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LEVEL SET MAXIMA
AND QUASILINEAR ELLIPTIC PROBLEMS

KYRIL TINTAREV

The present paper studies existence of solutions to the problem
pA'(x) = B'(x) where A and B are Fréchet differentiable func-
tionals on a Banach space. For every given value of A(x) = ¢ we
prove existence of a solution x and present an expression for the
eigenvalue p = p(t). The result is applied to quasilinear elliptic
equations.

1. Introduction. A typical problem of the second order studied be-
low is

(L.1) —dive/(x, Vu) = f(x,u),  ulsq=0,

where Q C R” is an open bounded domain, &/ (x,¢): Q x R" - R
and “ellipticity” of 7 is defined as:

(1.2) & (x, -) is convex for any x € Q,
A (x,8)-E>clklP, p>1, c>0, (x,8)€QxR".

When & is a quadratic form of ¢ and p = 2, (1.1) becomes a
semilinear equation. The study extends also to equations of higher
order and to systems.

Our approach follows the approach of Browder [2] and Berger [1]
with a subsequent refinement due to [3] and [4]. Let X be a Banach
space, 4, B € C!(X — R). We consider a critical point equation

(1.3) pA'(x) = B'(x).
This equation might be associated with the maximum problem
(1.4) o(t) = sup B(x).

A(x)=t

Under general compactness conditions, the maximum in (1.4) is at-
tained and provides (1.3). Remarkably the eigenvalues p are deriva-
tives of the function of critical values o(¢). More precisely, since
we prove that ¢ might have different right and left hand derivatives
o (t), both of them are eigenvalues. Under additional conditions
we prove that (1.3) is solvable for any p between inf,o’ () and
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sup, g’ (t). Thus, if the graph of o(¢) has a slope less than 1 and
a slope greater than 1, then A4’'(u) = B’(u) will be solvable. Applica-
tions to quasilinear elliptic problems then follow.

2. Maxima on the level sets. Let X be a reflexive Banach space and
let A, Be C!(X — R). Let us list several conditions to be used later.
Let

(2.1) S;={ueX: A(u) =t},
(2.2) w;={ueX: Alu) <t}

and define for those ¢ when S; # @,

(2.3) o(t) = sugB(u) ,
Ues,
(2.4) B(t) = sup B(u) =supa(t).
UE®, 1<t

LEMMA 2.1. Assume the following conditions:
(A1) A is coercive, i.e., |uj|| = oo = A(u;) — oco.
(A2) A is weakly lower semicontinuous.

(A3) (A4 (u), u) >0 for ue X\{0}.

(B1) B has no local maxima on X .

(B2) B is weakly continuous.

Then
(2.5) a(t) is increasing on [0, 00),
(2.6) o (t) is continuous on [0, o),
(2.7) the maximum in (2.3) is attained for every t > 0.

(An immediate consequence of (2.5) is that a(z) = B(¢).)
Without loss of generality one can assume from now that

(2.8) 4(0) = 0.
Then, due to (A3)
1 1
(29)  A(u) = /0 %A(tu) di = /0 (A'(tu) , u) d
= /01 t™WA'(tu), tuydt >0, unlessu=0.

By (A1) the range of 4 is [0, 00).
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Proof of Lemma 2.1. Consider a maximizing sequence #; € w; in
(2.4). By (Al) it is bounded in norm. Then there is a weakly con-
vergent renamed subsequence u; 5 up. By (A2) up € w;. By (B2)
B(uj) — B(ug) = B(t). If ug ¢ S;, then it is a point of interior max-
imum for B in w;. This contradicts (B1). Consequently, uy € S;.
This implies in turn that o(¢) = B(¢) and it is a monotone increasing
function. For the given ¢, the point ¥ is a point of maximum over
S;. Thus, (2.5) and (2.7) are proved.

Consider
(2.10) o(ty+0) = tl_l'rtroutr;g o(t),
(2.11) o(to—0) = limsup o(¢).

=1y, 1<t,
Let t; > 19, tj — to and let g(¢;) be attained an u; € S; . Then by
(Al) u; has a renamed weakly convergent subsequence: u; e
wy, - Therefore,

(2.12) o(to+0) = B(up) < seup B(u) = a(typ).

The converse inequality is true by monotonicity of . Thus

(2.13) a(to+0) =o(t).

Let now u be a point of maximum in (2.1) at ¢ = #y. Then by (A3)
(2.14) t(s) := A(sup)

is a monotone increasing function and

ts)—ty, ts)<ty ass—1, s<1.

Therefore,
(2.15) o(to —0) > limsup B(sug) = o(tp) .
20
The converse inequality is due to monotonicity of ¢. Thus g(#—0) =
o(ty) and (2.6) is proved. o

LEMMA 2.2. Assume the conditions of Lemma 2.1. Let uy be a point
of maximum in (2.3), t > 0. Then there is a p >0, such that

(2.16) pA'(uo) = B'(uo) -

Proof. Let v € X be such that
(2.17) (A'(up), v) <0.
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By Lemma 2.1 ug is a point of maximum of B in w; and
(2.18) B(ugy + 6v) < B(ugp)

for 6 > 0 sufficiently small. Thus,

(2.19) (B'(ug) , v) <0

for any v satisfying (2.17). From (2.17), (2.19) a routine argument
shows that 4'(xp) and B’(up) are parallel. By (A3), 4'(up) # 0 and
(2.16) follows immediately. O

Let us define a set A; C S; x [0, 00), t€ (0, 00):
(2.20) Ar={(u, p): Bu)=0a(t), pA'(u) = B'(u)}.
By Lemmas 2.1, 2.2 A, is nonempty. Let

(2.21) AP ={p>0:ues;, (u, p) €A},
(2.22) AY ={uesS:3p>0, (u, p)eA}.

By (2.20), one has also:
AM = {ueS;: B(u) =o(t)}
and
(2.23) AP ={p=(B'(u), u)/(4'(u), u), ueA}.

LEMMA 2.3. Assume the conditions of Lemma 2.1 and in addition
(A4) If uj = uyg, then

A(uj) — A(uo) & (A'(uj), uj) — (A'(uo) , uo)-
(B3) (B'(u), u) is weakly continuous.
Let T C (0, o0) and
(2.24) Ar=|JA.
teT

If T is compact in (0, 0o), then At is weakly compactin X x(0, 00).

Proof. Let (uj, pj) € A;, t; € T. Consider a renamed con-
vergent subsequence ¢; — ¢ € T. Then by (Al), (A2) u; has a
weakly convergent (renamed) subsequence u; — ug € @;, . By (B2),

B(uj) — B(up), by Lemma 2.1 B(up) = o(f) and ug € S, 1L.e,
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Ug € AE:) . By Lemma 2.2 u; satisfy (2.16) with eigenvalues, say, p;,
uo satisfies (2.16) with some pg, and

(2.25) pj = (B'(uy), uj) /(A (w:), uj),
po = (B'(up), uo)/{A'(uo) , uo) .

Note now that (B'(u;), u;)— (B'(up), uo) by (B3) and (4'(u;), u;) —
{(A'(ug) , uo) by (A4). Thus pj — po. 0

3. Critical values and eigenvalues.

THEOREM 3.1. Assume

(A1) A is coercive, i.e., ||uj|| = oo = A(u;) — co.
(A2) A is weakly lower semicontinuous.

(A3) (A" (u), u) >0 for ue X\{0}.

(A4) If u; — ug, then

A(uj) — A(ug) < (A'(u)), u;) — (A'(uo) , uo)-

(Bl) B has no local maxima on X .

(B2) B is weakly continuous.

(B3) (B'(u), u) is weakly continuous.
Then for every t > O there exist left and right derivatives a!.(t), a’ (1) <
a/(t). Moreover,

(3.1) al.(1) = sup{p € A"},
(3.2) o' (t) = inf{p € AP},
Before we prove the theorem, we wish to note that supremum in

(3.1) and infimum in (3.2) are attained on some uy € AE“) due to
Lemma 2.3. As a result one has

THEOREM 3.2. Under conditions of Theorem 3.2 for every t > 0
there exist uy € Sy, such that

(3.3) o (A (uy) = B'(uy),
(3.4) o (A (u_)=B'(u_).

Proof of Theorem 3.1. 1. Let u, eAE:‘). Let 6, — 1,1; = A(8u).
Then by continuity of A4, ¢; — A(up) = ty. Moreover,

(3.5) tj—to = A(Oug) — A(ug) = (A'(ug), uo)(6; — 1) +0(6; —1).
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Consequently,
(3.6) a(t;) —o(to) = B(8;up) — B(uo)
= (B'(uo) , uo}(6; — 1) + 0(6; — 1)
= ((B'(uo) , uo)/(A'(uo) , uo))(tj — to) +o(t; — to) -
Fro (3.6) and (2.23) one has immediately,
(3.7) D.o(to) > sup{p € A},
(3.8) D~a(tp) < inf{p € AP}

2. Letnow u; € Aﬁ“) , ti — ty. By Lemma 2.3 a renamed sequence
J
u;j converges weakly to ug € Ag‘) . Let us define 6; >0 by
(3.9) A(Gjuj) =1.

By (A3), the function 6 — A(Ou;) is monotone for any u # 0 and by
(A1) the range of it is [0, co). Thus, for given f, > 0 and u; # 0,
(3.9) has a unique solution 6; > 0. Since 4 € C!, there exist 7; €
[0, 1], such that

(3.10) tj —to = A(u;) — A(Oju;) = (A'(nju;), u;)(1 - 6;).

From (3.9) it follows that 6; is a bounded sequence. Let us consider
a renamed convergent subsequence: 6; — 6. Then 6;u; =5 Boug
and, necessarily, 6o = 1. Therefore n; — 1 and

(3.11) tj 1o = ('), u)(1 = 8;) + 0(1 - 6).
Similarly,
(3.12) B(uj) - B(Gjuj) = (B’(uj) s uj)(l - 0]) +o(1 - 0]) .
Therefore
(3.13) a(t)) ~ a(to) < (B'(uy), u;)(1 — 6;) + o(1 - 6))
= ((B'(uy), uj) /{4 (uj), u;))(tj — to) + 0(tj — to) -
We have to note only that (4'(u;), u;) — (4'(up), up) by (A4) and
(B'(u;), uj) — (B'(up) , up) by (B2). Then from (3.13) follows:
(3.14) D*o(to) < sup{p € A},
(3.15) D_o(t) > inf{p € AP}
3. Let us combine (3.7) and (3.14). Then
sup{p € Aﬁf )} < D,a(ty) < D*a(ty) < sup{p € Aﬁf 1},
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ie., o (t) exists and satisfies (3.1). Similarly, (3.2) follows from
(3.8) and (3.195). m]

4. Continua of solutions. Range of solvability. In this section we
assume the conditions of Theorem 3.1.

PROPOSITION 4.1. Assume that for every t € (s, s3) C (0, o) the
set AE“) consists of a single element u,. Then the map t — u; is
weakly continuous on (s, 83).

Proof. Let ty — tg € (51, 52) . Then {¢;} is compact in (0, co) and
by Lemma 2.3 u; has a (renamed) weakly convergent subsequence
U, Lug e AZ‘) . Since Ag‘) = {u,o}, the original sequence u; must
be weakly convergent to the same element u; . O

COROLLARY 4.2. Under conditions of Proposition 4.1 the problem
4.1) pA'(u) = B'(u)
possesses a weakly continuous family of eigenfunctions t — u; corre-
sponding to eigenvalues p; = (B'(u;), u;)/{A' (us), u;) continuous in

t € (81, 52). The function (2.3) has a continuous derivative on (s, $3)
and p;=a'(t).

The proof follows from Theorems 3.1 and 3.2.

PROPOSITION 4.3. Let h: X? — X be a map, such that

(Ah) A(h(u,v)) > max{A4(u), A(v)} for u#wv.

(Bh) B(h(u, v)) > min{B(u), B(v)} for u,veX.
Then the assertions of Proposition 4.1 and Corollary 4.2 hold for any
t>0.

Proof. Let u,v € Ag”)u # v. Then by (Ah), A(u,v)€ew,,t' <t,
but by (Bh) B(h(u, v)) > B(u) = o(t). This contradicts Lemma 2.1.
Thus the conditions of Lemma 4.1 are satisfied at any ¢ > 0. O

A simple example when (Ah), (Bh) are satisfied, can be provided by

COROLLARY 4.4. Let A be strictly convex and B be concave on
X . Then the assertions of Proposition 4.1 and Corollary 4.2 hold for
te (0, 00).

Proof. Take h(u,v)=Au+(1-2A)v, A€ (0, 1). O
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If 0 € CL (0, 00), then (4.1) is solvable (with u # 0) for any
p€l(A, B), where
(4.2) I(A, B) = (irtlfa’_(t) , Sup a;(t)) .
t

However, o does not generally have a continuous derivative (cf.
[4]). Thus we wish to answer the question, for what subsets of I(a, b)
does (4.1) still have a non-zero solution.

PROPOSITION 4.5. Let the function pt—a(t) have a local minimum
on (0, 00). Then (4.1) has a non-zero solution.

Proof. Let pt — o(t) have a local minimum at #y) > 0. Then
o’ (t) > p > o' (ty). By Theorem 3.1, d’(#) < o\ (%). Thus, o
is differentiable at #y and o¢’(¢y) = p. Then by Theorem 3.2, (4.1)
has a solution with A(u) = t,. O

In order to get a more extensive result we use a mountain pass
theorem from [5].

THEOREM 4.6. Let G € C'(X — R) and let ug € X\{0}. Let
N C X be an open bounded set, such that 0 € N but up ¢ N.
Assume that

(4.3) G(u) >0, uedN,
(4.4) G(0) <O, G(up) <0.
Then there is a sequence u;, € X and y > 0 such that
(4.5) Glux) — v,
(4.6) I1G" (i)l x= lluxllx — 0.
Let now
(4.7) Ag = 0{A'(u), u) — Au),
(4.8) B = 6(B'(u), u) — B(u),
(4.9) ® = {6 € R: |A4y| is coercive},
and let
(4.10) Q(0) be set of limit points for Bg(u)/Ag(u)
when |[u|| — o0, 0 € D.
Set now
(4.11) .= Qo).

0cd
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THEOREM 4.7. Assume, in addition to conditions of Theorem 3.1,
that:

(ABw) A’, B’ are continuous from X to X* with regard to respec-
tive weak topologies.

Then for every p € I1(A, B)\Q.« the equation (4.1) has a nonzero
solution.

Proof. 1. Let peI(A4, B)\Q«, i.e.,, p is a slope of a secant to the
graph of o(¢), the functional |4y| is coercive for some 6 and p is not
a limit point of By/Ay at infinity. If pt — o(¢) has a local minimum
at t # 0, then p is an eigenvalue (Proposition 4.5). Thus we would
consider the case when p¢—o(¢) has no local minimum. If p = ¢/ (%)
or p = a’ (t) for some ¢y > @, then it is an eigenvalue by Theorem
3.2. The remaining case is: for some #) > 0, d'(¢y) < po’(t). This
implies that ¢y is a point of local maximum of pt — o(¢). Since we
assume that pz — g(¢) has no local minimum, ¢y is a point of strict
global maximum. In particular, d := pty — a(ty) > 0—0(0) =0, and
there exists ¢; > g, such that d; := pt; —a(t;) < 9.

2. Let

(4.12) G(u) = pA(u) — B(u) — 8, .

Then all the conditions of Theorem 4.6 are fulfilled with N = {u €
X, A(u) <t} and ug € S; . Let ui € X, y > 0 satisfy

(4.13) pA(u) — B(ug) — 61+ = 01,
(4.14) o4’ (ux) — B’ (u) | xlluellx — 0.
Then

(4.15) plA (ur) wi) — (B'(uy), ) — 0
and, consequently,

(4.16) pAg(uy) — By(ug) — —y — 9.

If |Jug)| — oo, then |Ag(ug)] — oo, p = lim By(uy)/Ae(uy), which
contradicts the assumptions. Thus the sequence u; is bounded in
norm. Let now u; be a renamed weakly convergent sequence, and
uy = w-limuy . Then by (ABw) from (4.14) follows:

(4.17) pA(uo) = B'(uo).

Moreover, by (B3), (4.14), (4.17)

(4.18)  lim p(A' (), ug) = im(B'(uy), ux) = (B'(uo), uo)
= p(A’(uO) s uO) .
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Then by (A4)
(4.19) lim A(uy) = A(up) .
Thus by (4.13), (B2),
0 <9y +y=1lmpA(ug) — B(ux) = pA(uo) — B(uo)
which proves that uy # 0. O

COROLLARY 4.8. Let p, = infycq lim sup),) ..o Bo(4)/Ag(u). Then
(4.1) has a non-zero solution for

pGI(A,B)ﬂ(p*,oo).

5. Applications to quasilinear elliptic problems. Let Q C R” be an
open bounded set X = W/"?(Q)¥, p>1, /€N, keN. Let v(l) be
the number of multi-indices of length not exceeding /. Assume that
S (%, {Ya}ja<) and B (X, {Va}a<i-1) are C' real valued functions
of {y.} whose derivatives are Carathéodory functions of (x, {y,}).
Without loss of generality we assume that

(5.1) & (x,0)=0, Z(x,0)=0.

We require for the function & the following ellipticity condition:

(5.2) & (x, -) is convex for almost every x € Q

and the following coercivity condition:

d

(5.3) 57 % {tyaDlmt 2 € Y el €>0,x€Q.
la|=1

We also require the following upper bounds for &/’ and %’ :

(54) |9 (x, mahl<c (1 +> lyal”"l) , ¢>0,

l|<!

(5.5) 1By (x, ) SC Y |yl
|B|<I-1
|B|1>1-n/p

+ Va({yp}ipi<i=n/p) + Wa(X),
where
CcC>0
(5.6) WoeLla,r,=1 ifl—|a|>n/p,
ro >pn/(pn—n—-p(l—|a|)) ifl-|a|<n/p,
V, is a continuous function,
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pn )
aB > T A if [ — > np,
Qp > 5 =p(T—1B)) lod > np

pn—n+p(l —|af)
Qb < —p(U=18) °

ProrosITION 5.1. Assume (5.2)-(5.6). Then the functionals

ifI—1la| <n/p.

(5.7) A(u) = /Q o (x, {0°u}) dx,
(5.8) B(u) = / B(x, {9°u}) dx

Q
satisfy (A1-A4), (B2), (B3), (ABw) on X = W, -2(Q)*.

Proof. The verification of continuity and differentiability proper-
ties is standard and based on compactness in the Sobolev embedding
theorem. We wish to make remarks on only a few details.

1. Relation (5.3) implies (A3) and also (A1), since it immediately
gives
(5.9) %M(x, {tya}) > ct?~! |z|:l Valff,  £>0.

2. Relation (5.2) implies that the set (2.2) is convex. Thus it is
weakly closed and A4 is lower semicontinuous.

3. Due to (5.9), (5.4) weak convergence of a sequence u; together
with convergence of either A(u;) or of (A4'(u;), u;) is equivalent to
convergence in norm. 0O

To verify the condition (B1) in most of the applications it suffices
to prove that B'(u) # O unless ¥ = 0 and that ¥ = 0 is not a point
of maximum. Two particular cases are given below.

LEMMA 5.2. Let
(5.10) Z%’a(x, Ye})Ve >0 for {y.} #0.

Then (B1) holds.

Proof. From (5.10) it follows that (B’(u), u) > O unless u = 0.
The point ¥ = 0 is not a point of maximum, but rather of mini-
mum, since for every u € X\{0}, B increases along the line ¢ — tu,
t>0. O
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LEMMA 5.3. Let k=1, b(x, {ya.}) = F(yo) and assume that with
some € >0,

(5.11) F'(y9) >0 foryoe(0,¢) and
F'(yo) #0 foryo € (—¢,0).

Then (B1) holds.

Proof. Let u be the point of maximum of b and let 7 be a de-
creasing spherical rearrangement for . Then % is a WO”” -function
dependent on the radial variable only. Therefore # is continuous
away from the origin, the range of % is a closed interval I containing
zero. Moreover, the range of u is dense in 7, for if (s, ¢) is not in
the range of u, (s, t) is not in the range of u. If u is a point of
maximum for B, then F’ = 0 on the range of u, and since F’ is
continuous F/ = 0 on /. By (5.11), therefore, I N (—¢, ¢) C {0}.
However, ¥ = 0 is not a maximum: one can perturb 0 by a function
v > 0 of an arbitrarily small norm so that B(v) > B(0) =0. |

The following statement is now an immediate corollary of Theorems
3.1, 3.2

THEOREM 5.4. Assume (5.1-5.6) and (B1). Then for every t > 0
there exists a semistrong solution uf € WOI”’(Q)" satisfying the re-
spective equations:

(5.12) ol (1) Z (—1)""6‘1«%{.(36, {07u(x)})
la|<!
= Y (-DPlobg (x,{07u(x)}).
Bl<I-1 ’
Moreover,
(5.13) A(ut) =t

and the function o is given by

(5.14) o(t) = sup B(u).

We now will look for realization of conditions (Ah), (Bh) to get
continuous curves of eigenfunctions.



QUASILINEAR ELLIPTIC PROBLEMS 197

THEOREM 5.5. Assume (5.1-5.6) and (B1). Let & (x, -) be concave
for a.e. x € Q. Then there is a continuous family t — (p;, u;) €
(0, 00) x Wi P(Q)¥, such that

(5.15) pe Y (=D)M0%s) (x, {87u(x)})

la|<]

= > (-8B (x, {87u/(x)}).

laj<i-1

Proof. Apply Corollary 4.4. Then u, satisfies (5.15) and ¢ — u;
is weakly continuous. However, by (5.4), (5.9) convergence of ¢; =
A(u,j) together with weak convergence of U, is equivalent to conver-
gence in norm and the family (p;, #;) is continuous. O

THEOREM 5.6. Let &/ (x, {0°u}) = |Vul?, F(x, {ya}) = F(Vo),
k = 1. Assume also that F € C1,

(5.16) F'(s)>0 fors>0 and F'(s)=0 fors<0,

and that the map

(5.17) s — F(s'/?) is concave for s > 0.

Then there is a continuous family t — (p;, u;) satisfying

(5.18) —p: div(|Vu, [P ~2Vu,) = F'(u,), u,>0.
Proof. Let

(5.19)  hg(uy, uz) = (Blurf’ + (1 — 6)[uz[?) /7, 0€(0,1).
Then, applying Holder inequality with 1 + Elr =1,

(5.20) [V(Blwr]? + (1 — O)[uz|?) /7|
_ llelull”'IVWzl + (1= 0)p|us|P~'V|uy|
p (Olurl? + (1 = 0)|ualp) !/
O1/2 /2 |1y P12V |y | + (1 = 0) /P41 4y P10 ||
(0l + (1 = 6)|ua|p) 1/’
< O|V]u| 1P + (1 = 0)|[V]uz| P
= 0|Vu P + (1 - 0)|Vuyl?.
The relation (5.20) makes sense a.e. when u;, u; € C&(Q) and the

equality holds only if #; = u, or one of them vanishes. Then the
following will be true on Wbl P(Q):

(5.21) A(hg(uy, uz)) < 0A(uy) + (1 — 0)A(uy)

p

p
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with the same remark on equality. By (5.16), (5.17),
(5.22) B(hg(uy, up)) < 0B(uy) + (1 —0)B(uy).

Thus (Ah), (Bh) are satisfied and the assertion follows from Theorem
5.11. One has only to note that ¢; — fo and u, — u;, implies
Uy, — lo. O

Now we wish to find some realizations of Theorem 4.7.

LEMMA 5.7. Assume (5.1-5.6) and (B1). Let

(5.23) By (X, {ya}) =0 ( > |ya|1’") uniformly in Q.

le|<I-1
Then
(5.24) 0. c {0}.

Proof. By (5.3), (5.4), Ag > ||u||? with 6 sufficiently large. By
(5.23), Bg(u) = o(||u||P). Thus Q. c {0}. m]
THEOREM 5.8. Assume (5.1-5.6), (B1) and (5.23). Then for every

(5.25) pE (0, sup aﬁr(t))
t
there is a non-zero solution of
(5.26) p Y (—1)o%e (x, {87u(x)})
laf<!
= 3 -)F0PF(x, {(7u(x)}).

|BI<I-1
Moreover,
(5.27) sup ', (t) > sup B(u)/A(u).

t u#0

Proof. By Theorem 4.7, (5.26) is solvable for p € I(a, b). The
lower bound in I(a, b) is less than o(¢)/t which goes to zero when
t tends to oo. The upper bound of I(a, b) is greater or equal to
any given slope of a secant line to the graph of o, e.g. o(¢)/t, which
implies (5.27). m]

THEOREM 5.9. Assume that k =1,
B(x,{ya})=F(),  L(x,{0fu})=|VulP.
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Let Fe C! andif n > p, let F'(s) = o(s|9"1), q < pn/(n—p).
Assume that for some & > 0
(5.28) F'(s)/s?~*¢ is an increasing function
in a neighbourhood of +oo,
F'(s)=o(|s|P™!) ass— —oo.
Then for every

(5.29) pe (irtlfa'_(t), oo)
there is a solution u # 0 for
(5.30) —pp div(|VulP~2Vu) = F'(u).

Proof. Note that &/ , & satisfy (5.1-5.6) and B1.

From (5.28) it follows that %Z,(u) < o(||u||?) for 6 > 1/(p +¢).
Thus Q. N (0, oc0o) = @, and one can apply Theorem 4.7. By (5.8)
supa’ (t) > sup,0(t)/t = 0. ]

As a general realization of 4.7 we state:

THEOREM 5.10. Assume (5.1-5.6) and (B1). Then (5.26) has a non-
zero solution u for

(5.31) p € (infe’ (¢), sup o’ (£))\Ox.

6. Examples. The following examples illustrate the solvability re-
sults of this paper.

ExAMPLE 6.1. Let Q C R” be an open bounded set. Consider
6.1) { —pdiv(|V|P~2Vu) = u® + uf u>0,p>1,
' ulaa =0.

Case 1. 0 < a < B < p—1. Then by Theorem 5.6 there is a
continuous family (p;, ;) of eigenfunctions. By Theorem 5.4, the
range of eigenvalues p is I(A4, B) which is here (0, o).

Case2. 0<a<p-1<p.If n>p assume also f < np/(n —p)
— 1. Then (6.1) has a solution for every p € (pg, ), po > 0 and

: - p 1 4(a+1
6.2 <inf sup ¢ ‘/ (———u"‘+ flet)/p
(6.2)  po<in ey o a1

L P B B1/P Y g
B+1
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Solvability for p € I(4, B) is provided by Theorem 5.9.

Case3. p—l1<a< p andif n>p, f <np/(n—p)—1. Similarly,
(6.1) is solvable with p € (0, co) by Theorem 5.9.

Case 4. 0 < a < f =p—1. The argument is like in Case 1, only
I(A’ B) = (O’ pO)a

(6.3) Po ||u||, —lp/|u|p

Case 5. 0<a=p-1<p,if n>p, B<np/(n—p)—1. The
argument follows one of Case 3, but I(a, b) = (py, o), where pg is
like in (6.3).

ExXAMPLE 6.2. Let Q Cc R”, n < 6, be an open bounded domain.
Consider a system:
=3pdiv(|Vu| + 5|V 32| Vu|~12)Vu = 5ut,
{ =3pdiv(|Vu| + 3| Vul32|vu|~1/2)Vy = 403, U, vlpe =0.
This system corresponds to

A, v) = /Q (Vul® + Vol + |[VuP2[vo[3/?) dx,

B(u,v) = /(u5 + v dx.
Q
By Theorem 5.9, it is solvable for p € I(4, B) and I(A4, B) = (0, o).
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