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LEVEL SET MAXIMA
AND QUASILINEAR ELLIPTIC PROBLEMS

KYRIL TINTAREV

The present paper studies existence of solutions to the problem
pA'(x) = B'{x) where A and B are Frechet differentiate func-
tionals on a Banach space. For every given value of A(x) = t we
prove existence of a solution x and present an expression for the
eigenvalue p = p(t). The result is applied to quasilinear elliptic
equations.

1. Introduction. A typical problem of the second order studied be-
low is

(1.1) -divΛ£'(x, Vu) = / ( x , i ι ) ,

where Ω c R " is an open bounded domain,
and "ellipticity" of sf is defined as:

(1.2) £s?(x, ) is convex for any X G Ω ,

s f ξ ' ( x , ξ ) ξ > c \ ξ p 9 p > l , c > 0 , ( x 9 ξ ) e Ω x R n .

When J / is a quadratic form of ξ and p = 2, (1.1) becomes a
semilinear equation. The study extends also to equations of higher
order and to systems.

Our approach follows the approach of Browder [2] and Berger [1]
with a subsequent refinement due to [3] and [4], Let X be a Banach
space, A, B eCι(X ->R). We consider a critical point equation

(1.3) pA\x) = B'{x).

This equation might be associated with the maximum problem

(1.4) σ{t)= sup B(x).
A(x)=t

Under general compactness conditions, the maximum in (1.4) is at-
tained and provides (1.3). Remarkably the eigenvalues p are deriva-
tives of the function of critical values σ(t). More precisely, since
we prove that σ might have different right and left hand derivatives
σ±(t), both of them are eigenvalues. Under additional conditions
we prove that (1.3) is solvable for any p between mftσL(t) and
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suptσ+(t). Thus, if the graph of σ(t) has a slope less than 1 and
a slope greater than 1, then A'(ύ) = Br(ύ) will be solvable. Applica-
tions to quasilinear elliptic problems then follow.

2. Maxima on the level sets. Let X be a reflexive Banach space and
let A, B G C 1 (X --• R). Let us list several conditions to be used later.
Let

(2.1) St = {ueX:A(u) = t},

(2.2) ωt = {ueX:A(u)<t}

and define for those t when Stφ 0 ,

(2.3) σ(t) = sup B(u),

(2.4) y?(ί) = sup B(u) = sup σ(τ).

LEMMA 2.1. Assume the following conditions:
(Al) A is coercive, i.e., \\Uj\\ —• oo => A{uj) -+ oo.

(A2) A is weakly lower semicontinuous.
(A3) (A'{u) ,u)>0 for ue X\{0}.
(Bl) B has no local maxima on X.
(B2) B is weakly continuous.
Then

(2.5) σ(t) is increasing on [0, oo),

(2.6) σ(t) is continuous on [0, oo),

(2.7) the maximum in (2.3) is attained for every t >0.

(An immediate consequence of (2.5) is that σ{t) = β{t).)
Without loss of generality one can assume from now that

(2.8) ,4(0) = 0.

Then, due to (A3)

rι d rι

(2.9) A(u)= / ^-A(tu)dt= / μ'(ta),w>,
Jo "t Jo

Γι(A'(tu),tu)dt>0, unless u = 0.

dt
at ' j 0

10

By (Al) the range of A is [0, oo).
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Proof of Lemma 2.1. Consider a maximizing sequence Uj G ωt in
(2.4). By (Al) it is bounded in norm. Then there is a weakly con-
vergent renamed subsequence Uj -̂ -> WQ . By (A2) UQ G ωt. By (B2)
B(Uj) —> B(UQ) = /?(ί). If UQ φ St, then it is a point of interior max-
imum for B in ωt. This contradicts (Bl). Consequently, UQ G St.
This implies in turn that σ(t) = β(t) and it is a monotone increasing
function. For the given t, the point u$ is a point of maximum over
St. Thus, (2.5) and (2.7) are proved.

Consider

(2.10) σ(t0 + 0)= liminf σ(ί),

(2.11) <7(ί o-O)= limsup cτ(ί).
t-*toj<to

Let ί7 > ô > 0 —*• ?o and let σ(tj) be attained an Uj G ̂  . Then by

(Al) Uj has a renamed weakly convergent subsequence: Uj - ^ UQ G

ω ί o . Therefore,

(2.12) σ(ί0 + 0) = 5(ιio) < sup B{u) = σ(t0).

The converse inequality is true by monotonicity of σ. Thus

(2.13) σ(ίo + O) = σ( ί o ) .

Let now UQ be a point of maximum in (2.1) at t = to. Then by (A3)

(2.14) t(s):=A(suo)

is a monotone increasing function and

t(s) -• ίo 5 ί( ί) < *o as 5 -^ 1, s < 1.

Therefore,

(2.15) σ(t0 - 0) > lim sup 5(Λ W0) =

The converse inequality is due to monotonicity of σ. Thus o{tQ—0) =
cr(ίo) and (2.6) is proved. D

LEMMA 2.2. Assume the conditions of Lemma 2.1. Let UQ be a point
of maximum in (2.3), t > 0. 7 7 ^ ί/zere wα /> > 0, such that

(2.16) ^ / ( « o ) = 5/(MO).

Proof. Let ΐ e l b e such that

(2.17) (
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By Lemma 2.1 UQ is a point of maximum of B in ωt and

(2.18) B(uo + θυ)<B{uo)

for θ > 0 sufficiently small. Thus,

(2.19) (B'(uo),v)<0

for any v satisfying (2.17). From (2.17), (2.19) a routine argument
shows that A'{UQ) and B'(UQ) are parallel. By (A3), A'(uo) φ 0 and
(2.16) follows immediately. D

Let us define a set Λ* c St x [0, oo), t 6 (0, oo):

(2.20) Λ, = {(«, p): J9(κ) = σ(ί), pA\u) = B'(u)}.

By Lemmas 2.1, 2.2 At is nonempty. Let

(2.21) Λ ^ = {p > 0: 3w e St, (u, p) e Λ J ,

(2.22) Λίw) = {M 6 5/: 3/> > 0, («, /̂ ) 6 A,}.

By (2.20), one has also:

A(

i

u) = {ueSt:B(u) = σ(t)}

and

(2.23) A\p) = {p = (B'(u), u)l(A\u), u), WE AJW )} .

LEMMA 2.3. Assume the conditions of Lemma 2.1 ατz<ί m addition

(A4) If Uj-^Uuo, then

A(Uj) -+ A(u0) & (A'(Uj), Uj) -+ (A'(u0), u0).

(B3) (J?;(w), u) is weakly continuous.
Let Γ c (0, oo)

(2.24)
teT

If T is compact in (0, oo), then Aτ is weakly compact in X x (0, oo).

Proof. Let (Uj, pj) € Λ*., tj e T. Consider a renamed con-

vergent subsequence tj -+ t0 e T. Then by (Al), (A2) Uj has a

weakly convergent (renamed) subsequence Uj - ^ Wo Ξ ω^ . By (B2),

U(M/) —> B(uo)y by Lemma 2.1 5(MQ) = σ(ίo) and UQ e St , i.e.,
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UQ <E Λ ^ . By Lemma 2.2 Uj satisfy (2.16) with eigenvalues, say, /?,,
0

«o satisfies (2.16) with some po, and

(2.25) pj = {B'(uj), Uj)/(A'(Ui), Uj),

Po = {B'(u0), uo)/(A'(uo), Mo)

Note now that (B'(UJ), Uj)-+(B'(u0), u0) by (B3) and (A'(Uj), Uj) -»•
MQ) by (A4). Thus pj —> po. D

3. Critical values and eigenvalues.

T H E O R E M 3.1. Assume

(Al) 4̂ w coercive, i.e., \\UJ\\ —• CXD => ^4(M7 ) -> oo.

(A2) 4̂ w weakly lower semicontinuous.
(A3) (Λ;(κ) ,u)>0 for ue X\{0}.
(A4) If Uj -^u0, then

A{uj) -> ̂ («o) <=> (A'(uj), Uj) -+ (A'(u0),

(Bl) 5 Aα.s1 no local maxima on X.
(B2) B is weakly continuous.
(B3) (Bf(u),u) is weakly continuous.

Then for every t>0 there exist left and right derivatives σ±(t), <τi(ί) <
σ/(/). Moreover,

(3.1) < ( ί ) =

(3.2) σL(t)=inf{peA<

i

p)}.

Before we prove the theorem, we wish to note that supremum in
(3.1) and infimum in (3.2) are attained on some u± € ΛJw) due to
Lemma 2.3. As a result one has

THEOREM 3.2. Under conditions of Theorem 3.2 for every t > 0
there exist u± eSt, such that

(3.3)

(3.4) σ

Proof of Theorem 3.1. 1. Let u0 e ΛJW) . Let θj-^ 1, tj = A(θjU0).
Then by continuity of A, tj• -> A(uo) = to . Moreover,

(3.5) tj -to = A(θjUQ) - A(u0) = {A'(u0), uo)(θj - 1) + o(θj - 1).
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Consequently,

(3.6) σ(tj) - eτ(ίo) > B(θjU0) - B(u0)

= ((B'(u0), uo)/{A'(uo), MO»(O - to) + o(tj - ί0)

Fro (3.6) and (2.23) one has immediately,

(3.7)

(3.8)

2. Let now Uj G Λ ^ , f, —• ί0 By Lemma 2.3 a renamed sequence

Uj converges weakly to u0 G Λ^w). Let us define θj > 0 by

(3.9) A(θjuj) = to.

By (A3), the function θ —> A{θuj) is monotone for any w ^ O and by
(Al) the range of it is [0, oo). Thus, for given to > 0 and u}• Φ 0,
(3.9) has a unique solution θj > 0. Since 4̂ G C 1 , there exist f/7 e
[β7 , 1], such that

(3.10) 0 - ί0 = i4(«7 ) - A(θjUj) = (A'(ηjUj), Uj)(l - θj).

From (3.9) it follows that θj is a bounded sequence. Let us consider

a renamed convergent subsequence: θj —• 0Q Then θ7 w7 -̂ -> ^owo

and, necessarily, θo = 1. Therefore τ/7 -• 1 and

(3.11) tj -to = (A'(UJ)9UJ)(1 - θj) + o(l - θj).

Similarly,

(3.12) B(Uj)-B(θjUj) = (B'(Uj),Uj)(l - θj) + o(l - θj).

Therefore

(3.13) σ(tj) - σ(ί0) < < ^ ( ^ ) , uy-)(l - 07) + o{\ - ^ )

= «i?'(W;) , Uj)/(A'(Uj) , ̂ » ( 0 - /o) + O(0 - ί0)

We have to note only that (A'(UJ) , Uj) —> (^'(wo) ? wo) by (A4) and
{B'(uj)9 Uj) -> (B'(uo),uo) by (B2). Then from (3.13) follows:

(3.14)

(3.15) D-σ(ίo) > i ^

3. Let us combine (3.7) and (3.14). Then

sup{/> G Ajf}} < D+σ(t0) < D+σ(t0) < sup{/> G
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i.e., σ'+{to) exists and satisfies (3.1). Similarly, (3.2) follows from
(3.8) and (3.15). D

4. Continua of solutions. Range of solvability. In this section we
assume the conditions of Theorem 3.1.

PROPOSITION 4.1. Assume that for every t e (s\, s2) c (0, oo) the
set Λ ^ consists of a single element ut. Then the map t —> ut is
weakly continuous on {s\, s2).

Proof Let t0 —• ί0 € (s\, s2). Then {tj} is compact in (0, oo) and
by Lemma 2.3 ut has a (renamed) weakly convergent subsequence

ut - ^ Wo € Λ ^ . Since A^ = {uto}, the original sequence ut must

be weakly convergent to the same element uίo. •

COROLLARY 4.2. LWer conditions of Proposition 4.1 the problem

(4.1) />Λ'(a) = 2?'(w)

possesses a weakly continuous family of eigenfunctions t —> ut corre-
sponding to eigenvalues pt = {B'(ut), Ut)/(A'(ut), ut) continuous in
t e(s\, s2). The function (2.3) has a continuous derivative on (s\, s2)
and ρt — a'{t).

The proof follows from Theorems 3.1 and 3.2.

PROPOSITION 4.3. Let h: X2 -• X be a map, such that
(Ah) A(h(u, υ)) > max{,4(w), A(v)} for u Φ v.
(Bh) B(h(u ,υ))> min{B(u), B(υ)} for u,veX.

Then the assertions of Proposition 4.1 and Corollary 4.2 hold for any
ί > 0 .

Proof. Let u, v e A[u)u Φ υ . Then by (Ah), h(u, v) e ωt>, t' < t,
but by (Bh) B(h(u, υ)) > B(u) = σ(ί). This contradicts Lemma 2.1.
Thus the conditions of Lemma 4.1 are satisfied at any / > 0. D

A simple example when (Ah), (Bh) are satisfied, can be provided by

COROLLARY 4.4. Let A be strictly convex and B be concave on
X. Then the assertions of Proposition 4.1 and Corollary 4.2 hold for
ί e ( 0 , oo).

Proof. Take h(u, v) = λu + (1 - λ ) v , λe (0, 1). D
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If σ e Cΐoc(0, oo), then (4.1) is solvable (with u φ 0) for any
p G I (A, B), where

(4.2) = ^infσl(ί), s u p < ( ί ) ) .

However, σ does not generally have a continuous derivative (cf.
[4]). Thus we wish to answer the question, for what subsets of I {a, b)
does (4.1) still have a non-zero solution.

PROPOSITION 4.5. Let the function pt - σ{t) have a local minimum
on (0, oo). Then (4.1) has a non-zero solution.

Proof. Let pt - σ(t) have a local minimum at to > 0. Then
σL(t0) > p > σ'+(t0). By Theorem 3.1, σL(t0) < σ+(fo) τ h u s > σ

is differentiate at t0 and σ;(ίo) = P Then by Theorem 3.2, (4.1)
has a solution with A(u) = t$. •

In order to get a more extensive result we use a mountain pass
theorem from [5].

THEOREM 4.6. Let G e Cι(X -> R) am/ to w0 e X\{0}. ^
N c X be an open bounded set, such that 0 e N but UQ φ. N.
Assume that

(4.3)

(4.4) G(0)<0, G(uo)<O.

Then there is a sequence uk E X and γ > 0 such that

(4.5) G{uk)->γ,

(4-6) l|tf(κ*)lljrll«*lk->0.

Let now

(4.7)

(4.8)

(4.9)

and let

(4.10)

Aθ = θ{A'(u),u)-A(u),

Bθ = θ(B'(u),u)-B(u),

Φ = {θ E R: \Aβ\ is coercive},

Q(θ) be set of limit points for Bg(u)/Aβ(u)

when ||w|| —• oo, θ EΦ.

Set now

(4.11) e*=n
θeΦ
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THEOREM 4.7. Assume, in addition to conditions of Theorem 3.1,
that:

(ABw) A', B' are continuous from X to X* with regard to respec-
tive weak topologies.

Then for every p £ I (A, B)\Q* the equation (4.1) has a nonzero
solution.

Proof. 1. Let p e I (A, B)\Q*, i.e., p is a slope of a secant to the
graph of σ(t), the functional \AΘ\ is coercive for some θ and p is not
a limit point of Bθ/Aθ at infinity. If pt- σ(t) has a local minimum
at t Φ 0, then /? is an eigenvalue (Proposition 4.5). Thus we would
consider the case when pt-σ(t) has no local minimum. If p = σ+(to)
or p = σ'_(to) for some to > θ, then it is an eigenvalue by Theorem
3.2. The remaining case is: for some to > 0, σ'(to) < pσ+(to). This
implies that to is a point of local maximum of pt - σ(t). Since we
assume that pt - σ(t) has no local minimum, to is a point of strict
global maximum. In particular, δ := pto - σ(to) > 0 - σ(0) = 0, and
there exists t\ > to, such that δ\ := /?/i - σ(t\) < δ.

2. Let

(4.12)

Then all the conditions of Theorem 4.6 are fulfilled with N = {u €
X, 4̂(w) < ί0} and w0 E Stι. Let ŵ  G X, y > 0 satisfy

(4.13)

(4.14)

Then

(4.15) ^(^(Mfc), Mfc> - {^(Mfc), Mfc> — 0

and, consequently,

(4.16) pAθ(uk)-Bθ(uk)-+-y-δ.

If \\uk\\ -> oo, then | ^ ( κ * ) | -• oo, p = limBθ(uk)/Aθ(uk), which
contradicts the assumptions. Thus the sequence u^ is bounded in
norm. Let now u^ be a renamed weakly convergent sequence, and
u0 = wΊimuk . Then by (ABw) from (4.14) follows:

(4.17) pA'(uo) = Bf(uo).

Moreover, by (B3), (4.14), (4.17)

(4.18) limp(A'(uk), uk) = lim<*'(u*), uk) =

= p(Af(u0), wo)
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Then by (A4)

(4.19) HmA(uk) = A(u0).

Thus by (4.13), (B2),

0 < δι + γ = lim pA{uk) - B{uk) = pA(u0) - B(u0)

which proves that UQΦQ.

COROLLARY 4.8. Let p* = infθ€φ\hΩsup\\u\\^^Bθ(u)/Aθ(u).
(4.1) Aαs a non-zero solution for

peI(A9B)n(p*,oo). :

5. Applications to quasilinear elliptic problems. Let Ω c R " be an
open bounded set X = w£>p(Ω)k, p > 1, / e N, k e N . Let i/(/) be
the number of multi-indices of length not exceeding /. Assume that
rf(x> {ya}\a\<ι) and 3S{x, {ya}\a\<i-i) are C 1 real valued functions
of {ya} whose derivatives are Caratheodory functions of (x, {ya}).
Without loss of generality we assume that

(5.1) J / ( J C , O ) = O, ^ ( x , 0 ) = 0.

We require for the function s/ the following ellipticity condition:

(5.2) sf{x9 •) is convex for almost every x e Ω

and the following coercivity condition:

(5.3) -τ-t&(x,{tya})\t=i>cΣ\y«Y'> c>O,xea.
\a\=I

We also require the following upper bounds for J / ' and £%':

(5.4) K ( * , { y β } ) l < c | 1 + > Jya\
p'1 I , c>0,

(5.5)

+ Va({yβ}\β\<l-n/p)

\β\<l-i
\β\>t-n/p

where

C > 0

(5.6) WaeU«,ra = \ iϊl-\a\>n/p,

ra > pn/ipn - n -p(l - |α|)) if/-

^ is a continuous function,
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* * > n-p<J-\β\) i f / H > ^ '
pn-n+p(l-\a\) ,Γ Ί . . ,

*°β< n-p(i-\β\) ' l f / - H <«//>•

PROPOSITION 5.1. Assume (5.2)-(5.6). Then the functionals

(5.7) A(u)= I stf(x,{dau})dx,
Ja

(5.8) B(u)= I &(x,{dau})dx
Ja

satisfy ( A 1 - A 4 ) , ( B 2 ) , ( B 3 ) , ( A B w ) o n X = J V ^ k

Proof. The verification of continuity and differentiability proper-
ties is standard and based on compactness in the Sobolev embedding
theorem. We wish to make remarks on only a few details.

1. Relation (5.3) implies (A3) and also (Al), since it immediately
gives

(5.9) | - j / ( χ , {tya}) > cf'1 ] Γ \yaψ, t > 0.
a t lαN

2. Relation (5.2) implies that the set (2.2) is convex. Thus it is
weakly closed and A is lower semicontinuous.

3. Due to (5.9), (5.4) weak convergence of a sequence Uj together
with convergence of either A(UJ) or of (Af(Uj), Uj) is equivalent to
convergence in norm. D

To verify the condition (Bl) in most of the applications it suffices
to prove that B'(u) φ 0 unless u = 0 and that u = 0 is not a point
of maximum. Two particular cases are given below.

LEMMA 5.2. Let

> ° f°rfr°} *°

Then (Bl) holds.

Proof. From (5.10) it follows that {B'(u), u) > 0 unless u = 0.
The point u = 0 is not a point of maximum, but rather of mini-
mum, since for every « e I \ { 0 } , B increases along the line t —• tu,
t>0. •
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LEMMA 5.3. Let k = 1, b{x, {ya}) = F(yo) and assume that with
some ε > 0,

(5.11) F'(yo)>O fory0e(0,ε) and

F'iyώφO fory0e(-ε,0).

Then (Bl) holds.

Proof. Let u be the point of maximum of b and let ΰ be a de-
creasing spherical rearrangement for u. Then u is a W^/)/?-function
dependent on the radial variable only. Therefore ΰ is continuous
away from the origin, the range of ΰ is a closed interval / containing
zero. Moreover, the range of u is dense in / , for if (s, t) is not in
the range of u, (s, t) is not in the range of ΰ. If u is a point of
maximum for B, then F' = 0 on the range of u, and since F1 is
continuous F = 0 o n / . By (5.11), therefore, In (-ε, e) c {0}.
However, w = 0 is not a maximum: one can perturb 0 by a function
v > 0 of an arbitrarily small norm so that B(v) > B(0) = 0. D

The following statement is now an immediate corollary of Theorems
3.1, 3.2.

THEOREM 5.4. Assume (5.1-5.6) and (Bl). Then for every t > 0
there exists a semistrong solution uf e W^p(Ω)k satisfying the re-
spective equations:

(5.12) σ'±{t)

Moreover,

(5.13) A(uf) = t

and the function σ is given by

(5.14) σ(t)= sup B{u).
A{u)=t

We now will look for realization of conditions (Ah), (Bh) to get
continuous curves of eigenfunctions.
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THEOREM 5.5. Assume(5.1-5.6) and(Bl). Let &(x, •) beconcave
for a.e. x G Ω. Then there is a continuous family t —*• {pt, ut) €
(0, oo) x ^ " " ( Ω ) * , such that

(5.15) dajtfy'a(x, {d?ut(x)})

(-l)]a]da^;a(x,{dγut(x)}).

Proof. Apply Corollary 4.4. Then ut satisfies (5.15) and t —• ut

is weakly continuous. However, by (5.4), (5.9) convergence of tj =
A{ut) together with weak convergence of ut. is equivalent to conver-
gence in norm and the family (pt, Ut) is continuous. D

THEOREM 5.6. Let sf{x9 {dau}) = \Vu\p, 38 {x9 {ya}) = F(y0),
k = 1. Assume also that F e C 1 ,

(5.16) F'(s)>0 fors>0 and F'(s) = 0 fors<0,

and that the map

(5.17) s-+F(sχlp) is concave for s > 0.

Then there is a continuous family t -»(p t, ut) satisfying

(5.18) -ptdiγ(\Vut\
p-2Vut) = F'(ut), ut>0.

Proof Let

(5.19) hβim, u2) = (β |mp + (l - θ)\u2ψγip, o € (0, l ) .

Then, applying Holder inequality with i + Λ = 1,

(5.20) IV^IwiP7 + (1 - 0 ) | w 2 n i ; T

^ P l ^ i P ' ^ l ^ l + Cl - β)p|M2lp"1V|M2l P

P {θ\u{\P + {I - Θ)\U2\P)1/P'

The relation (5.20) makes sense a.e. when u\,u2 e CQ(Ω) and the
equality holds only if u\ = u2 or one of them vanishes. Then the
following will be true on W* 'P(Ω):

(5.21) A{hθ{ux, u2)) < ΘA(Uι) + (1 - θ)A(u2)
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with the same remark on equality. By (5.16)? (5.17),

(5.22) B(hθ(uι, κ2)) < ΘB(uι) + (1 - θ)B(u2).

Thus (Ah), (Bh) are satisfied and the assertion follows from Theorem

5.11. One has only to note that tj —> to and ut. -̂ -> ut() implies

utj -> to. •

Now we wish to find some realizations of Theorem 4.7.

LEMMA 5.7. Assume (5.1-5.6) and (Bl). Let

(5.23) <^;a(x,{ya}) = ol Σ I^Γ"1] uniformly in Ω.

(5.24) (2*c{0}.

Prao/. By (5.3), (5.4), Aθ > \\u\\p with θ sufficiently large. By
(5.23), Bθ(u) = o(\\u\\η . Thus Q* c {0} . D

THEOREM 5.8. Assume (5.1-5.6), (Bl) and (5.23). Then for every

(5.25)

there is a non-zero solution of

(5.26) p

(5.27) supσ (ί) > supB(u)/A(u).

. By Theorem 4.7, (5.26) is solvable for p e I(a,b). The
lower bound in I(a9 b) is less than σ(t)/t which goes to zero when
t tends to oo. The upper bound of I (a, b) is greater or equal to
any given slope of a secant line to the graph of σ, e.g. σ(t)/t, which
implies (5.27). D

THEOREM 5.9. Assume that k = 1,
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Let F e C 1 and if n >p, let F!{s) = o(\s\«~l), q < pn/(n -p).
Assume that for some ε > 0

(5.28) F'(s)/sp~ι+ε is an increasing function

in a neighbourhood 0/+00,

F'(s) = o(\s\p~ι) ass->-oc.

Then for every

(5.29) />e(infσi(0,oo)

there is a solution u φ Q for

(5.30) -pp div(| Vu\p~2Vύ) = F'(u).

Proof. Note that sf , ^ satisfy (5.1-5.6) and Bl .
From (5.28) it follows that 3BB{μ) < o(\\u\\p) for θ > l/(p + ε).

Thus Q* Π (0, 00) = 0 , and one can apply Theorem 4.7. By (5.8)
supσf

+(t) > sup, σ(t)/t = 00. D

As a general realization of 4.7 we state:

THEOREM 5.10. Assume (5.1-5.6) and (Bl). Then (5.26) has a non-
zero solution u for

(5.31) p

6. Examples. The following examples illustrate the solvability re-
sults of this paper.

EXAMPLE 6.1. Let Ω c R n be an open bounded set. Consider

t , x . -pάiγ(\V\p~2Vu) = ua+ uβ, u>0,p>
(6.1)

Case 1. 0 < α < / ? < j p - l . Then by Theorem 5.6 there is a
continuous family (pt, wf) of eigenfunctions. By Theorem 5.4, the
range of eigenvalues p is I (A, J?) which is here (0, 00).

Case 2. 0 < α < j p - l < / ? . I f # > p assume also β < np/(n - p)
- 1. Then (6.1) has a solution for every p e (p0, 00), p0 > 0 and

.2) />o<inf sup r ι ί (-^—ua^
t ||κ||lf,=l 7Ω \ α + l

(6.
t ||κ||lf,=l 7Ω \ α +

P + 1 /
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Solvability for p El (A, B) is provided by Theorem 5.9.

Case 3. p - 1 < a < β and if n > p, β < np/(n -p) - 1. Similarly,
(6.1) is solvable with p e (0, oo) by Theorem 5.9.

Case 4. 0<a<β=p— 1. The argument is like in Case 1, only
I(A,B) = (O,po)9

(6.3) po= sup \-
Hll P

Case 5. 0<a=p-l<β, if n>p, β < np/{n - p) - 1 . T h e
argument follows one of Case 3, but I(a, 6) = (po, oo), where po is
like in (6.3).

EXAMPLE 6.2. Let Ω c R n , n < 6, be an open bounded domain.
Consider a system:

-3/?div(|Vw| + \\Vv\*l2\Vu\-ιl2)Vu = 5w4,

-3pdiv(\Vυ\ + ^ |VM| 3 / 2 |VV |- 1 / 2 )VV = 4v3, w, v|an = 0.

This system corresponds to

\3 + \V

J
I

A(u, v)= [ (|Vw|3 + \Vv
Ja

B(u,υ)= f(u5 + v4)dx.
Ja

By Theorem 5.9, it is solvable for peI(A, B) and I (A ,B) = (0,oo).
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