BILINEAR OPERATORS ON $L^{\infty}(G)$ OF LOCALLY COMPACT GROUPS

COLIN C. GRAHAM AND ANTHONY T. M. LAU

Let G and H be compact groups. We study in this paper the space $\operatorname{Bil}^\sigma = \operatorname{Bil}^\sigma(L^\infty(G), L^\infty(H))$. That space consists of all bounded bilinear functionals on $L^\infty(G) \times L^\infty(H)$ that are weak* continuous in each variable separately. We prove, among other things, that $\operatorname{Bil}^\sigma$ is isometrically isomorphic to a closed two-sided ideal in $\operatorname{BM}(G,H)$. In the case of abelian G,H, we show that $\operatorname{Bil}^\sigma$ does not have an approximate identity and that $\widehat{G} \times \widehat{H}$ is dense in the maximal ideal space of $\operatorname{Bil}^\sigma$. Related results are given.

0. Introduction. Let V and W be Banach spaces over the complex numbers, and let Bil(V, W) denote the space of bounded bilinear functions $F: V \times W \to C$. Then this is a Banach space under the usual vector space operators and the norm

$$||F|| = \sup\{|F(x, y)| : x \in V, y \in W, ||x|| = ||y|| = 1\}.$$

Furthermore Bil(V, W) may be identified with the dual space of $V \hat{\otimes} W$, the projective tensor product of V and W. When X and Y are locally compact Hausdorff spaces, then elements in $Bil(C_0(X), C_0(Y))$, also denoted by BM(X, Y), are called *bimeasures* (see Graham and Schreiber [7] and Gilbert, Ito and Schreiber [4]).

If V and W are dual Banach spaces, we let $\mathrm{Bil}^{\sigma}(V,W)$ denote all $F \in \mathrm{Bil}(V,W)$ such that $x \mapsto F(x,y)$ and $y \mapsto F(x,y)$ are continuous when V and W have the weak*-topology. Then, as readily checked, $\mathrm{Bil}^{\sigma}(V,W)$ is a norm-closed subspace of $\mathrm{Bil}(V,W)$. It is the purpose of this paper to study $\mathrm{Bil}^{\sigma}(L^{\infty}(G),L^{\infty}(H))$ when G and H are compact groups.

In §1, we shall give some general results on

$$\mathrm{Bil}^{\sigma}(L^{\infty}(X\,,\,\mu)\,,\,L^{\infty}(Y\,,\,\nu))$$

when X, Y are locally compact Hausdorff spaces and μ , ν are positive regular Borel measures on X and Y, respectively. In §2, we show that if G and H are compact groups, then $\mathrm{Bil}^{\sigma} = \mathrm{Bil}^{\sigma}(L^{\infty}(G), L^{\infty}(H))$

is isometrically isomorphic to a closed ideal in BM(G, H) with multiplication as defined in [2]. Furthermore, Bil^{σ} has a dense subset consisting of bilinear functionals F such that their Grothendieck measures μ_g , ν_g are such that $d\mu_g/dm_G$ and $d\nu_g/dm_H$ are bounded away from 0 and from infinity (here m_G and m_H denote Haar measure on the respective groups). In §3, we shall concentrate on the case when G and H are both compact and abelian. We shall show that in this case $\widehat{G} \times \widehat{H}$ is dense in the maximal ideal space of Bil^{σ} and that Bil^{σ} is a symmetric Banach algebra. Furthermore Bil^{σ} does not have an (even unbounded) approximate identity when G and H are infinite, compact. In §4, we shall list some open problems related to Bil^{σ} .

The space $Bil^{\sigma}(U, V)$ has been studied in a different context by Effros [3]. A consequence of Theorem 3.7 (below) is that Bil^{σ} has no virtual diagonals; see the Remark following Theorem 3.7.

1. The space $\operatorname{Bil}^{\sigma}$. If X is a locally compact Hausdorff space, we let $L^{\infty}(X)$, C(X), $C_0(X)$, and $C_{00}(X)$ be the spaces of bounded functions on X which are, respectively, Borel measurable, continuous, continuous with limit zero at infinity and continuous with compact support. The supremum norm on each of those spaces will be denoted by $\|\cdot\|_{\infty}$. If X and Y are locally compact Hausdorff spaces, we write $V_0(X,Y) = C_0(X) \hat{\otimes} C_0(Y)$, the projective tensor product of $C_0(X)$ and $C_0(Y)$. Then the space $\operatorname{BM}(X,Y)$ may be identified with the dual Banach space of $V_0(X,Y)$.

Throughout this section X and Y will denote locally compact Hausdorff spaces and μ , ν will denote positive regular Borel measures on X and Y constructed from a fixed positive functional on $C_{00}(X)$ and $C_{00}(Y)$, respectively (see [9, §11]). We will write $L^{\infty}(\mu)$ and $L^{\infty}(\nu)$ for $L^{\infty}(X,\mu)$ and $L^{\infty}(Y,\nu)$ respectively. In this case, $L^{\infty}(\mu) = L^{1}(\mu)^{*}$, and $L^{\infty}(\nu) = L^{1}(\nu)^{*}$. We will write Bil^{σ} for $\mathrm{Bil}^{\sigma}(L^{\infty}(\mu),L^{\infty}(\nu))$. As usual, the norms for spaces L^{p} , $1 \leq p < \infty$, will be denoted by $\|\cdot\|_{p}$. When G is a locally compact group, $L^{p}(G)$ will denote the L^{p} -space defined with respect to a fixed left Haar measure m_{G} on G.

PROPOSITION 1.1. Bil^{σ} consists exactly of the bilinear functionals F such that, for all $x \in L^{\infty}(\mu)$ and all $y \in L^{\infty}(\nu)$, $f \mapsto F(f, y)$, for $f \in L^{\infty}(\mu)$, is given by integration against an element of $L^{1}(\mu)$ and $g \mapsto F(x, g)$, for $g \in L^{\infty}(\nu)$, is given by integration against an element of $L^{1}(\nu)$.

Proof. Let $F \in \operatorname{Bil}^{\sigma}$. Fix $y \in L^{\infty}(\nu)$. Since $f \mapsto F(f, y)$ is weak* continuous in f, $f \mapsto F(f, y)$ must belong to the dual space of $L^{\infty}(\mu)$, when $L^{\infty}(\mu)$ is given the weak* topology, that is, $f \mapsto F(f, y)$ belongs to $L^{1}(\mu)$. The same argument applies to $g \mapsto F(x, g)$, for $g \in L^{\infty}(\nu)$.

On the other hand, suppose that, the bilinear functional F is such that for all $x \in L^{\infty}(\mu)$, $y \in L^{\infty}(\nu)$, $f \mapsto F(f,y)$, for $f \in L^{\infty}(\mu)$, is given by integration against an element of $L^{1}(\mu)$ and $g \mapsto F(x,g)$, for $g \in L^{\infty}(\nu)$, is given by integration against an element of $L^{1}(\nu)$. Then for each fixed $y \in L^{\infty}(\nu)$, $f \mapsto F(f,y)$ is weak* continuous in f, and for each fixed $x \in L^{\infty}(\mu)$, $g \mapsto F(x,g)$ is weak* continuous in g. Hence, $F \in \operatorname{Bil}^{\sigma}$.

PROPOSITION 1.2. Let ω be a non-negative, finite regular Borel measure on $X \times Y$. Then $\omega \in \operatorname{Bil}^{\sigma}$ if and only if the projection of ω onto X is absolutely continuous with respect to μ and the projection of ω onto Y is absolutely continuous with respect to ν .

Proof. If ω has the projection property, then it obviously has the weak* continuity property that is required for membership in Bil^{σ}.

On the other hand, suppose that $\omega \in \operatorname{Bil}^{\sigma}$. Then $f \mapsto \int (f \otimes 1) d\omega$ is a non-negative, locally finite, regular Borel measure on X that is the projection of ω on X. Also, $f \mapsto \int (f \otimes 1) d\omega$ is weak* continuous from $L^{\infty}(\mu)$ to C. If the projection of ω (let us call it ω') were not absolutely continuous with respect to μ , then we could find a sequence of functions f_n in C(X) such that $0 \leq f_n \leq 1$, $f_n \to 0$ a.e. $d\mu$ and $\int f_n d\omega' \not\to 0$. Of course, that sequence $f_n \to 0$ weak* in $L^{\infty}(\mu)$, so

$$\int (f\otimes 1)\,d\omega\to 0\,,$$

a contradiction. [More abstractly, we could just point out that any linear functional on $L^{\infty}(\mu)$ that is weak* continuous is necessarily given by integration against an element of $L^1(\mu)$, by general Banach space duality.]

A similar argument shows that the projection of ω on Y is absolutely continuous with respect to μ .

LEMMA 1.3. Let R, S be von Neumann algebras, and let A, B be weak* dense C^* -sublagebras of R, S, respectively. Then the mapping given by restricting $Bil^{\sigma}(R,S)$ to $(A \hat{\otimes} B)$ is an isometry; that is, $Bil^{\sigma}(R,S)$ may be identified with a closed subspace of $(A \hat{\otimes} B)^*$.

Proof. Let $F \in \operatorname{Bil}^{\sigma}(R,S)$, $\varepsilon > 0$, and let $x \in R$, $y \in S$ be of norm one such that $|F(x,y) - \|F\|| < \varepsilon/3$. By the Kaplansky density theorem [14, Theorem 4.8], there exist nets $x_{\alpha} \to x$ and $y_{\beta} \to y$ with x_{α} all belonging to the unit ball of A and y_{β} all in the unit ball of B. By the weak*-weak* continuity of F, $F(x,y) = \lim_{\alpha} F(x_{\alpha},y)$. Hence, for some α_0 we have $|F(x_{\alpha_0},y) - F(x,y)| < \varepsilon/3$. Similarly, there exists a β_0 such that $|F(x_{\alpha_0},y_{\beta_0}) - F(x_{\alpha_0},y)| < \varepsilon/3$. Hence $|F(x_{\alpha_0},y_{\beta_0}) - \|F\|| < \varepsilon$, and the result follows.

COROLLARY 1.4. The restriction of elements of $\operatorname{Bil}^{\sigma}(L^{\infty}(\mu), L^{\infty}(\nu))$ to the space $C_0(X) \hat{\otimes} C_0(Y)$ is an isometry. In particular, $\operatorname{Bil}^{\sigma}$ may be identified with a closed subspace of $\operatorname{BM}(X,Y)$.

We define $\mathscr{L}^{\infty}(X)$ to be the space of all bounded Borel functions on X.

If $\varphi_X \in \mathscr{L}^{\infty}(X)$, and $f_1 = f_2$ locally μ -a.e., then $\varphi_X f_1 = \varphi_X f_2$ locally μ -a.e. In particular, for any $f \in L^{\infty}(\mu)$, $\varphi_X f$ defines an element in $L^{\infty}(\mu)$, and the map $f \mapsto \varphi_X f$ is weak*-weak* continuous.

Given $\varphi_X \in \mathcal{L}^{\infty}(X)$, $\varphi_Y \in \mathcal{L}^{\infty}(Y)$, and $F \in \operatorname{Bil}^{\sigma}$ we define a bounded bilinear functional $\varphi \cdot F$ on $L^{\infty}(\mu) \times L^{\infty}(\nu)$ by

$$\langle \varphi \cdot F, (f, g) \rangle = \langle F, (\varphi_X f, \varphi_Y g) \rangle$$

for $f \in L^{\infty}(X)$ and $g \in L^{\infty}(\nu)$. Then $\varphi \cdot F \in \operatorname{Bil}^{\sigma}$ and

$$\|\varphi \cdot F\| \leq \|F\| \|\varphi_X\|_{\infty} \|\varphi_Y\|_{\infty}.$$

We recall that the support of a bimeasure is the smallest closed subset Q in $X \times Y$ such that $\langle h, F \rangle = 0$ for all $h \in V_0(X, Y)$ for which $h \equiv 0$ in a neighborhood of Q.

The following three results are variants (as indicated) of known facts. The proofs are essentially identical to those cited.

PROPOSITION 1.5 [7, Lemma 1.4]. The set of elements of Bil^{σ} that have compact support is norm dense in Bil^{σ} .

PROPOSITION 1.6 [7, Lemma 1.5]. Let X' (resp. Y') be a closed subspace of Y (resp. Y) and μ' , ν' denote the restrictions of μ , ν to those closed subspaces. Then there is a projection of norm one from $\operatorname{Bil}^{\sigma}(L^{\infty}(\mu), L^{\infty}(\nu))$ onto the space $\operatorname{Bil}^{\sigma}(L^{\infty}(\mu'), L^{\infty}(\nu'))$.

The image in $\operatorname{Bil}^{\sigma}(L^{\infty}(\mu'), L^{\infty}(\nu'))$ of a bimeasure is called the *restriction* of the bimeasure to $X' \times Y'$ and is written $F|_{X' \times Y'}$.

COROLLARY 1.7. Let G (resp. H) be a locally compact group and G' (resp. H') an open subgroup. Then there is a norm one projection from $\operatorname{Bil}^{\sigma}(L^{\infty}(G), L^{\infty}(H))$ onto $\operatorname{Bil}^{\sigma}(L^{\infty}(G'), L^{\infty}(H'))$

A bimeasure F is discrete if there exist sequences of finite subsets A_n of X and B_n of Y such that $F = \lim_n F|_{A_n \times B_n}$ (norm limit). A bimeasure is continuous if its restriction to every product of finite sets is zero. Obviously, BM_c and BM_d are norm closed vector spaces. The set of discrete bimeasures is denoted $BM_d(X, Y)$ and the set of continuous bimeasures is denoted $BM_c(X, Y)$. Graham and Schreiber showed that topologically $BM(X, Y) = BM_d(X, Y) \oplus BM_c(X, Y)$ [7, Theorem 1.8].

PROPOSITION 1.8. If either μ or ν is a continuous measure, then $\operatorname{Bil}^{\sigma}$ is contained in $\operatorname{BM}_{c}(X,Y)$. In particular, $\operatorname{Bil}^{\sigma}$ is a proper subset of $\operatorname{BM}(X,Y)$.

Proof. Let $F \in \operatorname{Bil}^{\sigma}$. By Proposition 1.5, we may assume that F is supported on a compact set $X' \times Y'$, so we will not distinguish between F and $F|_{X' \times Y'}$. We write $F = F_1 + F_2$, where F_1 is continuous and F_2 is discrete. Let $A_n \subset X'$ (resp. $B_n \subset Y'$) be increasing sequences of finite subsets such that $F_2 = \lim_n F|_{A_n \times B_n}$. Let $A = \bigcup A_n$. Suppose that μ is a continuous measure. Then $\mu(A) = 0$. By Lusin's Theorem [12, p. 54], (and enlarging A if necessary) there exists a sequence of continuous functions $\{f_j\}$ such that $0 \le f_j \le 1$ for all j, $f_j \to 0$ on A, $f_j \to 1$ on $X \setminus A$ (pointwise in both cases), and the f_n are supported in a common compact superset of $X' \times Y'$. It follows that for each integer n, every $f \in C_0(X)$ and every $g \in C_0(Y)$,

$$F(f, g) = \lim_{j} F(f_{j}f, g) = \lim_{j} (F_{1} + F_{2})(f_{j}f, g),$$

and

$$F_2|_{A_n \times B_n}(f, g) = \lim_j F_2(f_j f, g) = 0.$$

The first equality above follows from the weak* continuity of F and the second from the fact that $f_j f \to 0$ on A_n combined with the dominated convergence theorem. Thus, $F_2(f, g) = 0$ for all f, g, so $F_2 = 0$.

LEMMA 1.9. Let μ and ν be non-negative, locally finite, regular Borel measures on the locally compact spaces X, Y, respectively. Then

for any $F \in \operatorname{Bil}^{\sigma}$ there exist $p \in L^{1}(\mu)$ and $q \in L^{1}(\nu)$ such that $p \geq 0$, $q \geq 0$, $\|p\|_{1} = \|q\|_{1} = 1$ and

$$(1.1) |F(f,g)| \le K||F|| \left(\int |f|^2 p \, d\mu\right)^{1/2} \left(\int |g|^2 q \, d\nu\right)^{1/2}$$

for all $f \in L^{\infty}(\mu)$ and $g \in L^{\infty}(\nu)$, where K is a universal constant.

Proof. Suppose that $F \in Bil^{\sigma}$. By Proposition 1.5, we know that F has σ -compact support. We thus may assume that μ and ν are σ -finite (since they are locally finite). [Indeed, let the support of F be $\bigcup_{j=1}^{\infty} X_j \times Y_j$, where the X_j , Y_j are compact. Let μ_j (resp. ν_j) be the restriction of μ to X_j (resp. Y_i). The assumption of local finiteness implies that μ_i , ν_i are σ -finite measures.] Of course, $L^{\infty}(\mu)$ does not change if we replace μ by an equivalent probability measure. Also, weak* topologies on the L^{∞} space induced by the two measures (the probability measure and the original measure) are identical, by the uniqueness of the predual of $L^{\infty}(\mu)$ (see [14, p. 135]). Let the support of F be $\bigcup_{j=1}^{\infty} X_j \times Y_j$, where the X_j , Y_j are compact. Let μ_j (resp. ν_j) be the restriction of μ to X_j (resp. Y_j). The assumption of local finiteness implies that μ_j , ν_j are finite measures. We may assume that μ_1 and ν_1 have norm $\frac{1}{2}$ and that $\|\mu_{j+1} - \mu_j\| = 2^{-j}$ and similarly for the ν_i for all j. Hence, $F \in \text{Bil}^{\sigma}(L^{\infty}(\sum \mu_i), L^{\infty}(\sum \nu_i))$. Thus, we may assume that μ and ν are probability measures.

Let a Grothendieck measure pair μ' , ν' for F be given. Then the pair μ' , ν' has the property that

$$|F(f,g)| \le K||F|| ||f||_{L^2(\mu')} ||g||_{L^2(\nu')}$$
 for all $f \in C(X)$, $g \in C(Y)$,

where K is the usual complex Grothendieck constant. Furthermore, μ' is a probability measure on X' and ν' is a probability measure on Y'.

Let $\mu' = \mu_a + \mu_s$, where μ_a is absolutely continuous with respect to μ and μ_s is singular with respect to μ . Let A, B be a partition of X into two disjoint Borel sets such that $\mu(B) = 0$, and

$$\mu_a(E) = \mu'(A \cap E)$$
 and $\mu_s(E) = \mu'(B \cap E)$ for all Borel $E \subset X$.

Let $f \in L^{\infty}(\mu)$ have norm one. By Lusin's Theorem [12, p. 54], there exists a sequence $\{f_n\}$ in C(X) such that $||f_n|| \le 1$ for all n and $f(x)\chi_A(x) = \lim_{n\to\infty} f_n$ pointwise a.e. $d(\mu + \mu_s)$. We note that $f\chi_A = f$ μ -a.e. and $f\chi_A = 0$ $d\mu_s$ -a.e. Hence, for each $h \in L^1(\mu)$,

 $f_n \cdot h \to f \cdot h$ pointwise $d\mu$ -a.e. and $|f_n \cdot h| \le |f \cdot h| d\mu$ -a.e. for all n. By the dominated convergence theorem (and here we need the actual finiteness of μ), $\int f_n \cdot h \, d\mu \to \int f \cdot h \, d\mu$. That is,

(1.3)
$$f_n \to f$$
 in the weak* topology of $L^{\infty}(\mu)$.

Since $f_n \to 0$ pointwise a.e. $d\mu_s$, $|f_n| \to 0$ pointwise a.e. $d\mu_s$. Since $|f_n|^2 \le 1$, the dominated convergence theorem again implies that

(1.4)
$$\int |f_n|^2 d\mu_s \to \int |f|^2 d\mu_s = 0 \quad \text{and}$$
$$\int |f_n|^2 d\mu_a \to \int |f|^2 d\mu_a.$$

Hence $\int |f_n|^2 d\mu' \to \int |f_n|^2 d\mu_a$. Also, by (1.2),

$$(1.5) |F(f_n, g)| \le K||F|| ||f_n||_{L^2(\mu')} ||g||_{L^2(\mu')} \text{for all } g \in C(Y).$$

Now, $F(f_n, g) \rightarrow F(f, g)$ by (1.3) and

$$||f_n||_{L^2(\mu)}^2 = \int |f_n \chi_A|^2 d\mu'$$

$$\to \int |f|^2 d\mu'$$

$$= \int |f|^2 d\mu_a + \int |f|^2 d\mu_s$$

$$= \int |f|^2 d\mu_a,$$

by (1.4). Therefore,

$$|F(f, g)| \le K||F|| ||f||_{L^2(\mu_g)} ||g||_{L^2(\nu')},$$

by (1.5).

A similar argument applied to $g \in L^{\infty}(\nu)$ gives

$$|F(f,g)| \le K||F|| \, ||f||_{L^2(\mu_a)} ||g||_{L^2(\nu_a)}.$$

Let f be a Borel function on the locally compact space X, and ω be a non-negative, locally finite, regular Borel measure on X. We say that f is bounded away from 0 and ∞ if there exist constants $0 < c < C < \infty$ such that $c \le f(x) \le C$ a.e. $d\omega$.

LEMMA 1.10. Let μ and ν denote regular Borel locally measures on the locally compact spaces X and Y. Then Bil^{σ} has a dense subset consisting of the bilinear functionals F such that their Grothendieck

measures μ_g , ν_g are such that $d\mu_g/d\mu$ and $d\nu_g/d\nu$ are bounded away from zero and away from ∞ .

Proof. Let $F \in \operatorname{Bil}^{\sigma}$. We may assume that μ and ν are probability measures and that we have a Grothendieck measure pair μ_g , ν_g for F with $\mu_g \ll \mu$ and $\nu_g \ll \nu$ The validity of this second assumption follows from Lemma 1.9.

Now, by (1.1, and using the notation of Lemma 1.9,), if A is a Borel subset of X and B is a Borel subset of Y, then

$$|\langle f\chi_A\otimes g\chi_B,F\rangle|\to 0$$
 as $\mu(A)\to 0$, and/or $\nu(B)\to 0$,

by the Lebesgue dominated convergence theorem.

Thus, given n > 0, define the Borel sets A_n , B_n by

$$A_n = \{x \in X : p(x) \notin [1/n, n]\}$$

and

$$B_n = \{ y \in Y : q(x) \notin [1/n, n] \},$$

where p, q are as in Lemma 1.9.

Then $\mu(A_n) \to 0$ and $\nu(B_n) \to 0$ as $n \to \infty$.

Let $\delta > 0$ be given. Then there exists n > 0 such that

$$|\langle f\chi_{A_n}\otimes g\chi_{B_n},\,u\rangle|\leq \frac{\delta}{4}\|f\|_{\infty}\|g\|_{\infty}\quad\text{for all }f\in L^{\infty}(\mu)\,,\ \ g\in L^{\infty}(\nu).$$

We let $F_1=(\chi_{A_n}\otimes\chi_{B_n})\mu\times\nu+((1-\chi_{A_n})\otimes(1-\chi_{B_n}))F$. It is then clear that $\|F-F_1\|\leq\delta$.

2. Locally compact groups. In this section, G and H will be locally compact groups, not both discrete. We now write $\operatorname{Bil}^{\sigma}$ in place of $\operatorname{Bil}^{\sigma}(L^{\infty}(G),L^{\infty}(H))$. We study the properties of the particular space $\operatorname{Bil}^{\sigma}$, where we are already using the group structure to define $\operatorname{Bil}^{\sigma}$. We remind the reader that we continue the identification of $\operatorname{Bil}^{\sigma}$ with a closed subspace of $\operatorname{BM}_c(G,H)$ (see Corollary 1.4 and Proposition 1.8).

Furthermore, by Proposition 1.1, $\operatorname{Bil}^{\sigma}$ consists of the bilinear functionals F such that, for all $x \in L^{\infty}(m_G)$, $y \in L^{\infty}(m_H)$, $f \mapsto F(f, y)$ $(f \in L^{\infty}(m_G))$ is given by integration against an element of $L^1(\mu)$ and $g \mapsto F(x, g)$ $(g \in L^{\infty}(m_H))$ is given by integration against an element of $L^1(\nu)$.

We note that $Bil(L^{\infty}(m_G), L^{\infty}(m_H))$ is a $(L^{\infty}(m_G), L^{\infty}(m_H))$ module in the sense that the (obviously bounded) operations $(g \cdot F)$

and $F \cdot f$ are defined by

$$(g \cdot F)(h, k) = F(h, gk)$$
 and $(F \cdot f)(h, k) = F(fh, k)$

for all $F \in \text{Bil}(L^{\infty}(m_G), L^{\infty}(m_H)), f, h \in L^{\infty}(m_G)$ and $g, k \in L^{\infty}(m_H)$.

Also, $\operatorname{Bil}^{\sigma}$ is a closed submodule of the $\operatorname{Bil}(L^{\infty}(m_G), L^{\infty}(m_H))$.

We define $L^{\infty}(\mu)\hat{\otimes}^{\sigma}L^{\infty}(\nu) =_{\operatorname{def}} \left(\operatorname{Bil}^{\sigma}\right)^{*}$. Then $L^{\infty}(\mu)\hat{\otimes}^{\sigma}L^{\infty}(\nu)$ is a dual $(L^{\infty}(m_{G}), L^{\infty}(m_{H}))$ -module when the operations are defined by

$$\langle g \cdot M, F \rangle = \langle M, g \cdot F \rangle$$
 and $\langle M \cdot f, F \rangle = \langle M, F \cdot f \rangle$,

where $M \in L^{\infty}(\mu) \hat{\otimes}^{\sigma} L^{\infty}(\nu)$, $F \in \operatorname{Bil}^{\sigma}$, $f \in L^{\infty}(\mu)$ and $g \in L^{\infty}(\nu)$. A dual module is *normal* if the mappings

$$f \mapsto f \cdot M \text{ from } L^{\infty}(\mu) \to L^{\infty}(\mu) \hat{\otimes}^{\sigma} L^{\infty}(\nu) \quad \text{and} \quad g \mapsto M \cdot g \text{ from } L^{\infty}(\nu) \to L^{\infty}(\mu) \hat{\otimes}^{\sigma} L^{\infty}(\nu)$$

are both weak*-weak* continuous.

THEOREM 2.1. Let G and H be locally compact groups. Then Bil^{σ} is an ideal in BM(G, H). Also, Bil^{σ} is a normal $(L^{\infty}(G), L^{\infty}(H))$ module.

Proof. Immediate from Lemma 1.9 and the facts that (i) BM(G, H) is an algebra under convolution (see [7, 2.5] or [4, 2.4]) and (ii) that the Grothendieck measures for a convolution product may be taken to be the convolutions of the Grothendieck measures of the factors [4, loc. cit].

The last assertion is a consequence of [3, Lemma 2.2] and Lemma 1.9 above.

REMARKS 2.2. (a) Note that the mapping

$$\theta: L^{\infty}(G) \otimes L^{\infty}(H) \to L^{\infty}(G) \otimes^{\sigma} L^{\infty}(H)$$

defined by $\theta(f\otimes g)(F)=F(f,g)$ is one-to-one. Hence, we may identify the space $L^\infty(G)\otimes L^\infty(H)$ with its image in $L^\infty(G)\hat{\otimes}^\sigma L^\infty(H)$. That image is weak* dense.

Furthermore, if $M \in L^{\infty}(G) \hat{\otimes}^{\sigma} L^{\infty}(H)$ of norm one, then there is a net $M_{\alpha} = \sum \lambda_i^{\alpha} (f_i^{\alpha} \otimes g_i^{\alpha})$, with the f_i 's and g_i 's in their respective unit balls, the λ_i 's nonnegative with sum one, such that $M_{\alpha} \to M$ in the weak* topology. (See [3, p. 139 and p. 141].)

(b) There is a unique weak*-continuous extension to $L^{\infty}(G) \otimes^{\sigma} L^{\infty}(H)$ of the multiplication map

$$\pi\colon L^\infty(G)\otimes L^\infty(G)\to L^\infty(G)$$

given by $f \otimes g \mapsto f \cdot g$ (see [3, p. 142]).

Theorem 2.3. Let G and H be compact groups. Then Bil^{σ} has a dense subset consisting of the bilinear functionals F such that their Grothendieck measures μ , ν are such that $d\mu/dm_G$ and $d\nu/dm_H$ are bounded away from zero and away from ∞ .

Proof. Immediate from Lemma 1.10.

LEMMA 2.4. Let μ and ν be continuous probability measures on the locally compact spaces X and Y respectively. Then there is a projection of norm one from BM(X,Y) onto Bil^{σ} .

Proof. It is well-known (and easy to see) that BM(X,Y) may be imbedded isometrically in $Bil(M(X)^*,M(Y)^*)$. Let $f_0\in M(X)^*$, be such that f_0 is one a.e. with respect to (the image of) μ and zero with respect to (the image of) all measures on X that are singular with respect to μ . Define $g_0\in M(X)^*$ analogously. Then the composition of $F\mapsto (f_0\times g_0)F$ with the restriction of the resulting element to $C(Y)\times C(Y)$ is a linear norm-reducing mappping P of BM(X,Y). Furthermore, PF=F for all $F\in Bil^\sigma$. Finally, (straightforward computations show that) $f\mapsto PF(f,g)$ is absolutely continuous with respect to μ for all $g\in C(Y)$ and that $g\mapsto PF(f,g)$ is absolutely continuous with respect to μ for all $f\in C(X)$. That is, $FF\in Bil^\sigma$. It follows that P is the required projection.

Theorem 2.5. Let G and H be locally compact groups. Then there is no projection from $\operatorname{Bil}^{\sigma}$ onto the closed subspace of $\operatorname{Bil}^{\sigma}$ generated by $L^1(G \times H)$.

Proof. This is immediate from [7, Theorem 1] and Lemma 2.4 above. \Box

Lemma 2.6. Let G be a compact group and U an open subset of G. Then there exists an integer $n \ge 1$ such that U^n is an open subgroup of G.

Proof. Let $y \in U$. The closed semigroup H generated by y is a compact semigroup. Therefore H contains an idempotent [2, 1.8]; that idempotent is necessarily the identity of G. (Alternatively, we can apply the fact [2, 1.10] that a compact subsemigroup of a group is a subgroup, so $e \in H$, which is, in fact, a group.) In any case, e is in the closure of $\{y^l\}$.

Let V be any symmetric neighborhood of e. We may assume that V is so small that $yV\subseteq U$. Then

$$y^l V \subseteq (yV)^l \subseteq U^l$$
.

Since $\{y^l\}$ accumulates at e, there are large l's such that $y^l \in V^{-1} = V$. Therefore $y^{-l} \in V$, so

$$e = y^l y^{-l} \in y^l V \subseteq U^l$$
.

That is, $e \in U^l$. Thus, we may assume $e \in U^{lm}$ for all m > 0. In particular, the sets U^{lm} are increasing. Again, consider the closed subgroup H generated by $y \in U^{lm_0}$ for some $m_0 > 0$. (H is a subgroup by [2, 1.10].) If that closed subgroup is finite, then eventually it is contained in U^{lm} for some $m \ge m_0$. Otherwise, every element of it is an accumulation point of the set $\{y^n \colon n > 0\}$. (That also follows from the fact that a compact semigroup in a compact group is necessarily a group.) Hence, every element of H belongs to some U^{lm} . This argument applies to every element of $\bigcup_{m \ge 1} U^{lm}$. That is, the group $K = \bigcup_{m \ge 1} U^{lm}$.

Since $\bigcup_{m\geq 1} U^{lm}$ is a group, and open, it is also a closed subgroup, and therefore it is compact. Therefore $\bigcup_{m\geq 1} U^{lm} = U^{lm(0)}$ for some m(0).

By the monotonicity of the U^{lm} , $K = U^{lm(0)}$

We can now give a variant of Lemma 1.10.

THEOREM 2.7. (1) Let G, H be compact and connected groups. Then the set of those $u \in \operatorname{Bil}^{\sigma}$ for which there is an $n \geq 1$ for which the Grothendieck measures for u^n are Haar measure is a dense subset of $\operatorname{Bil}^{\sigma}$.

(2) Let G, H be compact groups. Then the set of those $F \in Bil^{\sigma}$ for which there is an $n \geq 1$ for which the Grothendieck measures for F^n are Haar measure on an open subgroup of G is a dense subset of Bil^{σ} .

Proof. Let μ , ν be Grothendieck measures for F. Then $\mu = (f+g)m_G$, where f is continuous and $\|g\|$ is small. Similarly for ν . Then the Grothendieck measures for F^n are μ^n and ν^n . By Lemma 2.6, $f^n > 0$ on an open subgroup of G. We may throw away the terms involving g in $(f+g)^n$, thus obtaining the required conclusion for both (i) and (ii).

3. Compact abelian groups. Suppose that G and H are compact abelian groups with character groups \widehat{G} and \widehat{H} , respectively.

Let $u \in BM(G, H)$. The Fourier transform \hat{u} of u is defined by

$$\hat{u}(\gamma, \rho) = \langle \bar{\gamma} \otimes \bar{\rho}, u \rangle, \quad \text{for all } \gamma \in \hat{G}, \ \rho \in \hat{H}.$$

Then \hat{u} is well-defined and $\|\hat{u}\|_{\infty} \leq \|u\|$ (see [7, p. 97]).

Remark. The multipliers of Bil^{σ} are exactly the elements of BM(G, H).

This is immediate upon taking weak* limits, since the unit ball of Bil^{σ} is dense in the unit ball of BM, even though (see below) Bil^{σ} does not have an approximate identity. Here are some details.

We first note that the measures in the unit ball of $\operatorname{Bil}^{\sigma}$ are weak* dense in that ball (one proof of that is known as Riemann sums for double integrals; another is known as "bounded spectral synthesis" for sets whose union is a Kronecker set [13, Corollary 4]). The argument in the "bounded spectral synthesis" form easily adapts to the case of approximation by measures belonging to a fixed L-space that is weak* dense in $M(G \times H)$. Hence, the measures in the unit ball of $\operatorname{Bil}^{\sigma}$ are dense in the unit ball of $\operatorname{BM}(G, H)$.

Suppose that φ is a function defined on $\widehat{G} \times \widehat{H}$ such that $\varphi \widehat{u}$ is the Fourier transform (see below) of an element of $\operatorname{Bil}^{\sigma}$ for all $u \in \operatorname{Bil}^{\sigma}$. Then $\|\varphi \widehat{u}\| \leq C \|u\|$ for all u and some constant C. We note that the set Fourier-Stieltjes transform of $\operatorname{BM}(G,H)$ is closed under bounded pointwise convergence (that follows from a diagonalization argument and the fact that the unit ball of $\operatorname{BM}(G,H)$ is compact in the weak* topology). By taking weak* limits (within the unit ball), we conclude that φ is a multiplier of $\operatorname{BM}(G,H)$. Since $\operatorname{BM}(G,H)$ has an identity, the remark follows.

Suppose that we have a u whose Grothendieck measures μ , ν are such that $d\mu/dm_G$ and $d\nu/dm_H$ are bounded away from zero and away from ∞ . Then, by using that and the Plancherel Theorem, we can identify $L^2(\mu)$ with $L^2(\widehat{G})$ and $L^2(\nu)$ with $L^2(\widehat{H})$. Using those identifications, we can explicitly compute the linear mapping $T\colon L^2(\widehat{G})\to L^2(\widehat{H})$. Here, T is the mapping associated with the Grothendieck measures. Of course, we have lost information about the constant in the Grothendieck inequality. The new mapping T is given by:

$$(T\hat{f})(\rho) = \sum_{\gamma} \hat{u}(\gamma, \, \rho) \hat{f}(\gamma),$$

where $\hat{f} \in L^2(\hat{G})$. That follows at once from the fact that

$$\langle u\,,\,f\otimes g\rangle=\sum_{\gamma\,,\,\rho}\hat{u}(\gamma\,,\,\rho)\hat{f}(\gamma)\hat{g}(\rho)\,,\quad\text{for all }f\in C(G)\,,\ g\in C(H)\,,$$

which, in turn, is an easy calculation from

$$\langle u, f \otimes g \rangle = \langle u, \left(\sum \hat{f}(\gamma) \overline{\gamma} \right) \otimes \left(\sum \hat{g}(\rho) \overline{\rho} \right) \rangle.$$

The norm of the new T is now bounded by the product of three numbers: the norm of the old T, the supremum of $d\mu/dm_G$, and the reciprocal of the infimum of $d\nu/dm_H$.

PROPOSITION 3.1. Let G and H be compact abelian groups. Let $u \in \operatorname{Bil}^{\sigma}$. Suppose that u has μ , ν for its Grothendieck measures with $d\mu/dm_G$ and $d\nu/dm_H$ both bounded away from zero and away from ∞ . Then there exists a constant C > 0 such that $\sum_{\gamma} |\hat{u}(\gamma, \rho)|^2 < C$ for every fixed $\rho \in \widehat{H}$ and $\sum_{\sigma} |\hat{u}(\gamma, \rho)|^2 < C$ for every fixed $\gamma \in \widehat{G}$.

Proof. By the discussion preceding the statement of Proposition 3.1, we see that there is a linear transformation $T: L^2(G) \to L^2(H)$ such that

$$\langle u, f \otimes g \rangle = \langle Tf, g \rangle$$
 for all $f \in C(G)$ and all $g \in C(H)$.

(This transformation is the composition of the transformation discussed above with two Plancherel transformations.) Then

$$\sum_{\gamma} |\hat{u}(\gamma, \rho)|^2 \le ||T^*(\rho)||_2^2 \le ||T||.$$

COROLLARY 3.2. Let $u \in \operatorname{Bil}^{\sigma}$, where G, H are compact abelian groups. Then for every $\varepsilon > 0$ there exists N > 0 such that for each $\rho \in \widehat{H}$,

$$\operatorname{Card}\{\gamma: |\hat{u}(\gamma, \rho)| > \varepsilon\} \leq N.$$

Proof. We fix $\varepsilon > 0$. Let v be such that $||u-v|| < \varepsilon/3$ and such that v satisfies the hypotheses of Proposition 3.1. We let N be any integer greater than $9C/\varepsilon^2$ (the C is from Proposition 3.1 applied to v). Then $|\hat{u}(\gamma, \rho)| > \varepsilon$ implies $|\hat{v}(\gamma, \rho)| > \varepsilon/3$, and that can occur at most $9C/\varepsilon^2$ times.

THEOREM 3.3. Let $u \in Bil^{\sigma}$, where G, H are compact abelian groups. Then the spectral radius of u is

$$\sup_{\gamma \in \widehat{G}, \ \rho \in \widehat{H}} |\widehat{u}(\gamma, \ \rho)|.$$

Proof. By Theorem 2.3, we may assume that there is a Grothen-dieck measure pair μ , ν for u such that $d\mu/dm_G$ and $d\nu/dm_H$ are both bounded away from zero and infinity. Thus, we may assume that there is bounded linear transformation $T \colon L^2(G) \to L^2(H)$ such that $\langle u, f \otimes g \rangle = \langle Tf, g \rangle$ for all $f \in C(G)$ and $g \in C(H)$. Furthermore, for all continuous f on G, g on H,

(3.1)
$$\sum_{\gamma,\rho} |\hat{u}^2(\gamma,\rho)| |\hat{f}(\gamma)| |\hat{g}(\rho)| = |\langle u * \tilde{u}, f \otimes g \rangle|$$

$$\leq C' \|u\|^2 \|f\|_2 \|g\|_2,$$

where C' is the product of four numbers: K (the Grothendieck constant), the norm of u, the supremum of $d\mu/dm_G$, and the reciprocal of the infimum of $d\nu/dm_H$.

Let f_1 denote the Radon-Nikodym derivative $d\mu/dm_G$. Then f_1 has L^1 -norm 1 and is bounded away from zero and infinity. Therefore, the *n*th convolution powers of f_1 converge to 1 uniformly, by Lemma 3.4 below. The same applies to $g_1 = d\nu/dm_H$

That means that the Grothendieck measures (call them μ_n , ν_n) for u^n become closer and closer to Haar measures, so the norm of the isomorphisms (and of their inverses) between $L^2(\mu_n)$ and $L^2(\widehat{G})$ on the one hand, and $L^2(\nu_n)$ and $L^2(\widehat{H})$ on the other hand, approach one. Thus, for sufficiently large n, we may assume that

$$||u^n||_{\operatorname{Bil}^\sigma} \le C \sup\{|\langle u^n, f \otimes g \rangle| : ||f||_2 ||g||_2 \le 1\},$$

where C does not depend on n, and the supremum is taken over all f, g of uniform norm one.

But

$$\langle u^n, f \otimes g \rangle = \sum_{\gamma, \rho} \hat{u}^n(\gamma, \rho) \hat{f}(\gamma) \hat{g}(\rho).$$

Therefore

$$|\langle u^n, f \otimes g \rangle| \le ||\hat{u}^{n-2}||_{\infty} \sum_{\gamma, \rho} |\hat{u}^2(\gamma, \rho)| \, |\hat{f}(\gamma)| \, |\hat{g}(\rho)|.$$

It follows that

$$||u^n||_{\operatorname{Bil}^{\sigma}} \le C ||\hat{u}^{n-2}||_{\infty} \sup \sum_{\gamma,\rho} |\hat{u}^2(\gamma,\rho)||\hat{f}(\gamma)||\hat{g}(\rho)|,$$

where C does not depend on n, and the supremum is taken over all f, g of uniform norm one. By (3.1),

$$\sup_{\|f\|_{\infty} \le 1, \|g\|_{\infty} \le 1} \sum_{\gamma, \rho} |\hat{u}^2(\gamma, \rho)| |\hat{f}(\gamma)| |\hat{g}(\rho)| = \sup |\langle u * \tilde{u}, f \otimes g \rangle|$$

$$\leq C' \|u\|^2 \|f\|_2 \|g\|_2$$
,

so $||u^n||_{\operatorname{Bil}^{\sigma}} \leq C'' ||\hat{u}^{n-2}||_{\infty}$ for all n.

The conclusion about the spectral radius now follows easily.

Lemma 3.4. Let f be a bounded non-negative Borel function on the compact group G that is bounded away from zero and has L^1 -norm one. Then the sequence of convolution powers of f converges uniformly to 1.

Proof. Since f is bounded, $f \in L^2(G)$ and $\hat{f} \in L^2(\widehat{G})$. Therefore $f^2 = f * f$ has an absolutely convergent Fourier series, so, in particular, $\hat{f} \in c_0(\widehat{G})$. Since f > 0 and $||f||_1 = 1$, $\hat{f}(0) = 1$. We apply the Lebesgue Dominated Convergence Theorem to \hat{f}^n (with $|\hat{f}|^2$ being the dominating function and n > 2) to conclude that \hat{f}^n converges in l^1 -norm to a function f' that is equal to the characteristic function of a finite subset of \widehat{G} (finite because $\hat{f} \in c_0(\widehat{G})$). Of course, that means that f^n converges uniformly to a function f_1 that is non-zero everywhere (the infimum of f^n is increasing with f_1 in Thus, $f_1 f_1 f_2 f_2 f_3$ is an idempotent probability measure. By [11, 3.2.4], $f_1 f_1 f_2 f_2 f_3$ is Haar measure on a compact subgroup of $f_2 f_3 f_3$. Since $f_1 f_2 f_3 f_4 f_4 f_4 f_5$ is unite support, that subgroup has finite index. If the index were greater than 1, f_1 would be zero somewhere, a contradiction. Therefore $f_1 f_2 f_3 f_4 f_4 f_5 f_6$ everywhere.

COROLLARY 3.5. Let G and H be compact abelian groups. Then $\widehat{G} \times \widehat{H}$ is dense in the maximal ideal space of Bil^{σ} and Bil^{σ} is a symmetric Banach algebra

Proof. This is a standard argument: the result is more or less immediate from Theorem 3.3. Here are the details.

We first note that $\operatorname{Bil}^{\sigma}$ is self-adjoint. For if $S \in \operatorname{Bil}^{\sigma}$ is such that its Gelfand transform \widehat{S} is real on $\widehat{G} \times \widehat{H}$, but not real on all of $\Delta \operatorname{Bil}^{\sigma}$ (the maximal ideal space), then for an appropriate k > 1, $\exp(ikS)$ has Gelfand transform larger than one at that non-real value, but has Fourier-Stieltjes transform at most one, thus contradicting Theorem 3.3.

Since the space of Gelfand transforms $\operatorname{Bil}^{\sigma_{-}}$ is self-adjoint and separating, it is uniformly dense in $C_0(\Delta \operatorname{Bil}^{\sigma})$. If $\widehat{G} \times \widehat{H}$ were not dense in $\Delta \operatorname{Bil}^{\sigma}$, then there would be a continuous function f on $\Delta \operatorname{Bil}^{\sigma}$ such that $\|f\|_{\infty} = 1$ and |f| < 1/2 on $\widehat{G} \times \widehat{H}$. By estimating f uniformly by an element of $\operatorname{Bil}^{\sigma}$, we again contradict Theorem 3.3.

We now give an example of an element of Bil^{σ} . The example is simple; we use it to show that Bil^{σ} does not have approximate identities, even unbounded ones.

Let μ and ν denote regular Borel probability measures on the locally compact spaces X and Y. Suppose that $\{\gamma_{\alpha}\}$ is an orthonormal basis for $L^2(\mu)$, and that $\{\rho_{\beta}\}$ is an orthonormal basis for $L^2(\nu)$. Let subsequences of those bases be chosen. Let $F(\gamma_{\alpha}, \rho_{\beta})$ be defined by

 $F(\gamma_{\alpha_j}, \, \rho_{\beta_k}) = \left\{ \begin{array}{ll} 2^{-k/2}, & 2^k \le j \le 2^{k+1} - 1 \text{ and } j \ge 1 \\ 0, & \text{otherwise,} \end{array} \right.$

and

 $F(\gamma_{\alpha}, \rho_{\beta}) = 0$ if there is no pair j, k with $\alpha = \alpha_{j}$ and $\beta = \beta_{k}$.

Proposition 3.6. With the above hypotheses,

- (1) F is a bilinear functional on $L^2(\mu) \times L^2(\nu)$ that is bounded by 1;
- (2) F represents an element of Bil^{σ} ; and
- (3) Grothendieck measures for F are given by μ , ν .

Proof. For the first part, let $x, y \in L^2(\mu) \times L^2(\nu)$, and let $x_j = \langle x, \gamma_{\alpha_j} \rangle$ for all j and $y_k = \langle y, \rho_{\beta_k} \rangle$ for all k. Let also $F_{j,k} = F(\gamma_{\alpha_j}, \rho_{\beta_k})$. Then

$$F(x, y) = \sum_{k} \sum_{j=2^{k+1}-1}^{2^{k+1}-1} F_{j,k} x_{j} y_{k}.$$

We may assume that the x_j and y_k are non-negative. For each k,

$$\sum_{j=2^{k}}^{2_{k+1}-1} F_{j,k} x_{j} \leq \left(\sum_{j=2^{k}}^{2^{k+1}-1} x_{j}^{2}\right)^{1/2},$$

by the Cauchy-Schwarz inequality. Therefore,

$$|F(x,y)| \le \sum_{k} \left(\sum_{j=2^{k}}^{2^{k+1}-1} x_{j}^{2} \right)^{1/2} y_{k}$$

$$\le \left(\sum_{k} \sum_{j=2^{k}}^{2^{k+1}-1} x_{j}^{2} \right)^{1/2} \left(\sum_{k} y_{k}^{2} \right)^{1/2}.$$

That is,

$$(3.2) F(x, y) \le ||x||_{L^{2}(\mu)} ||y||_{L^{2}(\nu)}.$$

For the second assertion, by the first part and the fact that μ , ν are probability measures, $|F(x,y)| \leq \|x\|_{\infty} \|y\|_{\infty}$ for all $x \in L^{\infty}(\mu)$, $y \in L^{\infty}(\nu)$. Hence F represents an element of $\operatorname{Bil}(L^{\infty}(\mu), L^{\infty}(\nu))$. We must show that F is weak* continuous in each variable separately. Suppose that $x_{\lambda} \to x$ weak* in $L^{\infty}(\mu)$ and that $y \in L^{\infty}(\nu)$. Note that $L^{\infty}(\mu) \subseteq L^{2}(\mu) \subseteq L^{1}(\mu)$. By the latter containment, x_{λ} converges weak* in $L^{2}(\mu)$ Since $L^{\infty}(\mu)$ is dense in $L^{2}(\mu)$,

$$x_{\lambda} \to x$$
 weakly in $L^2(\mu)$.

Let

$$z = \sum_{k} \langle y, \rho_{\beta_k} \rangle \left(\sum_{j=2^k}^{2^{k+1}-1} \langle x, \gamma_{\alpha_j} \rangle \gamma_{\alpha_j} \right).$$

Then $z \in L^2(\mu)$ and $\langle w, z \rangle = F(w, y)$ for all $w \in L^{\infty}(\mu)$. Since $z \in L^2(\mu)$,

$$\lim_{\lambda} F(x_{\lambda}, y) = \lim_{\lambda} \langle x_{\lambda}, z \rangle = \langle x, z \rangle = F(x, y).$$

The weak* continuity in y is proved identically.

For the last assertion, we just apply (3.2) that μ and ν have the required property.

THEOREM 3.7. Let G and H be infinite compact abelian groups. Then Bil^{σ} does not have an (even unbounded) approximate identity.

REMARK. A virtual diagonal for a Banach algebra A is a bounded net $\{m_{\alpha}\}$ in $A \hat{\otimes} A$ such that $\lim_{\alpha} (m_{\alpha} a - a m_{\alpha}) = 0$ and $\lim_{\alpha} \pi(m_{\alpha}) a = a$ for each $a \in A$, where $\pi(a \otimes b) = ab$. The Banach algebra A is amenable if and only if A has a virtual diagonal. If A is amenable, then A has a bounded approximate identity. Hence, Bil^{σ} is never amenable when G, H are compact abelian groups. See [1, p. 243] and [10, p. 50, Ex. 36].

Proof. Let the elements of \widehat{G} be denoted by γ_{α} and the elements of \widehat{H} be denoted by ρ_{β} . We apply the example of Proposition 3.6, only replacing μ with m_G and ν with m_H . Suppose that $L \in \operatorname{Bil}^{\sigma}$ were such that $\|L*F-F\| \leq \frac{1}{2K}$, where K is the usual complex Grothendieck constant.

By [4, 2.4], Grothendieck measures for a convolution of bimeasures are the convolution of Grothendieck measures of the factors. Combining that with the third item of Proposition 3.6, we see that Grothendieck measures for $L*F-F=(L-\delta_0)*F$ are exactly Haar measure. That is, for all $x \in L^2(G)$ and $y \in L^2(H)$,

$$(3.3) |\langle L * F - F, x \otimes y \rangle| \le K ||L * F - F|| \, ||x||_2 \, ||y||_2.$$

For simplicity, denote $F(\gamma_{\alpha_j}, \rho_{\beta_k})$ by $F_{j,k}$ and $L(\gamma_{\alpha_j}, \rho_{\beta_k})$ by $L_{j,k}$. For each k, let us compare the values of L*F and F at γ_{α_j} , ρ_{β_k} , for $2^k \le j \le 2^{k+1} - 1$.

We will apply when x is the element of $L^2(G)$ such that the Fourier transform of x is $2^{-k/2}e^{-\theta(j,k)}$, where $\theta(j,k)$ is the argument of $L_{j,k}-1$ if that difference is non-zero, and zero otherwise and $y=\rho_{\beta_k}$. Then

$$(3.4) \langle L * F - F, x \otimes y \rangle = \sum_{j=2^{k}}^{2^{k+1}-1} |L_{j,k} - 1| 2^{-k}$$

$$\leq K ||L * F - F|| \, ||x||_2 \, ||y||_2 \leq \frac{1}{2}.$$

Therefore, for at least half the terms in (3.4), $|L_{j,k}-1| \leq \frac{1}{2}$. That means that

$$(3.5) |L_{j,k}| \ge \frac{1}{2}$$

for at least 2^{k-1} terms. For k sufficiently large, that contradicts Corollary 3.2.

When G is a compact abelian group, $L^1(G)$ has a dense subset consisting of elements whose Fourier transforms have finite support. That is not possible for $\operatorname{Bil}^\sigma$, since the characteristic function of any graph of a one-to-one function from \widehat{G} to \widehat{H} is the Fourier transform of an element of $\operatorname{Bil}^\sigma$. In view of Corollary 3.2, one might hope that "finitely supported" could be replaced by "summable on sets of the form $\gamma \times \widehat{H}$, with uniform bound on the sums." That is not possible, as the next result asserts.

Theorem 3.8. Let G and H be compact abelian groups. Then the set of elements L in Bil^{σ} for which $\sup_{\rho} \sum_{\gamma} |L(\gamma, \rho)| < \infty$ is not dense.

Proof. We adapt the proof of Theorem 3.7, using the same F as there.

Suppose that $L \in \operatorname{Bil}^{\sigma}$ is close to F. Then the Grothendieck measures for L must be close (in an L^2 sense) to those of F, that is they must be near to the respective Haar measures. That means that if $\|F - L\|$ is sufficiently small, then

$$|\langle F - L, x \otimes y \rangle| < 2K||F - L|| ||x||_2 ||u||_2$$

for all $x \in L^2(G)$, $y \in l^2(G)$.

Suppose that $\|L-F\|<\frac{\varepsilon}{2K}$. Suppose also that $\sup_{\rho}\sum_{\gamma}|\widehat{L}(\gamma)|<\infty$. Then for sufficiently large k, $|L_{j,k}|<2^{-1-k/2}$ for at least half the j in the range $2^k\leq j\leq 2^{k+1}-1$.

Then

$$\sum_{\substack{2^k \le j \le 2^{k+1} - 1}} |L_{j,k} - F_{j,k}| 2^{-k/2} \ge 2^{-k/2} 2^{-1-k/2} 2^{k-1} = 2^{-2}$$

(evaluate at the same x, y as in the proof of Theorem 3.7). That implies that $|L_{i,k} - 2^{-k/2}| < \varepsilon$, which is impossible for small ε . \square

- 4. Problems. We list in this section some open questions.
- (1) What happens if L^{∞} is replaced with LUC(G)? C(G)? [And one looks at the corresponding spaces defined via weak* limits?]
 - (2) What happens when we replace L^{∞} with VN(G)?
- (3) Does either Bil^{σ} or $Bil(L^{\infty}(m_G), L^{\infty}(m_H))$ characterize the underlying groups? (Wendel's Theorem.)
 - (4) Same question for BM(G, H).
 - (5) What is the dual of $Bil(L^{\infty}(m_G), L^{\infty}(m_H))$?

REFERENCES

- [1] F. F. Bonsal and J. Duncan, *Complete Normed Algebras*, Springer-Verlag, Berlin, 1973.
- [2] J. H. Carruth, J. A. Hildebrandt, and R. J. Koch, *The Theory of Topological Semigroups*, Marcel Dekker, New York, 1983.
- [3] E. G. Effros, Amenability and virtual diagonals for von Neumann algebras, J. Funct. Anal., 78 (1988), 137-153.
- [4] J. Gilbert, T. Ito, and B. M. Schreiber, *Bimeasure algebras on locally compact groups*, J. Funct. Anal., **64** (1985), 134–162.
- [5] C. C. Graham, A. T.-M. Lau, and M. Leinert, Separable translation-invariant subspaces of M(G) and other dual spaces on locally compact groups, Colloq. Math., 55 (1988), 131-145.
- [6] _____, Continuity of translation in the dual of $L^{\infty}(G)$ and related spaces, Trans. Amer. Math. Soc., 328 (1991), 589-618.
- [7] C. C. Graham and B. M. Schreiber, *Bimeasure algebras on LCA groups*, Pacific J. Math., 115 (1984), 91-127.
- [8] _____, Projections in spaces of bimeasures, Canad. Math. Bull., 31 (1) (1988), 19-25.

- [9] E. Hewitt and K. A. Ross, *Abstract Harmonic Analysis*, vol. I, Springer-Verlag, Berlin, 1963.
- [10] A. L. Patterson, Amenability, Amer. Math. Soc., Providence, R. I., 1988.
- [11] W. Rudin, Fourier Analysis on Groups, Wiley-Interscience, New York, 1962.
- [12] _____, Real and Complex Analysis, McGraw Hill, New York, 1966.
- [13] S. Saeki, Tensor products of C(X)-spaces and their conjugate spaces, J. Math. Soc. Japan, 28 (1976), 33-47.
- [14] M. Takesaki, *Theory of Operator Algebras*, Vol I., Springer-Verlag, Berlin, 1973.

Received October 30, 1990 and in revised form February 1, 1992. Research partially supported by grants from the NSERC.

LAKEHEAD UNIVERSITY

THUNDER BAY, ONTARIO, CANADA P7B 5E1 E-mail address: ccgraham@thunder.lakeheadu.ca

AND

UNIVERSITY OF ALBERTA EDMONTON, ALBERTA, CANADA T6G 2G E-mail address: usertlau@ualtamts.ca