfies Condition 4.3, and the cardinality of 5^ is greater than
or equal to N.

Proof. Consider the representations Rj = (N-j)A®jB of H. Any
pair of them satisfies Condition 2.2, and so do their complexifications
Rj . Via the projection G —• H they are considered as representations
of G. It is explained in [DP2] how to find j i representation t/0

 a n d
a representation U of G such that S? = {Rj Θ Uo | 0 < j < N} and
U satisfy Condition 4.3. More precisely, first we do this for the G
(or H) representations {ŷ 4z2<φ(7V - j)Bz2} according to [DP2], and
then we add the representation tι of G sufficiently often to each of
them. This produces the desired set S? and the representation U. D

Our next result uses the notion of a special Smith framed mani-
fold. Both are technical concepts which we do not want to review. A
Smith framing provides bundle data used in the process of equivari-
ant surgery. It was introduced in [PR1], and it was also summarized
in [DP2, §5]. The word special refers to some properties listed in
[DP2, Definition 5.14]. Both will be only of minor relevance to our
argument.

LEMMA 4.5. Let U be a representation of G and S? a collection of
representations as in 4.,3. For any pair (V, W) of elements in 5? there
is a U Smith framed G manifold X = X(V, W) with exactly two
fixed points x and y, and as G oriented representations TXX = V
and TyX = -W. In addition XZ2 is a special H manifold, and
(XZ2)P is a simply connected mod p homology sphere for each non-
trivial P G 1P(H) of p power order.

Adaptation of proof. This is basically Lemma 7.3 in [DP2]. An
initial approximation of X{V, W) is given as X{V) u -X(W) u Z ,
where X(V) and X{W) are as in 3.4 and Z is a zero cobordant G
manifold constructed from U used to adjust Euler characteristics (see
[DP2, page 303]). Equivariant surgery provides a cobordism between
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this initial manifold and the desired X(V, W). These surgeries are
performed in our setting as surgeries on the Z2 fixed point set of a
G manifold on which the odd order group H acts. In [DP2] one
utilizes the properties of the one fixed point manifolds summarized in
Theorem D of the reference. In our setting the required properties of
the one fixed point manifolds are listed in Theorem 3.7. D

To the manifolds X(V, W) of the lemma one may assign an ob-
struction σ(V, W). It has the following

Properties 4.6 (Compare [DP2, Lemma 5.24]). (1) σ(V 9 W) lies in
a finite group whose order depends only on H.

(2) If σ(V, W) = 0 then X(V, W) is U Smith framed G cobor-
dant to a manifold Y(V, W) such that Y(V, W)Z2 has all of the
properties listed in 4.5, but in addition Y(V, W)Z2 is a homotopy
sphere.

(3) σ(V, W) is additive under connected sum at a fixed point, that
is σ(V, W) + σ(W, Wf) = σ(V, W) for all K, W, W'eS*.

(4) σ(V, W) = -σ(W, V) for V, WeS*.

Note to 4.6 (3). The possibility to give a U Smith framing to a
fixed point connected sum X(V, W)#X{W, W) at the fixed point
with tangent representation W depends on a compatible choice of
U Smith framing for X(V,W) and X(W9 W) provided in [DP2,
7.3'].

Our next result is a refinement of [DP2, Theorem 7.4].

THEOREM 4.7. Given a representation U of G and a collection S?
of representations of G as in 4.3 with cardinality N. There exists
a natural number No and a collection {X(Wiy Wj)} for 1 < /, j <
N/No - 1 such that

(1) X{Wi,Wj) is a smooth G manifold with exactly two fixed
points at which the G oriented tangent representations are W[ and
-Wj for Wi9 WjE^.

(2) X{Wi, Wj)z2 is a homotopy sphere and G acts freely on X -
2 .

(3) X(Wi9 Wj) is U Smith framed
(4) WtφWj ifiφj.
(5) X{Wi, Wj) is stable and satisfies the gap hypothesis.
(6)
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Proof. Suppose NQ is larger than the order of the obstruction group
in 4.6 (1). Choose V e & and consider the set {X(V, Wj) \ Wj φ
V and Wj e <¥} . For at least N/No of them σ(V, Wt) = σ(V, Wj)
for / φ j . We now use X(Wi9 V)#X{V, Wj) as X(Wi9 Wj). Ac-
cording to 4.6 (3) and (4) σ(Wi9 Wj) = 0. It follows from 4.6 (2)
that X(Wι, Wj) is U Smith framed G cobordant to a manifold hav-
ing properties (l)-(5) of our claims. By construction X(V, W) is
equivariantly cobordant to X(V) u -X(W), and it follows from 3.7
(6) that Sign(G, X(V, W )̂) = 0 for all F , Ŵ  G S?. This implies the
last part of our claim. D

Our next result is the key for altering manifolds as in 4.7 once more
such that X(Wi, Wj) is a homotopy sphere.

THEOREM 4.8. Let G = H x Z2 and X a smooth G manifold such
that

(1) X is Smith framed of dimension congruent to 0 modulo 4.
(2) X is stable and satisfies the gap hypothesis.
(3) XΈ2 is a homotopy sphere.
(4) X has a fixed point and G acts freely on X - Xτ2.
(5) Sign((7,X) = 0.

There exists an obstruction σ(X) in a finite group, and if σ(X) = 0
then X is Smith framed G cobordant to a homotopy sphere relative
to the Z 2 fixed point set.

Proof. Surgery obstructions are usually assigned to normal maps.
Let x be a fixed point of X with tangent representation Ω. There is
a standard map / : X —• Y = S(Ω ® R) of degree 1 which collapses
the complement of Ω embedded a neighbourhood of x to a point.
The Smith framing on X provides bundle data b which allow us to
apply equivariant surgery. The data (X, / , b) denote the resulting
normal map. For the definition of a normal map as it applies to our
present situation see [DP2, Definition 5.15] or [PR1].

After some equivariant surgeries on X in the free part and below
the middle dimension we may suppose that / is 2/c-connected, here
the dimension of X is assumed to be 4k . We shall show later in the
proof that

K2k(X) = ker(/* : H2k(X) - H2k(Y))

is a stably free Z[G] module. Together with the intersection form λ
and the self-intersection form μ (see [DR]) these data define a class
σ(f, b) = [K2k(X),λ, μ] e Lg(Z[G], w). Here w : G - {±1} is



56 KARL HEINZ DOVERMANN AND DONG YOUP SUH

a homomorphism and w(g) = 1 if and only if g acts orientation
preservingly on X.

It is discussed in [DR] that σ(f\b) is the surgery obstruction of
(X, f9b). In particular, if σ(f9 b) = 0 then (X9f9b) is U Smith
framed G normally cobordant to a normal map / ' : Σ —> y such
that f is a homotopy equivalence. This cobordism is relative to all
non-free orbits. Due to assumption (5) of the theorem σ(f, b) lies in
a finite subgroup of Lfa(Z[G], w), the kernel of the signature homo-
morphisms to the representation ring, Sign: L§(Z[G], w) —• E(G).
From its definition it is clear that σ(f,b) depends only on X (and
possibly its Smith framing) but not on / . So we denote it by σ(X).
This completes the proof of the theorem, except that we need to verify
that K2k{X) is a stably free Z[G] module.

Let M denote the mapping cylinder. Let Xs = {x € X \ Gx Φ 1}
be the singular set, and fs the restriction of / to the singular sets.
There is a short exact sequence of Z[G] chain complexes:

0 - C * ( M r , Xs) - C+(Mf9 X) -> C*{Mf9XυMfs) -* 0

The homology of C*(Mj*9 X
s) vanishes because of assumption (3)

and (4). Thus

as Z[G] module. The homological assumptions on C*(Mf,X)
implied by the fact that / is 2k-connected also hold for
C*(Mf, X U Mfs). The latter complex is a free Z[G] chain com-
plex. Thus it follows from [W, Lemma 2.3 (c)] that K2k(X) is stably
Z[G] free. In this reference one omits the discussion of the preferred
stable basis. This completes our proof. D

Proof of Theorem A. Choose N > N0(Nι + 3) where Nx is the
order of the obstruction group referred to in Theorem 4.8, and Λ̂ o

is as in 4.7. Choose a representation U of G and a collection S?
(see 4.4) of cardinality at least N. Theorem 4.7 provides a subset
&* C S? of cardinality at least N\ + 2 for which there exist man-
ifolds X{Wi, Wj) as in the conclusion of 4.7 whenever Wχ9Wj G
!Γ. According to Theorem 4.8 we assign to X{W\9 Wj) the obstruc-
tion σ{Wi9 Wj) = σ{X(Wi, Wj)). Pick any V e Γ and consider
{X(V9 W{) I Wt e <T and V φ Wj). The cardinality of this set is
larger than N\, the order of the obstruction group in 4.8. Thus there
exist representations Wt 9 Wj e ^ such that WiφWjφV Φ Wt but
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σ(V9 Wi) = σ(V, Wj). This obstruction σ also has the properties
4.6 (3) and (4), and it follows that

σ(X(V9Wi)#-X(V9Wj)) = 0.

The connected sum is taken at the fixed point with tangent representa-
tion V. According to Theorem 4.8 X(V, WΪ)#-X(V, Wj) is Smith
framed G cobordant to a homotopy sphere Σ relative to the non-free
orbits. By construction Σ has exactly two fixed points x and y with
tangent representations Wi and Wj , and these are not isomorphic. If
the elements of S? are chosen as it is proposed in the proof of Theo-
rem 4.4 then the difference of Wi and Wj is a non-zero multiple of
the difference of A and B. D

5. Some elementary constructions with representations. The purpose
of this section is to construct representations as they will be needed
in the proof of Theorem B. The main result is Theorem 5.3 which we
will use later, and the remaining part of this section is devoted to its
proof.

First we discuss how to find representations which satisfy Condition
1.1. The condition is restated in the lemma.

LEMMA 5.1. Suppose G is an abelian group with at least three non-
cyclic Sylow subgroups. There exist non-isomorphic representations A
and B of G such that

(1) Aκ = Bκ = 0 whenever G/K is of prime power order.
(2) Resp A = Resp B whenever P c G is of prime power order.
(3) άimAκ = άimBκ for all KcG.

Proof. Let C be a cyclic factor of G whose order is paqb, where
a, b>\ and p and q are odd primes. Find a and β, 1 < a, β <
pq - 1 such that

a = 1 (mod pa) β = 2 (mod pa)

α = 2 (mod qb) β = l (mod qb).

Such a and β exist. Set

A! = ta e tβ and B1 = ύ Θ t2.

These are representations of C. Obviously A! Φ B'', but

Resz a A
f = Resz a B

f and Resz b A
1 ^ Res z , B'.
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Set G = CxL and let L act trivially on A' and Br. With this action
of G we call A' and B1 now A and B, and these representations
obviously satisfy (l)-(3) in our claim. α

As input in our proof of Theorem B we will need a complex repre-
sentation U of G and a collection S? of complex representations of
G such that

Condition 5.2. (1) £/ is stable, satisfies the gap hypothesis, and the
set of isotropy groups of U consists of all subgroups of G. Also,
dime/* = 0 or > 6 for all K c G. (The word stable and gap
hypothesis were defined in Definition 4.1 and 4.2).

(2) V G 5? is stable, satisfies the gap hypothesis, and the set of
isotropy groups of V consists of G and all subgroups K c G such
that G/K is not of prime power order. Furthermore, VG = 0 and
dim Vκ > 6 for the other isotropy groups of V.

(3) Resp V = Resp U for all P c G of prime power order and
v e<9>.

(4) d i m Γ ^ d i m ^ * for all KcG and all F , W e<9>.

THEOREM 5.3. Given representations A and B of G as in Condi-
tion 1.1 {or Lemma 5.1) and any integer N. There exist a complex
representation U and a collection S? of complex representations of G
such that U and S? satisfy Condition 5.2 and such that V - W is a
non-zero multiple of A- B whenever V, W e <9*.

The remaining part of this section is concerned with the proof of
this theorem. To prove it we need a bit more technical preparation.

LEMMA 5.4. Suppose G is abelian with at least three non-cyclic Sy-
low subgroups and KcG is a subgroup such that G/K is of prime
power order. There exist representations Aι(K) and UiiK) of G such
that

(1) A2(K)J = 0 whenever G/J is of prime power order.
(2) Res/> A2{K) = Resp U2(K) whenever P is of prime power order.
(3) The isotropy groups of Uι{K) are G, K, and subgroups of K

(possibly not all of them).

Proof. Suppose KcG such that \G/K\ = pd, where d > 1 and p
is a prime.



SMITH EQUIVALENCE FOR FINITE ABELIAN GROUPS 59

Step 1. Consider first the case when G/K is cyclic of order pa,
a > 1. Construct a cyclic group L such that we have a commutative
diagram

1

K y G y G/K = Zpa

I ί- ί
H y G y L = %.

C = Zqbf.c

1

So H is a subgroup of Γ̂ and C is cyclic of order qbr°. Here # and
r are distinct primes different from p, and 6, c > 1. Let ^ be an
integer between 1 and pa which is prime to p. There are integers
a, β, and y, 1 < α, β, γ < paqbrc - 1, such that

α Ξ δqbrc (mod pa) β = \ (mod pa) γ=ί (mod pa)

a = 1 (mod qb) β = δqbrc ( m o d qb) γ = l ( m o d ^ ύ )

a = 1 (mod rc) β = 1 (mod rc) y = <5ήf*rc (mod ̂ 6 ) .

We define the L representations

A1 = ta®tβ ® ty and U' = tδq"rC φ ί1 Θ ί1

As α, /?, and γ are each prime to two of the primes p, q, and r, no
isotropy group of A' — 0 has prime power index in L. The isotropy
groups of U' — 0 are the cyclic subgroup of L of order qbrc and the
trivial group. Consider the action of G on A' and t/' induced by
the map G -» L. We denote the representations of G by ^(A") and
U2{K). Then

(4) y42(A") satisfies (1), A2(K) and t/ 2(^) satisfy (2), and K is
an isotropy group of U2(K). The other isotropy groups of U2{K) are
G and H.
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Next consider K c G such that \G/K\ = pd, but G/K need not
be cyclic, and d > 1. Write G/K as a product of cyclic groups
C\ x x Cm , and let Kj be the kernel of the composite map G ->
G/K -> C 7 . The respective groups // in the diagram of Step 1 are
then called Hj . Observe that

j for \<j<m.

In Step 1 we constructed for each Kj representations A2(Kj) and
U2(Kj) of G. We set

and C/2(tf) = 0 U2(Kj)

Thus for any K c G with IG/AΓ) of prime power order we con-
structed representations A2(K) and U2(K). By construction, the
set of isotropy groups of U2(Kj) is {G, Kj, Hj}. Remember that
Hj QKjCK. The isotropy groups of U2(K) are the intersections of
the isotropy groups of the various U2(Kj) 's. In particular, K is an
isotropy group of U2(K). It follows easily from (4) that A2(K) and
U2(K) have the properties which we claimed in the lemma. α

COROLLARY 5.5. Let G be a group and A and B real representa-
tions of G as in 5.1 {that is, they satisfy Condition 1.1). Let N be
an integer. There exists a complex representation UQ and a collection
&b of complex representations of G and of cardinality at least N such
that

(1) The set of isotropy groups of U is the set of all subgroups of G,
and dim Uκ = 0 or > 6 for all K c G.

(2) For V e S% the set of isotropy groups of V consists of G and
all subgroups K c G such that G/K is not of prime power order.
Furthermore, VG = 0 and dim Vκ > 6 for the other isotropy groups
ofV.

(3) Resp V = Resp U for all P c G of prime power order and

(4) dim Vκ = dim Wκ for all K c G and all V, We^b-
(5) IfV, W e S%, then V -W is a non-zero multiple of A-B.

The following representation will be useful

(5.6) Ω = R[G] ~
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where R[G] is the real regular representation of G and the sum ranges
over all irreducible representations ψ of G such that the kernel G(ψ)
of ψ is of prime power index in G. It is trivial to observe

PROPOSITION 5.7. The representation Ω is stable and satisfies the
gap hypothesis (by a certain margin), and the set of isotropy groups
consists of G (with ίlG = 0) and all subgroups of G not of prime
power index.

The remark that stability and gap hypothesis hold by a certain mar-
gin means that the inequalities in the definitions of the properties are
not sharp, but the slack in about the dimension of £ ψ from 5.6,
and some times larger. The properties of Ω are easily obtained from
those of the regular representation R[G].

Proof of Corollary 5.5. We set

K

K

The sum ranges over all subgroups K of G which are of prime
power index in G. We complexify these representations, and pos-
sibly take multiples to assure that all dim Uκ are 0 or > 6, for all
K c G. The resulting representations are called Vj and UQ , and &§ =
{Vj | 0 < j < N}. It is easy to verify that they have the desired
properties. D

The properties in the conclusion of Corollary 5.5 and those required
in 5.2 differ insofar as we require in 5.2 in addition that U and Vj e
S? are stable and satisfy the gap hypothesis. This we will achieve by
constructing a representation U\ and a representation D such that

U=U0®Uι and S? = {V@D \ V e^0}

have all properties required in 5.2. Here Uo and S% are as in the
conclusion of 5.5.

We will have to deal with two situations. The first one will be easy
to handle, but we need to prepare the second one. Let / c G and
x e Uo such that Gx = / . Let ψ' be an irreducible representation
of / , and let ψ be a representation of G which restricts to ψf, so
Res/ ψ = ψf. Such a ψ always exists.
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LEMMA 5.8. Suppose G/J is of prime power order, and ψr is such
that for ψ as above the kernel G(ψ) is of prime power index in G.
There exist representations E and F of G such that

(1) RespE = ResJp(i7 θ ψ) for all subgroups P of G of prime
power order.

(2) The isotropy groups of E - 0 and of F - 0 are not of prime
power index in G.

Proof. Let ψ be an irreducible representation of G which restricts
to ψ'. Denote the kernel G(ψ) of ψ by K. We may suppose that
G/K is cyclic of prime power order. Then we get an exact sequence

1 -> K -> G -+ G/K = Zpa-+l

where G/K is cyclic and of prime power order. We may then write ψ
as a representation tδ of Zp« , with an induced action of G through
the map G —> G/K. The notation tδ was introduced for a cyclic

group in §2, and by assumption δ is prime to p . We complete above
sequence to a diagram as in Step 1 of the proof of Lemma 5.4, using
the same notation. The argument of that proof provides us with

A ' = ta@tβ®ty a n d F' = tx®tx

for a cyclic group L whose order is divisible by at least three primes.
The representations A! and Uf = ψ@F' are as in the construction in
that proof. (A small modification of the argument in 5.4 is required
if ψ is the trivial representation.) With the induced action of G we
call the representations A' and F' then E and F. The properties
satisfied in the conclusion of 5.4 imply those required in 5.8. D

To prove Theorem 5.3 we use the following ideas. Let ^(G) denote
the set of subgroups of G, partially ordered by the relation K < H
if and only if K D H. A subset ^ c F(G) is called closed if H < K
and K e 3§ implies that H e <9Q .

Proof of Theorem 5.3. In Corollary 5.5 we constructed a complex
representation UQ and a collection of complex representations 5? of
G such that most of the properties in Theorem 5.3 are satisfied. In
addition, only the stability assumption and the gap hypothesis need to
be satisfied. This is done inductively with the help of Lemma 5.8 and
the representation Ω.
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Consider a closed subset ^ of !F(G) such that the stability as-
sumption holds for all x e Uo for which Gx e 3^ Let K be min-
imal in ^[G) - «5ζ, and let ψ' be an irreducible representation of
K which does not occur often enough in Res# Uo . Suppose ψ is an
irreducible representation of G which restricts to ψ1. If G{ψ) is of
prime power index in G, then we add sufficiently many copies of E
to each of the elements in S% and an equal number of copies of F@ ψ
to UQ (see Lemma 5.8). If G{ψ) is not of prime power index in G,
we add sufficiently many copies of Ω to the elements in 5^ and to
UQ . This will assure that ψ1 will occur often enough in Res# UQ and
in this process the inductive assumption continues to hold. (To avoid
excessive notation we use the same notation before and after these
additions.) In this process we can assume that Uo becomes stable.

To assure that each V e <9Q becomes stable we only need to add
copies of Ω to all V e <5% and to UQ . In most cases stability implies
the gap hypothesis, but the same procedure as above can also be used
to achieve this.

The inductive application of this procedure adds a representation
% to all V G <9Q (IP is the sum of all those E and Ω required above)
and & to UQ (SF is the sum of all the F®ψ and Ω required above).
It is clear that

U=U0®&' and & = {V@g\V

has all of the desired properties. D

6. Proof of Theorem B.

Sketch of Proof of Theorem B. The starting point is a representation
U and a sufficiently large collection S? of representations of G which
satisfy Condition 5.2. Non-isomorphic representations A and B of G
which satisfy Condition 1.1 (see the introduction) can be constructed,
and from such A and B we can construct U and &. We showed
this in the last section.

In Theorem 6.3 we use 5? and U to produce manifolds X(V, W)
for V and W in 5? which have exactly two fixed points at which
the tangent representations are V and -W (the - sign indicates
a reversed orientation). These manifolds satisfy a few technical as-
sumptions which are derived from those of the representations in S?.

There is a sequence of obstructions σP for finding an equivariant
cobordism (relative to the fixed point set) between X(V9 W) and a
homotopy sphere. These will lie in finite obstruction groups, and with
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respect to connected sum these obstructions are additive. A reversal
of orientation changes the sign of o>. Starting out with a set S? of
sufficiently large cardinality, these thoughts together with a pigeon hole
principle will provide manifolds X(V, W) for which all σp vanish.
We may then use X(V, W) as a homotopy sphere with exactly two
fixed points and Smith equivalent tangent representations V and W.

Our first step is to introduce the surfaces from §3 into our con-
text. As before, let G be a finite abelian group and ψ an irre-
ducible representation of G. We defined the kernel G{ψ) of ψ and
L(ψ) = G/G(ψ), which is always a cyclic group (see [S, Chapter 3
Exercise 3.2 (c)]). We suppose that \L(ψ)\ = m(ψ) is not of prime
power order. We choose a decomposition m(ψ) = r{ψ)s{ψ) where
r(ψ) and s(ψ) depend only on m(ψ) and not on ψ. We also choose
a{ψ) and b{ψ) such that a(ψ)r(ψ) + b(ψ)s(ψ) + 1 = 0 (modm(^)),
and we set

A+(ψ) = b{ψ) - [Zm{ψ)/Zr(ψ)]ua{ψ) - [Zm{ψ)/Zs{ψ)] u [Zm{ψ)/Zm{ψ)].

Our choice is slightly less delicate than the one in 3.2.
As in §3 (see the paragraph before Lemma 3.3) we get a surface

X'{ψ) with smooth L{ψ) action. The projection G —• L(ψ) induces

a G action on this surface, and then we denote it by X(ψ) as in
Lemma 3.3.

Let V be a representation of G such that Vκ = 0 whenever G/K
is of prime power index in G. Each irreducible summand ψ of V
is such that \L(ψ)\ is divisible by at least two primes, and X(ψ) is
defined. As in 3.4 we set for V =

(6.1) X{V) = ϊ[

The properties of X(V) are described in our next lemma (compare
Corollary 3.5 and Theorem 3.7).

LEMMA 6.2. Let G be an abelian group and $? a collection of rep-
resentations of G as in 5.2. There is a collection of closed G oriented
manifolds {X(V) | V eS*} such that

(1) X(V)G = x consists of exactly one point and TXX{V) = V as
oriented G representation.

(2) There is a representation C of G such that TX(U) Θ C and
U_ Θ C are isomorphic G vector bundles.

(3) χ(X(D)κ) = χ{X{E)κ) for all K cG and D, E eS*.
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(4) For all K c G not of prime power index Res^X(K) is a K
equivariant boundary. There is a stable K equivariant trivίalization of
the tangent bundle of this zero cobordism which extends the stable triv-
ίalization of TX(V) in (2), after restricting this action to a K action.

(5) S i g n ( G , X(V)P) = 0 for all F e y and P of prime power
order.

Proof. Properties (1), (2), and (4) have been discussed in §3 and
its Addendum. We discuss (3). Let ψ be irreducible. According to
Proposition 3.1 the Euler characteristic χ{X(ψ)κ) depends only on
L(ψ) and the choice of A±(ψ), hence only on L(ψ). Thus χ{X{ψ)κ)
depends only on {(dim Vκ, K) \ K c G} . By assumption dim Vκ =
dim Wκ for all K c G, and (3) follows.

To see (5) we observe that G acts on X(V)P, and any cyclic sub-
group C of G generates together with P a subgroup K which is
not of prime power index in G. But Kcsκ(X(V)p) bounds K equi-
variantly according to (4). As a bordism invariant the signature
vanishes. D

For the idea of a Smith framed manifold we refer the reader once
more to [PR1] or [DP2]. This concept enters in the technical steps of
equivariant surgery which do not concern us here. Property (2) in our
next theorem is obtained from the assumption that Resp U = Res/> V
for all P c G of prime power order. It is important that these are
complex representations and that this isomorphism is one of complex
representations.

In our next proof we will make reference to the Burnside ring Ω(G)
of G. Its elements are represented by finite G CW complexes. Two
finite G CW complexes X and Y are equivalent in Ω(G) if and
only if χ(Xκ) - χ{Yκ) for all K c G. The class of X in Ω(G) is
denoted by [X]. Addition is given by disjoint union of representative
complexes, and multiplication by their cartesian product. A single
point with trivial action represents 1 in this ring.

THEOREM 6.3. Let U and 5? be as in 5.2. There are smooth G
oriented manifolds X = X(V, W) for V and W e S? such that

(1) X is stable and satisfies the gap hypothesis.
(2) X is U Smith framed.
(3) χG = {x 5 y) consists of exactly two points and TXX = V and

TyX = -W.
(4) χ(Xκ) - 2 and dim Vκ = 0 (mod 4) for all K c G.
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(5) Res^X is U Smith framed cobordant to zero whenever G/K
is not of prime power order and Sign(G, Xp) = 0 whenever P is a
subgroup of G of prime power order.

Proof. By assumption χ{X{V)κ) = χ{X{W)κ) for all K c G, and
in the Burnside ring [X{V)] = [X(W)]. Thus X(V) u -X{W) repre-
sents a class in the Burnside ring which is divisible by 2. We recall
from [DP2, page 303] how to construct an equivariantly stably paral-
lizable boundary Z from the representation U such that X(V 9 W) =
X(V) u -X(W) u Z satisfies (4). Let Y be a closed oriented surface
with trivial G action and χ(Y) = -2. Write U = U' Θ K2 . Set

and Z - = y

We equip the manifolds with a U Smith framing. In the Burnside
ring

and [G xHZ~] = -4[G/H].

It is now obvious that [X(F)] + [^(W)] - 2 is a linear combination
of the GxHZ± for HφG.

The other properties follow easily from this definition and those
properties listed in 6.2. D

Proof of Theorem B {Special Case). If we assume in Theorem B that
G is of odd order, then we can complete the proof quickly. We only
need a set 5? of cardinality 2 and a representation U as in 5.2, and
they exist by Theorem 5.3. The manifolds X = X(V, W) satisfy
the assumption in the induction theorem for equivariant surgery (see
[DP3, Theorem 2.8] or [PR1]). The assumption that \^\ > 2 assures
that we have X(V, W) with V Φ W. In the references one deals with
normal maps which may be obtained mapping X( V, W) to the sphere
S{V 0 R) via the Thom-Pontrjagin collapse. That is, we collapse the
complement of a neighbourhood of the fixed point x at which the
tangent representation is V. The induction theorem implies that X
is equivariantly cobordant to a homotopy sphere relative to the fixed
point set. This shows that V and W are Smith equivalent.

The special case is only a partial technical improvement of [PR1]
based on the additional information about the manifolds X(V, W)
in Theorem 6.3. We proceed with the preparation of the general proof.
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Let Λ be Z inverted at a finite number of primes. Consider the
kernel of the equivariant signature map

(6.4) I(A[H]) = ker(lί (A[JΪ], 1) -fe> R(H))

which takes values in the representation ring of H. In our situation
H is a finite abelian group. We thank A. Bak for providing us with
the details for the following result. They are spelled out in the next
section.

THEOREM 6.5. I(A[H]) is finite.

Let A = Ί\\jq\, . . . , l/<7&] be the ring obtained by inverting the
primes q\, . . . , qk , and let p be a prime different from qj. Let

J(A,p,H) = ker(K0(A[H]) — K0(Z{p)[H])).

PROPOSITION 6.6. There exist primes ^ + i > ••• > <fo+r different from

p such that for A' = Z[l/q\, . . . ,

J(A,p,H) = ker(K0(A[H])

So we only need to invert finitely many additional primes (different
from p ) such that each element in J(A,p, H) becomes stably free.
This follows easily as KQ(A[H]) is finite. (For a proof see also Lemma
7.1.)

The proof of Theorem B will be inductive, and we describe the
situation which we will encounter in all but the last step.

Consider / : X —> 7 , where X and Y are smooth G oriented
manifolds, G is a finite abelian group, and / is equivariant. Suppose
these manifolds are stable and satisfy the gap hypothesis, X is Smith
framed, and every subgroup P c G of prime power order occurs as
isotropy group of X. We suppose that Xp and Yp are connected
and dimX p = dim Yp = 0 (mod 4) and > 6. We assume that Yp is
simply connected, and in our application Y will actually be the unit
sphere in a representation. Furthermore, suppose that fp is of degree
1. We suppose that Sign(G, X) = Sign(7, G) = 0.

The data (X, / , b) describe a normal map. Here / : X -+ Y is
as above and 6 is a Smith framing. These data need to satisfy a few
conditions to be called a normal map, and all of them follow from the
assumptions listed in the last paragraph and Condition 6.7(1). Associ-
ated to these normal maps there is a natural concept of a Smith framed
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normal cobordism between Smith framed normal maps. The cobor-
dism is supposed to have the same type of data as the normal maps. In
particular, it induces an equivariant cobordism between the domains
of the normal maps. As before we hope the reader knows these con-
cepts or will read them in the literature on equivariant surgery. The
most appropriate references in our setting are [DP2] and [PR2] be-
cause there normal maps with Smith bundle data are treated. But, the
reader only needs to know that normal maps are objects equivariant
surgery can be applied to, and as we are only going to quote the neces-
sary results from equivariant surgery without proof no more detailed
knowledge is required to follow the proof.

Given a closed subset ^5 of the set ^{G) of all subgroups of G.
The definition is given after Lemma 5.7. Let (X, / , b) be as de-
scribed in the last two paragraphs. We will encounter the following

Inductive Assumption 6.7. (1) χ{Xκ) = χ(Yκ) for all K c G.

(2) Let P G 5 Q be a subgroup of G of p power order, p a prime.
We are given a finite collection of primes q\, . . . , q^ different from
p and fp induces a homology isomorphism with coefficients in Λ =
Z[l/<?i, . . . , 1/<?&]. In particular, fp is a homology isomorphism
with Z p coefficients. This collection of primes depends on the groups
P1 < P of p power order.

Let P be a minimal element in ZΓ{G) - 5Q of p power order.
We shall discuss the obstruction for finding a Smith framed normal
cobordism between (X, / , b) and another Smith framed normal map
which satisfies the Inductive Assumption 6.7 for <5ζ U {P} .

THEOREM 6.8. Suppose <9δ and (X, f,b) as in 6.7 and P Φ 1
is a minimal element in ^(G) - ^ of p power order, p a prime.
There exist primes rx, . . . , rs different from p and an obstruction
σP(f, b) e I(A[G/P]) with A = Z[l/rx, . . . , l/rs] which has the fol-
lowing property. If σp(f, b) = 0 then (X, / , b) is Smith framed
normally cobordant to another Smith framed normal map (Xr, f, b')
such that the inductive assumption holds for 9§ u {P}. The cobordism
is relative to all K fixed point sets such that K is not a subgroup
of P.

Before we begin with the proof we fix a bit more notation. We
let M denote the mapping cylinder. In the fixed point set Xp we
consider the singular set Xp>s = {x e Xp \ Gx Φ P} . Similarly, fp>s
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is the induced map from Xp>s to Yp>s. We also set

K*(XP, Λ) = H^(MfP, Xp Λ)

= ker(//*(Xp, Λ) - //*( r F , A)).

The second equality follows from the assumption that fp has de-
gree 1. We note

(6.9)

whenever P is not a Sylow subgroup, the inductive assumption holds
for 3^, and P is minimal in <r{G)-&Q. Here Λ is Z[l/<?i, . . . , l/fa]
such that the set {q\, . . . , q^} contains all those primes qj which oc-
cur in 6.7 (2) for P' e <9Q such that P' < P. This follows from the
universal coefficient theorem and a Mayer-Vietoris argument. Note in
particular that the p Sylow subgroup Gp contains all groups Pf of p
power order which contain P.

Let P be the chosen element in ZΓ{G) - 9§ and let P be of p
power order. The set ω(P) = {r\, ... ,rs} will be the union of two
sets, ω(P) = ωi U α>2. We define ω\. If P is the p Sylow subgroup
we let <jύ\ be the set of prime divisors of \G/P\. If P is not the
p Sylow subgroup we consider the sets ω(Pf) = {q\, . . . , q^} which
have been defined before for Pf < P of p power order (see 6.7 (2)).
Then we set ω\ = U/>'<p ω(Pr)

The set ωι consists of those primes qk+{, . . . , qk+r in Proposition
6.6 which need to be inverted such that the elements in /(A, p, G/P)
become stably free if these primes are inverted as well. Now we set
ω(P) = ωi U ω2. We set Λo = Z[l/rχ, . . . , l/rk] with r{, . . . , rk e
ω\ and Λ = Z[l/ri, . . . , l/rs] with r\, . . . , rs e ω. Because ω(Pf)
is finite, co(P) is finite as well.

Proof of Theorem 6.8, Part 1. In the first part of the proof we show
that after surgery below the middle dimension (2m) we may suppose
that K2m(Xp,A) is A[G/P] stably free.

Let W = (X, / : X —• Y, ft) be the normal map and P the chosen
minimal element in y(G)—5ζ. Suppose that Xp is 4m-dimensional
(see 6.3 (4)). There is a normal map W[ = (X{, fx: Xx -> ^ , bλ)
which is G normally cobordant to W (relative to all H fixed point
set such that H is not a subgroup of P) such that ff is connected up
to the middle dimension. So ff is 2m-connected. Such a cobordism
and W\ can be constructed by equivariant surgery as in [DPI], and
for Smith bundle data one uses in addition the reference to [PRl]. In
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particular, K2m(X[ , Z) is the only non vanishing kernel in homology
and this module is torsion free. We distinguish two cases.

Case 1. Let P be the p Sylow subgroup. We defined Λo above.
As we inverted all divisors of \G/P\ it follows that K2m(X[ , Λo) is a
semi simple AQ[G/P] module, and thus it is projective over A0[G/P].

Case 2. Suppose P is not the p Sylow subgroup. By the in-
ductive assumption and the definition of ΛQ the chain complex
C*(M P>, Xf ') <g>Λ0 is acyclic for all P' < P ofp power order. Thus

,s, XγS) ® Λo is acyclic and

7ς_! (X[, Λo) = H*(Mf, , Xf Λo)

= H{C*(MfP , MfP,s

which is the homology of a Z[G/P] free chain complex. This chain
complex has only one non vanishing homology group (in dimension
2m + 1) and is then projective over AQ[G/P] .

We return to the general case. It follows from Oliver's work [O]
that the Euler characteristic assumption made in 6.7 (1) implies that
K2m(X[, %(p)) is stably Z{p)[G/P] free. It follows from the definition
of Λ and from Proposition 6.6 that K2m(X[, A) is stably A[G/P]
free. This is what we wanted to show in the first part of this proof.

Part 2. Let λ and μ be the intersection and self intersection form
defined as by Wall [W]. These forms are tensored with Λ as indicated
from context. By definition (K2m(X[, Λ), λ> μ) is a A[G/H] hermi-
tian form which represents a class σp(f\, b\) e L^(A[G/H], 1). By
assumption Sign(G, X) - Sign(G, Y) = Sign(G, (K2m{X[),λ)) = 0.
Thus op(f\,b\) is an element in I(A[G/P]) (see 6.4). Actually,
σp(f\, b\) depends only on (/, b) which is expressed by the nota-
tion σp(/, b).

Part 3. Suppose σp(/, b) = 0. It follows from standard procedures
in equivariant surgery theory that the middle dimensional surgery ker-
nel K2m(X[, Λ) can be killed. The function ff of the resulting
normal map W2 = (X2, f2 : X2 —> Y2, b2) (which is equivariantly
cobordant to W\) induces a homology isomorphism. In the adjust-
ment which we made to the normal map we disturbed χ(Xp") for
P" > P. They can be adjusted by 0 and 1 dimensional surgeries on
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the P" fixed point set. This is easy based on the well known effects
of surgery on Euler characteristics.

These three parts complete the proof of Theorem 6.8. D

In our proof of Theorem B we need an integer N. Set N =
ΠP(N(P) + 1) where P is of prime power order or P = 1. Here
N(P) is the order of I(A[G/P]) in 6.4 and Λ is as in 6.7 (2). For
p = 1 we set

(6.10) I(Z[G\) =

The group B0(G) occurs in the work of Oliver and Petrie [O] and
[OP]. For its use in this context see the proof^of Theorem B in [DP2]
or §6 of [DPI]. It is a finite subgroup of K0(Z[G]), so 7(Z[G]) is
finite. Then N(l) is the order of I(Z[G]).

We are now ready to give the

Proof of Theorem B. We start out with a representation U and a
collection S? of representations of G as in 5.3 of cardinality at least
N (as above). From these we construct the manifolds X = X(V, W)
as in Theorem 6.3. To each such manifold we assign the Smith framed
normal map (X, / : X -> Y, b). Here Y = S ( F θ K ) , / is the Thorn-
Pontrjagin collapse from X to Y, and b is the Smith framing of X.

We now do an induction over the set &>(G) of subgroups of G of
prime power order, including 1. Let <9Q be a closed subset of ^(G)
as in 6.7, and say that X(V, W) is 3^ adjusted iϊ X(V 9 W) satisfies
the assumptions in 6.7 for this set ^ . For each 5Q adjusted mani-
fold X(V, W) and minimal P e ^(G)-^ we have the obstruction
σP(f, b) in I(A(G/P)) (see 6.8). We denote it by σP(X(V, W)).
The obstruction has the same properties as those listed for σ in 4.6.

Furthermore, let a set &" c S? of cardinality M be given such that
X(V, W) is ĉ o adjusted. We can find a representation F and repre-
sentations Wj, l<j<M0 = M/N(P)-l such that σP(X(V, Wj)) =
σP(X(V, Wi)) for 1 < /, j < Mo. As in the proof of Theorem A in
§4 we conclude (based on 4.6) that σ(X(Wiy Wj)) = 0. By 6.8 we
may assume that X(Wi9 Wj) is ^ U {P} adjusted. In this way we
may proceed until we find representations Wj 9 1 < j < N( 1) + 1 such
that X(Wi9 Wj) is ^ ( < J ) - { 1 } adjusted.

Again we get a pair of non isomorphic representations W\ and Wi
such that

0 = σ{X{Wx, W2)) e LB/G\i[G], 1).
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It is explained in [DP2, Theorem E (ii), page 301] how to apply
equivariant surgery and find an equivariant cobordism between
X{W\, Wj) and a homotopy sphere Σ, relative to the fixed point
set. Then W\ Φ W2 and these representations are Smith equivalent.

Because W\ and W2 are in S? we may suppose the W\ - W2 is a
multiple of A - B, as in the formulation of the theorem. D

7. Some algebraic computations (by A. Bak). We thank A. Bak for
the computations in this section. To prove Theorem 6.5, a lemma is
required. Let K0(Z[H]) = K0(Z[H])/[Z[H]].

LEMMA 7.1. K0(Z[H]) is finite.

Proof. By a theorem of Swan [Sw], if P is a finitely generated,
projective Z[//]-module then P <8>z[#] Q[H] is a free Q[/Γ|-module.
If rank(P) denotes the rank of this Q[i/]-module then it is an easy
exercise to check that the sequence

K0(Z[H]) -* K0(Z[H]) -> K0(Q[H])

is exact. The first homomoφhism maps [P] to [P] -rank(P)
Let (9 denote the unique maximal Z-order on Q[H]. If

> K0(Z[H], Q[H]) -* K0(Z[H]) - , K0(Q[H])

and

Kι(Q[H]) - , Ko(&, Q[H]) -+ Ko(&) -+ K0(Q[H])

denote respectively the exact K-thcory localization sequences associ-
ated to the homomorphisms Z[H] -• Q[^] and & -• Q[H] then by
[BS, (3.1) and (3.2)]

K0(Z[H], Q[H]) =
P

and

, Q[H]) =
p

where Zp and Qp denote respectively the completions of Z and

at the prime p and <9P = & ®z Zp . Since

ko(Z[H]) =
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and since cokev(Kι(Q[H]) -> Ko(&, Q[H])) splits as a (finite) prod-

uct UiCKFi) o f (finite) ideal class groups C1(F;) (where Q[A] =

Π; Fi, Fι cyclotomic number fields), it suffices to show that

p

is finite.

Let n denote the order of H. If p \ n then Zp[//] = &p (cf. [Bs,

XI (1.2)]), and so coker(AΊ(Z^[JΪ]) -> # i ( 4 ) ) = 0. If /?|/i then for

some natural number r, prffp c Z p [i/]. Let K\{βp, p r ^ ) denote the
relative Kx -group [Bs, V §2, IX §1] defined by the ideal pr@p. The
canonical homomorphism

is surjective. But by the exact sequence [Bs, IX (1.2)]

and the fact that the determinant map K\ (βPlp
r@p)

is an isomorphism [Bs, V (9.2)], one obtains that

coker(/) >-> units(^///d|) .

Since @pjp
r@p = <9lpr& is a finite ring, coker(/) is finite. Thus,

coker(g) is finite and the proof is complete. α

Proof of Theorem 6.5. By a theorem of Bak [Bal, Theorem 2] and
the remark following [Bal, Theorem 2], there is an exact sequence

H2(K0(Z[H])) - L

Since the diagram

L*(Z[H]91) -

i

commutes and //2(AΓ0(^[^])) is finite by the lemma above, it suffices
to show that the cokeτ(L$(Z[H], 1) -+ L%(A[H], 1)) is finite.

If A is a ring with involution and λ € center (A) such that λλ = 1,
then we let β A (̂ 4)even-free denote the category of nonsingular quadratic
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forms (with minimum form parameter) on finitely generated free mod-
ules of even dimension, whose associated sesquilinear form is λ-
Hermitian. We may assume that the modules under consideration
have dimension because by definition their equivariant signature van-
ishes. Let M(A) denote the hyperbolic plane, cf. [Ba2, §1B]. Define

ee = KQ(Q (A)eVen-free)

If Ί\H\ and A[H] have involutions inverting each element of H then
by definition

and
Lh

0(A[H], 1) = KQι

0(A[H])eYQn_ίΐQJ[M(A[H])].

Clearly,

coker(L{(Z[fi], l)-+Lb(A[H], 1))

Let A be as above and let X c K\(A) be an involution invariant
subgroup of Kχ{A) such that [±λ] e X. Let QA(^)even-free-x de-
note the category whose objects are nonsingular quadratic forms on
finitely generated free ^4-modules of even rank such that the associ-
ated sesquilinear form is A-Hermitian and has discriminant in X, and
whose morphisms are invertible linear maps whose determinant lies
in X,cf. [Bl, §1B]. Define

KQθ(A)even-free-X = Kθ(Q (-4)even-free-z)

Clearly,

S0(-4)even-free = ̂  (Λ) even-free- K{(A)

and thus

m

βθ()evenfree βo()evenfreeA:i(^)

Suppose m is a natural number, S the multiplicative set {1, m,
2,...,} and Λ = S~ιZ. Consider the localization-approximation

fibre square of rings with involution

Z[H] A[H]

cf. [Ba2, (7.17), (7.18), (7.21), (7.22)].
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Let X = Kι(Z[H]), Y = Kι(A[H]), X = imaged(Z[H]) ->

Kχ{X[P\m%[H])) and Ϋ = ivaa%t{Kx{M.H\)^Kx{χ\p[m%[H\)) By
[Ba2, (7.30)c)] (which holds for even-based- X forms as well as based-
X forms), [Ba2, (7.26)b)], and [Ba2, (6.26)] there is an exact Mayer-
Vietoris sequence

®KQlί]JZp[H]\l-Y
•p\m ^ even-based-X

p\m ' even-based- Y

from which one deduces an exact sequence

j even-based- Y

even-based- X

p | m / even-based- Y

It suffices to show that the preceding cokernel is finite. Since the
quotient of (by definition)

even-based- Y

even-based- γp\m

it suffices to show that WQl(Up\mQPlH])eveaJbaaed_γ is finite. Con-
sider the exact sequence [Ba2, (8.4)]

(z/2Z, Kx (Y[%[H]\ If) - WQιJγi
V Kp\m Π ' Kp\mp\m Π ' Kp\m even-based- Y

p{m
2 (H2 (z/2Z, Kx ( Π Qp[H]) If).
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By a result of Bass [Bs, V (9.2)], determinant

Thus

Kx ( J] %[H]\ -^ units ( Π %[H]\.

®P[H]\ /Ϋ = units ( Π %[H]) Iunits(Λ[//]).
J l Kp\m J l

/ (
p\m J l Kp\m

We leave it as an exercise for the reader to show that

W f Z/2Z, units ( J | %[H]\ ^ and # ! (Z/2Z, units(Λ[7/]))

are finite, for /" > 1. Thus, from the long exact cohomology sequence
associated to the exact sequence

1 -> units(Λ[#]) -> units

-> units (j[Qp[H]^units(A[H])

it follows that

Γz/2Z, units ( J | Qpt//]") /
^ \p\m 'I

is finite, for / = 1, 2. Thus, ^<2^(Π P | W Q P [^]) e v e n . b a s e d .y is finite if
and only if

wQl (Π %w) ~ = wQo( Π
\ p l m /even-based-AΓ.ίΠ^Q,^) ^ p\m

plm /even-based-AΓ.ίΠ^Q,^) ^ p\m /even-free

is finite. The proof is complete by showing that the latter group is
finite.

The ring Πpim QpI^Π factors as a finite product Γ L ^ of rings with
involution such that F, is either a product F( = FxF of fields F with
involution exchanging the coordinates, or i7, is a p-adic cyclotomic
field Qp(ζ) where p | m and ζ = ζ~ι. Since

WQθ Π p )
p\m /even-free

it suffices to show that each group W^QQ(̂ )even-free ^s finite. If Ft =
FxF then the group above is trivial, since every form is a product
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of hyperbolic planes. In the remaining cases, the group is either the
standard Witt group of the /?-adic field Qp , which is well known to be
finite, or the Witt group of Hermitian forms on the cyclotomic field
Qp[ζ] Φ Qp 9 which is also well known to be finite. D
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