
PACIFIC JOURNAL OF MATHEMATICS

Vol. 158, No. 1, 1993

BILINEAR OPERATORS ON L°°(G)
OF LOCALLY COMPACT GROUPS

COLIN C. GRAHAM AND ANTHONY T. M. LAU

Let G and H be compact groups. We study in this paper the
space Bilσ = Bilσ(L°°(G), L°°(H)). That space consists of all
bounded bilinear functional on L°°{G) x L°°(H) that are weak* con-
tinuous in each variable separately. We prove, among other things,
that BiΓ7 is isometrically isomorphic to a closed two-sided ideal in
BM(Cr, H). In the case of abelian G, H, we show that BiΓ does
not have an approximate identity and that G x H is dense in the
maximal ideal space of BiΓ . Related results are given.

0. Introduction. Let V and W be Banach spaces over the complex
numbers, and let Bil(F, W) denote the space of bounded bilinear
functions F: V x W -> C. Then this is a Banach space under the
usual vector space operators and the norm

= S U P { | F ( X , J ; ) | : X E F , yeW, \\x\\ = ||y|| = 1}.

Furthermore Bil(F, W) may be identified with the dual space
of V®W, the projective tensor product of V and W. When
X and Y are locally compact Hausdorff spaces, then elements in
Bil(C0(X), C0(Y))9 also denoted by BM(X, Y), are called bimeasures
(see Graham and Schreiber [7] and Gilbert, Ito and Schreiber [4]).

If V and W are dual Banach spaces, we let Bilσ(F, W) denote
all F e Bil(F, W) such that x \-+ F(x,y) and y \-+ F(x9y) are
continuous when V and W have the weak*-topology. Then, as read-
ily checked, Bilσ(F, W) is a norm-closed subspace of Bil(F, W). It
is the purpose of this paper to study Bilσ(L°°(G), L°°(H)) when G
and H are compact groups.

In §1, we shall give some general results on

when X, Y are locally compact Hausdorff spaces and μ, v are posi-
tive regular Borel measures on X and Y, respectively. In §2, we show
that if G and H are compact groups, then Bilσ = Bilσ(L°°(G), L°°(H))
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is isometrically isomorphic to a closed ideal in BM(G, H) with mul-
tiplication as defined in [2]. Furthermore, Bilσ has a dense subset
consisting of bilinear functionals F such that their Grothendieck mea-
sures μg, vg are such that dμg/dmG and dug/dmπ are bounded
away from 0 and from infinity (here YΠQ and ra# denote Haar mea-
sure on the respective groups). In §3, we shall concentrate on the case
when G and H are both compact and abelian. We shall show that
in this case G x H is dense in the maximal ideal space of BiΓ7 and
that Bilσ is a symmetric Banach algebra. Furthermore Bilσ does not
have an (even unbounded) approximate identity when G and H are
infinite, compact. In §4, we shall list some open problems related to
Bilσ.

The space Bilσ(ί7, V) has been studied in a different context by
Effros [3]. A consequence of Theorem 3.7 (below) is that Bilσ has no
virtual diagonals; see the Remark following Theorem 3.7.

1. The space Bilσ . If X is a locally compact Hausdorff space,
we let L°°(X), C(X), C 0(X), and C00(X) be the spaces of bounded
functions on X which are, respectively, Borel measurable, continuous,
continuous with limit zero at infinity and continuous with compact
support. The supremum norm on each of those spaces will be denoted
by || || oo . If X and Y are locally compact Hausdorff spaces, we write
V0(X, Y) = C0(X)®C0(Γ), the projective tensor product of C0(X)
and CQ(Y) . Then the space BM(X, Y) may be identified with the
dual Banach space of VQ(X , Y).

Throughout this section X and Y will denote locally compact
Hausdorff spaces and μ, v will denote positive regular Borel mea-
sures on X and Y constructed from a fixed positive functional on
CQO{X) and Cm(Y), respectively (see [9, §11]). We will write L°°(μ)
and L°°(u) for L°°(X, μ) and L°°(Y, v) respectively. In this case,
L°°(μ) = Lx{μ)\ and L°°(u) = Lι{y)*. We will write Bilσ for
Bilσ(L°°(μ), L°°(u)). As usual, the norms for spaces LP , 1 < p < oo,
will be denoted by || | |p . When G is a locally compact group, LP(G)
will denote the LP -space defined with respect to a fixed left Haar mea-
sure mo on G.

PROPOSITION 1.1. Bilσ consists exactly of the bilinear functionals
F such that, for all x e L°°(μ) and all y e L°°{v), f »-• F(f, y),
for f G L°°(μ), is given by integration against an element of Lι(μ)
and g i—• F(x, g), for g e L°°(v), is given by integration against an
element of Lx(v).
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Proof. Let F e Bilσ. Fix y e L°°{y). Since / H+ F(f,y)
is weak* continuous in / , / »-• F(f9 y) must belong to the dual
space of L°°(μ)9 when L°°(μ) is given the weak* topology, that
is, / H-> F(f9 y) belongs to Lι(μ). The same argument applies to
g*-+F(x9g), for geL™(v).

On the other hand, suppose that, the bilinear functional F is such
that for all x G L°°(μ), y e L°°(v), / *-+ F(f9 y) JOT f e L°°(μ), is
given by integration against an element of Lι(μ) and g H-» F(X , g),
for g G L°°(i/), is given by integration against an element of Lι(u).
Then for each fixed y G L°°{v), / *-* F(f, y) is weak* continuous in
/ , and for each fixed x G L°°(μ), g ι-+ F(JC , g) is weak* continuous
in g. Hence, F e BiΓ . α

PROPOSITION 1.2. Lei ω be a non-negative, finite regular Borel mea-
sure on X xY. Γλen ω G Bilσ if and only if the projection of ω onto
X is absolutely continuous with respect to μ and the projection of ω
onto Y is absolutely continuous with respect to v.

Proof. If ω has the projection property, then it obviously has the
weak* continuity property that is required for membership in Bilσ .

On the other hand, suppose that ω G Bilσ . Then / »-> / ( / ® 1) dω
is a non-negative, locally finite, regular Borel measure on X that is the
projection of ω on X. Also, /•-+ / ( / ® 1) dω is weak* continuous
from L°°(μ) to C. If the projection of ω (let us call it ω') were not
absolutely continuous with respect to μ, then we could find a sequence
of functions fn in C(X) such that 0 < fn < 1, fn -+ 0 a.e. dμ and
J fn dω'-/+0. Of course, that sequence fn—>0 weak* in L°°(μ), so

a contradiction. [More abstractly, we could just point out that any
linear functional on L°°(μ) that is weak* continuous is necessarily
given by integration against an element of Lι(μ), by general Banach
space duality.]

A similar argument shows that the projection of ω on Y is abso-
lutely continuous with respect to μ. D

LEMMA 1.3. Let i?, S be von Neumann algebras, and let A, B
be weak* dense C*-sublagebras of R, S, respectively. Then the map-
ping given by restricting Bilσ(i?, S) to {A®B) is an isometry; that isf

Bilσ(JR , S) may be identified with a closed subspace of {A®B)*.
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Proof, Let F G Bilσ(i?, S), e > 0, and let x e R, y e S be of
norm one such that \F(x , y) - \\F\\\ < e/3. By the Kaplansky density
theorem [14, Theorem 4.8], there exist nets xa —• x and yp —+ y with
xa all belonging to the unit ball of A and y$ all in the unit ball of
B. By the weak*-weak* continuity of F, F(x, y) = limα F(xa, y).
Hence, for some αo we have \F(xa , y) - F(x, y)\ < ε/3. Similarly,
there exists a βo such that \F(xa , yβ) - F(xaQ, y)\ < e/3. Hence
l ^ ( α 0 ? yp0) - \\F\\\ < e > and the result follows. α

COROLLARY 1.4. ΓΛ^ restriction of elements of Bilσ (L°° (μ),L°°(v))
to the space CQ(X)<8>CQ(Y) is an isometry. In particular, Bilσ maybe
identified with a closed subspace of BM(X, Y).

We define i?°°(X) to be the space of all bounded Borel functions
on X.

If φx e <S?°°{X), and fx = f2 locally //-a.e., then φxfx = ^ / 2

locally μ-a.e. In particular, for any / e L°°(μ), ^ / defines an ele-
ment in L°°(μ), and the map /1-> ί?χ/ is weak*-weak* continuous.

Given ^ e £?°°(X), φγ e £?°°(Y), and F e Bilσ we define a
bounded bilinear functional ^ - i 7 on L°°(μ) x L°°(ι/) by

(φ.F,(f,g)) = (F,(9xf>9Yg))

for / G L°°(Z) and g G L°°(u). Then 9? . i 7 G Bilσ and

We recall that the support of a bimeasure is the smallest closed
subset Q in XxY such that (A, F) = 0 for all A G F0(X, 7) for
which h = 0 in a neighborhood of <2.

The following three results are variants (as indicated) of known
facts. The proofs are essentially identical to those cited.

PROPOSITION 1.5 [7, Lemma 1.4]. The set of elements of BiΓ7 that
have compact support is norm dense in Bilσ .

PROPOSITION 1.6 [7, Lemma 1.5]. Let X' [resp. Y1) be a closed
subspace of Y {resp. Y) and μf, v1 denote the restrictions of μ, v
to those closed subspaces. Then there is a projection of norm one from
Bilσ(L°°(μ), L°°(i/)) onto the space Bil^L0 0(//'), L°°(u')).

The image in Bilσ(L°°(μr), L°°(y')) of a bimeasure is called the
restriction of the bimeasure to Xf x Yf and is written F\x>xY>.
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COROLLARY 1.7. Let G (resp. H) be a locally compact group and
G1 (resp. Hf) an open subgroup. Then there is a norm one projection
from Bil^L 0 0 ^),!, 0 ^//)) onto Bilσ(L°°(G'), L°°(H'))

A bimeasure F is discrete if there exist sequences of finite sub-
sets An of X and Bn of Y such that F = \imnF\AxBn (norm
limit). A bimeasure is continuous if its restriction to every product of
finite sets is zero. Obviously, BMC and BM^ are norm closed vector
spaces. The set of discrete bimeasures is denoted BM^(X, Y) and
the set of continuous bimeasures is denoted BMC(X, 7 ) . Graham
and Schreiber showed that topologically BM(X, Y) = BMj(X, Y) θ
BMC(X, Y) [7, Theorem 1.8].

PROPOSITION 1.8. If either μ or v is a continuous measure, then
Bilσ is contained in BMC(X, Y). In particular, Bilσ is a proper subset
ofBM(X,Y).

Proof. Let F £ BiΓ7. By Proposition 1.5, we may assume that F is
supported on a compact set Γ x Γ , so we will not distinguish between
F and F\X'xy . We write F = JFΊ + F^, where F\ is continuous and
F2 is discrete. Let An c X' (resp. Bn c Yf) be increasing sequences
of finite subsets such that F2 = limπ F\A xB Let A = \JAn. Suppose
that μ is a continuous measure. Then μ(̂ 4) = 0. By Lusin's Theorem
[12, p. 54], (and enlarging A if necessary) there exists a sequence of
continuous functions {/)} such that 0 < f} < 1 for all j , f} —* 0
on i 5 ,// —* 1 on Z\>4 (pointwise in both cases), and the /„ are
supported in a common compact superset of X' xY1. It follows that
for each integer n, every / € Co(-Jf) and every ^

, g) =

and

F2\AH*BM(f, g) = l imF 2 ( / 7 / , ^) = 0.

The first equality above follows from the weak* continuity of F and
the second from the fact that fjf —• 0 on An combined with the
dominated convergence theorem. Thus, F2(f, g) = 0 for all f,g,
s o F 2 = 0 . •

LEMMA 1.9. Let μ and v be non-negative, locally finite, regular
Borel measures on the locally compact spaces X, Y, respectively. Then
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for any F e BiΓ7 there exist p e L{(μ) and q e Lι(u) such that
P>0, q>0, \\p\U = \\q\U = l and

α x 1/2 / , x 1/2

\f\2pdμj (j\g\2qdή
for all f G L°°(μ) and g e L°°{y), where K is a universal constant.

Proof. Suppose that F e Bilσ. By Proposition 1.5, we know that
F has σ-compact support. We thus may assume that μ and v are
σ-finite (since they are locally finite). [Indeed, let the support of F be
U^Li Xj x Yj 9 where the Xj, Yj are compact. Let μ7 (resp. vj) be the
restriction of μ to Xj (resp. Yj). The assumption of local finiteness
implies that βj 9 Vj are σ-finite measures.] Of course, L°°(μ) does
not change if we replace μ by an equivalent probability measure.
Also, weak* topologies on the L°° space induced by the two measures
(the probability measure and the original measure) are identical, by the
uniqueness of the predual of L°°(μ) (see [14, p. 135]). Let the support
of F be (J^li ^j x Yj 9 where the Xj, Yj are compact. Let μj (resp.
vj) be the restriction of μ to Xj (resp. Yj). The assumption of local
finiteness implies that μj , Vj are finite measures. We may assume that
μ\ and v\ have norm \ and that ||μ7+i — /f/|| = 2~j and similarly
for the vj for all j . Hence, F e Bil σ(L°°(Σμ 7), L°°(£^j)). Thus,
we may assume that μ and v are probability measures.

Let a Grothendieck measure pair μ', v' for F be given. Then the
pair μ1, ι/ has the property that

(1.2) \F(f,g)\< L V ) L ( ^

for all feC(X), geC(Y),

where K is the usual complex Grothendieck constant. Furthermore,
μ' is a probability measure on Xr and v' is a probability measure on

r.
Let μf = μfl + μ 5, where μfl is absolutely continuous with respect

to μ and μs is singular with respect to μ. Let A, J5 be a partition
of X into two disjoint Borel sets such that μ(B) = 0, and

μa(E)=μ'(AnE) and μs(E) = μ'{B ΠE) for all Borel E c X.

Let / G L°°(μ) have norm one. By Lusin's Theorem [12, p. 54],
there exists a sequence {^} in C{X) such that | |/i | | < 1 for all n
and /(X)XA(X) = lim^-^oo ŷ  pointwise a.e. d(μ + μs). We note that
/XA = / /^-a.e. and / / ^ = 0 ί/μ^-a.e. Hence, for each h e
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fn h —»• f h pointwise dμ-a.e. and \fn h\ < \f-h\dμ-a.e. for all n.
By the dominated convergence theorem (and here we need the actual
finiteness of μ), ffn hdμ-*ff'hdμ. That is,

(1.3) /„ -> / in the weak* topology of L°°(μ).

Since /„ -• 0 pointwise a.e. afμj, |/«| -+ 0 pointwise a.e. dμs. Since
|/n|2 < 1, the dominated convergence theorem again implies that

(1.4) J\fn\2dμs-*J\f\2dμs = O and

j\fn\2dμα- f\f\2dμα.

Hence $\fn\
2dμ' -+ J\fn\

2dμα. Also, by (1.2),

(1.5) \F(fn, g)\ < K\\F\\ | |/»||LV)il£ll£V) f o r a 1 1 *

Now, F(fn, g) - F(f, g) by (1.3) and

\\fn\\2

LHμ) = J\fnXΛ\2dμ'

- J\f\2dμ'

= J\f\2dμα + J\f\2dμs

= J\f\2dμα,

by (1.4). Therefore,

by (1.5).
A similar argument applied to g € L°°(v) gives

Let / be a Borel function on the locally compact space X, and
ω be a non-negative, locally finite, regular Borel measure on X. We
say that / is bounded αwαy from 0 and oo if there exist constants
0 < c < C < oo such that c < f(x) < C a.e. dω.

LEMMA 1.10. Let μ and v denote regular Borel locally measures
on the locally compact spaces X and Y. Then BiΓ7 has a dense subset
consisting of the bilinear functionals F such that their Grothendieck
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measures μg, vg are such that dμgjdμ and dvg/dis are bounded
away from zero and away from oo.

Proof. Let F e Bilσ . We may assume that μ and v are probability
measures and that we have a Grothendieck measure pair μg , vg for
F with μg < μ and vg < v The validity of this second assumption
follows from Lemma 1.9.

Now, by (1.1, and using the notation of Lemma 1.9,), iΐ A is a
Borel subset of X and B is a Borel subset of Y, then

KfXA ® SXB , F)\ - 0 as μ(A) - 0, and/or i/(5) - 0,

by the Lebesgue dominated convergence theorem.
Thus, given n > 0, define the Borel sets An, Bn by

An = {xeX:p(x)£[l/n,n]}

and

where /?, q are as in Lemma 1.9.
Then μ(An) —> 0 and i/(J5n) -> 0 as n —• CXD .
Let <5 > 0 be given. Then there exists « > 0 such that

f forall/GL°°(//), g e

We let Fi = {χAn ® ̂ J / i x i/ + ((1 - χA) ® (1 - **„))*' . It is then
clear that \\F - F{\\ < δ . * D

2. Locally compact groups. In this section, G and H will be locally
compact groups, not both discrete. We now write Bilσ in place of
BiΓ(L°°(G), L°°(H)). We study the properties of the particular
space Bil^, where we are already using the group structure to define
Bilσ. We remind the reader that we continue the identification of
BiΓ7 with a closed subspace of BMC(G, H) (see Corollary 1.4 and
Proposition 1.8).

Furthermore, by Proposition 1.1, Bilσ consists of the bilinear func-
tionals F such that, for all x e L°°{mG), y e L°°(mH), / H+ F(f, y)
(/ G L°°(mG)) is given by integration against an element of Lι(μ)
and g ^ F(x, g) (g G L°°(m//)) is given by integration against an
element of Lι(v).

We note that Bil(L°°(raG), L°°{mH)) is a (L°°(mG), L°°(mH))
module in the sense that the (obviously bounded) operations (g-F)
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and F / are defined by

(g.F)(h,k) = F(h,gk) and (F.f)(h,k) = F(fh9k)

for all F E Bil(L°°(mG), L°°(mH)), f,he L°°(mG) and g,k e

Also, Bilσ is a closed submodule of the Bi\(L°°(mG), L°°(mH)).
We define L°°(μ)®σL°°(v) = d e f (Bilσ)*. Then L°°{μ)®σL°°{v) is

a dual (L°°(mG), L°°(ra#))-module when the operations are defined
by

(g-M,F) = {M,g*F) and (M-/, F) = (M, F /) ,

where M G I 0 0 ^ ! 0 0 ^ ) , FeBil σ, feL°°(μ) and ^ G l » .
A dual module is normal if the mappings

/ ^ / . M f r o m L 0 0 ^ ) - ^ ! , 0 0 ^ ) ® ^ 0 0 ^ ) and

^ κ ¥ g from L°°(i/) -^ L^^Θ^L 0 0^)

are both weak*-weak* continuous.

THEOREM 2.1. Let G and H be locally compact groups. Then BiΓ7

is an ideal in BM(G, H). Also, Bilσ is a normal {L°°(G), L°°(H))
module.

Proof. Immediate from Lemma 1.9 and the facts that (i) BM(G, H)
is an algebra under convolution (see [7, 2.5] or [4, 2.4]) and (ii) that
the Grothendieck measures for a convolution product may be taken
to be the convolutions of the Grothendieck measures of the factors [4,
loc. cit].

The last assertion is a consequence of [3, Lemma 2.2] and Lemma
1.9 above. o

REMARKS 2.2. (a) Note that the mapping

θ: L°°{G) ® L°°(H) -> L°°(G) ®σ L°°(H)

defined by θ(f®g)(F) = F ( / , g) is one-to-one. Hence, we may iden-
tify the space L°°(G) ® L°°(H) with its image in L o o(G)® σL o c(//).
That image is weak* dense.

Furthermore, if M e Loo(G)® ί7Loo(/7) of norm one, then there is
a net Ma = Σ ^ ? ( ^ α ® 8?) > with the ffs and g/'s in their respective
unit balls, the Λ, 's nonnegative with sum one, such that Ma —> M in
the weak* topology. (See [3, p. 139 and p. 141].)

(b) There is a unique weak*-continuous extension to L°°(G) <g)σ

L°°(H) of the multiplication map

π: L°°(G) ® L°°((7) -* L

given by f®g*->f g (see [3, p. 142]).
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THEOREM 2.3. Let G and H be compact groups. Then Bilσ has
a dense subset consisting of the bilinear functionals F such that their
Grothendieck measures μ, v are such that dμ/dmo and du/dmπ
are bounded away from zero and away from oo.

Proof. Immediate from Lemma 1.10. D

LEMMA 2.4. Let μ and v be continuous probability measures on
the locally compact spaces X and Y respectively. Then there is a
projection of norm one from BM(X, Y) onto BiΓ7.

Proof. It is well-known (and easy to see) that BM(X, Y) may be
imbedded isometrically in Bil(M(X)*, M(Y)*). Let f0 e M(X)*,
be such that ô is one a.e. with respect to (the image of) μ and zero
with respect to (the image of) all measures on X that are singular with
respect to μ. Define g0 G M(X)* analogously. Then the composition
of F H-+ (f0 x go)F with the restriction of the resulting element to
C(Y) x C(Y) is a linear norm-reducing mappping P of BM(X, Y).
Furthermore, PF = F for all F e BiΓ. Finally, (straightforward
computations show that) /»-» PF(f, g) is absolutely continuous with
respect to μ for all g e C(Y) and that g ^ PF(f9 g) is absolutely
continuous with respect to μ for all / G C(X). That is, PF e Bilσ .
It follows that P is the required projection. D

THEOREM 2.5. Let G and H be locally compact groups. Then there
is no projection from Bilσ onto the closed subspace of Bilσ generated
by Lι(GxH).

Proof. This is immediate from [7, Theorem 1] and Lemma 2.4
above. D

LEMMA 2.6. Let G be a compact group and U an open subset of G.
Then there exists an integer n > 1 such that Un is an open subgroup
ofG.

Proof. Let y e U. The closed semigroup H generated by y is a
compact semigroup. Therefore H contains an idempotent [2, 1.8];
that idempotent is necessarily the identity of G. (Alternatively, we
can apply the fact [2, 1.10] that a compact subsemigroup of a group
is a subgroup, so e e H, which is, in fact, a group.) In any case, e is
in the closure of {y1}.
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Let V be any symmetric neighborhood of e. We may assume that
V is so small that y V c U. Then

yιV C(yV)1 C Uι.

Since {y1} accumulates at e, there are large / 's such that yι eV~ι =
V. Therefore y - / G V, so

That is, e e Uι. Thus, we may assume e e Ulm for all m > 0.
In particular, the sets Ulm are increasing. Again, consider the closed
subgroup H generated by y e Ulmo for some mo > 0. (H is a
subgroup by [2, 1.10].) If that closed subgroup is finite, then eventually
it is contained in Ulm for some m > mo. Otherwise, every element
of it is an accumulation point of the set {yn: n > 0}. (That also
follows from the fact that a compact semigroup in a compact group
is necessarily a group.) Hence, every element of H belongs to some
Ulm . This argument applies to every element of \Jm>\ Ulm That is,
the group K = [Jm>ιUlm.

Since Um>i Ulm ^s a SΓ0UP> a n d open, it is also a closed subgroup,
and therefore it is compact. Therefore \Jm>ι Ulm = £//m(°) for some
m(0).

By the monotonicity of the Ulm, # = t7/m(°) D

We can now give a variant of Lemma 1.10.

THEOREM 2.7. (1) Let G, H be compact and connected groups.
Then the set of those u e Bilσ for which there is an n > 1 for which
the Grothendieck measures for un are Haar measure is a dense subset
of Bilσ.

(2) Let G, H be compact groups. Then the set of those F e BiF
for which there is an n> 1 for which the Grothendieck measures for
Fn are Haar measure on an open subgroup of G is a dense subset of
Bilσ.

Proof. Let μ, v be Grothendieck measures for F. Then μ =
( / + g)mo, where / is continuous and ||g|| is small. Similarly for
v. Then the Grothendieck measures for Fn are μn and vn. By
Lemma 2.6, fn > 0 on an open subgroup of G. We may throw
away the terms involving g in (f+g)n, thus obtaining the required
conclusion for both (i) and (ii). D
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3. Compact abelian groups. Suppose that G and H are compact
abelian groups with character groups G and H, respectively.

Let u G BM((?, H). The Fourier transform ύ of u is defined by

ύ(y>P) = (y®P,u), for all γ e G, /> e # .

Then ύ is well-defined and \\u\\oo < \\u\\ (see [7, p. 97]).

REMARK. The multipliers of Bilσ are exactly the elements of
BM(G,H).

This is immediate upon taking weak* limits, since the unit ball of
Bilσ is dense in the unit ball of BM, even though (see below) Bilσ

does not have an approximate identity. Here are some details.
We first note that the measures in the unit ball of Bilσ are weak*

dense in that ball (one proof of that is known as Riemann sums for
double integrals; another is known as "bounded spectral synthesis" for
sets whose union is a Kronecker set [13, Corollary 4]). The argument
in the "bounded spectral synthesis" form easily adapts to the case of
approximation by measures belonging to a fixed L-space that is weak*
dense in M(G x H). Hence, the measures in the unit ball of Bilσ are
dense in the unit ball of BM((r, H).

Suppose that φ is a function defined on G x H such that φύ is
the Fourier transform (see below) of an element of Bilσ for all u e
BiΓ7. Then | | ^ W | | < C | | M | | for all u and some constant C. We note
that the set Fourier-Stieltjes transform of BM(G, H) is closed under
bounded pointwise convergence (that follows from a diagonalization
argument and the fact that the unit ball of BM(G!, H) is compact in
the weak* topology). By taking weak* limits (within the unit ball), we
conclude that φ is a multiplier of BM(G, H). Since BM(G, H) has
an identity, the remark follows. D

Suppose that we have a u whose Grothendieck measures μ, v
are such that dμ/dmo and dv/dmjj are bounded away from zero
and away from oo. Then, by using that and the Plancherel Theorem,
we can identify L2(μ) with L2(G) and L2{v) with L2(H). Using
those identifications, we can explicitly compute the linear mapping
T: L2(G) —• L2(H). Here, T is the mapping associated with the
Grothendieck measures. Of course, we have lost information about
the constant in the Grothendieck inequality. The new mapping T is
given by:
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where f e L2(G). That follows at once from the fact that

(u, / ® *) = £ fi(y, p)f(γ)g(p), for all / e C(G), * e

which, in turn, is an easy calculation from

The norm of the new T is now bounded by the product of three
numbers: the norm of the old T, the supremum of dμjdmQ, and
the reciprocal of the infimum of

PROPOSITION 3.1. Let G and H be compact abelian groups. Let
u G Bilσ. Suppose that u has μ, v for its Grothendieck measures with
dμ/dmg and dvjdmu both bounded away from zero and away from
oo. Then there exists a constant C > 0 such that Σγ \ύ(γ, p)\2 < C
for every fixed p eH and Σp \ύ(γ, p)\2 < C for every fixed γ eG.

Proof. By the discussion preceding the statement of Proposition 3.1,
we see that there is a linear transformation T: L2(G) —• L2(H) such
that

= {Tf,g) for all feC(G) and all geC(H).

(This transformation is the composition of the transformation dis-
cussed above with two Plancherel transformations.) Then

COROLLARY 3.2. Let u e BiΓ7, where G, H are compact abelian
groups. Then for every ε > 0 there exists N > 0 such that for each
peHf

Card{y : \u(γ, p)\ > e} < N.

Proof. We fix ε > 0. Let υ be such that \\u - v\\ < e/3 and such
that υ satisfies the hypotheses of Proposition 3.1. We let N be any
integer greater than 9C/ε2 (the C is from Proposition 3.1 applied to
v). Then \u{y, p)\ > ε implies \v(γ, p)\ > e/3, and that can occur
at most 9C/ε2 times. D

THEOREM 3.3. Let u e Bilσ, where G, H are compact abelian
groups. Then the spectral radius of u is

sup Jβ(y , P)\.
γ(EG,peίϊ
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Proof. By Theorem 2.3, we may assume that there is a Grothen-
dieck measure pair //, v for u such that dμ/drriQ and dvjdmu are
both bounded away from zero and infinity. Thus, we may assume that
there is bounded linear transformation T: L2(G) —• L2(H) such that
(u, f®g) = (Tf, g) for all / e C(G) and g e C(H). Furthermore,
for all continuous / on G, g on //,

where C is the product of four numbers: K (the Grothendieck con-
stant), the norm of u, the supremum of dμ/dmG, and the reciprocal
of the infimum of du/dmn-

Let f\ denote the Radon-Nikodym derivative dμ/dmG. Then fγ
has ZΛnoπn 1 and is bounded away from zero and infinity. There-
fore, the nth convolution powers of f\ converge to 1 uniformly, by
Lemma 3.4 below. The same applies to g\ = dvjdmu

That means that the Grothendieck measures (call them μn, vn)
for un become closer and closer to Haar measures, so the norm of
the isomorphisms (and of their inverses) between L2(μn) and L2(G)
on the one hand, and L2{vn) and L2(H) on the other hand, approach
one. Thus, for sufficiently large n, we may assume that

IIKΊIM < C sup{|<*Λ / ® g)\: \\f\\2\\g\\2 < 1},
where C does not depend on n, and the supremum is taken over all
/ , g of uniform norm one.

But

Therefore

\(un ,f®g)\< ι|β"-2ιioo Σ \ύ2(y > P)\

It follows that

Whse < C||ft"-2||oo sup Σ\u\y, p)\\f{y)\ \g{p)\,

where C does not depend on n, and the supremum is taken over all
/ , g of uniform norm one. By (3.1),

sup Y,\U2(V, P)\\f(7)\\${p)\ = sup\(u*ΰ,f®g)\
H / I U l l l L T?

< C'\\u\\2\\f\\2\\g\\2,

so ||«Λ||Bii'<C"||«'I-2||oo for all n.



BILINEAR OPERATORS ON L°° (G) 171

The conclusion about the spectral radius now follows easily. D

LEMMA 3.4. Let f be a bounded non-negative Borel function on the
compact group G that is bounded away from zero and has Lι-norm
one. Then the sequence of convolution powers of f converges uniformly
to 1.

Proof. Since / is bounded, feL2(G) and feL2(G). Therefore
f2 = / * / has an absolutely convergent Fourier series, so, in particular,
/ e cQ(G). Since / > 0 and \\f\U = 1, /(0) == 1. We apply the
Lebesgue Dominated Convergence Theorem to fn (with | / | 2 being
the dominating function and n > 2) to conclude that fn converges in
/^norm to a function / ' that is equal to the characteristic function
of a finite subset of G (finite because / € CQ(G)) . Of course, that
means that fn converges uniformly to a function f\ that is non-
zero everywhere (the infimum of fn is increasing with ή). Thus,
fιmG is an idempotent probability measure. By [11, 3.2.4], f\mG is
Haar measure on a compact subgroup of G. Since f\ = / ' has finite
support, that subgroup has finite index. If the index were greater than
1? /i would be zero somewhere, a contradiction. Therefore f\ = 1
everywhere. D

COROLLARY 3.5. Let G and H be compact abelian groups. Then
G x H is dense in the maximal ideal space of Bilσ and Bilσ is a
symmetric Banach algebra

Proof. This is a standard argument: the result is more or less im-
mediate from Theorem 3.3. Here are the details.

We first note that Bilσ is self-adjoint. For if S e Bilσ is such that
its Gelfand transform S is real on G x H, but not real on all of Δ Bilσ

(the maximal ideal space), then for an appropriate k > 1, exρ(ikS)
has Gelfand transform larger than one at that non-real value, but has
Fourier-Stieltjes transform at most one, thus contradicting Theorem
3.3.

Since the space of Gelfand transforms Bilσ~ is self-adjoint and sep-
arating, it is uniformly dense in Co(ΔBilσ). If G x H were not dense
in Δ Bilσ, then there would be a continuous function / on Δ Bilσ

such that ll/lloo = 1 and |/ | < 1/2 on G x H. By estimating
/ uniformly by an element of Bilσ, we again contradict Theorem
3.3. D
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We now give an example of an element of BiP. The example
is simple; we use it to show that Bilσ does not have approximate
identities, even unbounded ones.

Let μ and v denote regular Borel probability measures on the lo-
cally compact spaces X and Y. Suppose that {γa} is an orthonormal
basis for L2(μ), and that {pβ} is an orthonormal basis for L2(u).
Let subsequences of those bases be chosen. Let F(γa, pβ) be defined
by

2~kl2, 2k < j < 2k+ι - 1 and j > 1

O f otherwise,

and

F{ya, Pβ) = 0 if there is no pair j , k with a = α/ and β = β^.

PROPOSITION 3.6. With the above hypotheses,

(1) F is a bilinear functional on L2(μ) x L2(v) that is bounded
by 1;

(2) F represents an element of Bilσ and
(3) G r o t h e n d i e c k m e a s u r e s f o r F a r e g i v e n b y μ , v .

Proof. For the first part, let x,y e L2(μ) x L2(v), and let Xj =

(x, γa.) for all j and y^ = (y, pβ) for all k. Let also i 7 , ^ =

aj', Pβ) • Then

k j=2k

We may assume that the Xj and y^ are non-negative. For each k,

2 Λ + 1 - 1 /lk+ι-\ '

Σ i- ^ I \Γ^ 2

by the Cauchy-Schwarz inequality. Therefore,
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That is,

(3.2)

For the second assertion, by the first part and the fact that μ, v
are probability measures, \F(x, y)\ < ||JC||OOHalloo f° r aU χ £ L°°(μ),
j ; € JL°°(i/). Hence F represents an element of Bil(L°°(μ), L°°(u)).
We must show that JF is weak* continuous in each variable separately.
Suppose that xλ -> x weak* in L°°(μ) and that y e L°°(i/). Note that
L°°(μ) c L2(μ) C Lι(μ). By the latter containment, JC* converges
weak* in L2(μ) Since L°°(μ) is dense in L 2 (μ),

Xχ —• x weakly in L2(μ).

Let

Then z e £ 2 (μ) and (tϋ, z) = J F ( ^ , y) for all w; G L°°(μ). Since

, y) = l i m ^ , z) =

The weak* continuity in y is proved identically.
For the last assertion, we just apply (3.2) that μ and v have the

required property. α

THEOREM 3.7. Let G and H be infinite compact abelian groups.
Then Bilσ does not have an (even unbounded) approximate identity.

REMARK. A virtual diagonal for a Banach algebra A is a bounded
net {ma} in A®A such that \ima(maa-ama) = 0 and \imπ(ma)a =
a for each α e A, where π(a ® b) = ab. The Banach algebra 4̂ is
amenable if and only if A has a virtual diagonal. If A is amenable,
then 4̂ has a bounded approximate identity. Hence, Bilσ is never
amenable when G, H are compact abelian groups. See [1, p. 243]
and [10, p. 50, Ex. 36].

Proof. Let the elements of G be denoted by γa and the elements
of H be denoted by pβ. We apply the example of Proposition 3.6,
only replacing μ with m^ and v with m # . Suppose that L € Bilσ

were such that \\L * F - F | | < ^ , where K is the usual complex
Grothendieck constant.
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By [4, 2.4], Grothendieck measures for a convolution of bimea-
sures are the convolution of Grothendieck measures of the factors.
Combining that with the third item of Proposition 3.6, we see that
Grothendieck measures for L*F -F = (L-SQ)*F are exactly Haar
measure. That is, for all xeL2(G) and y e L2(H),

(3.3) \(L*F-F9x®y)\<K\\L*F-F\\\\x\\2\\y\\2.

For simplicity, denote F(γaj,pβk) by FjΛ and L(γaj,pβk) by

Ljk. For each k, let us compare the values of L * F and F at γa.,

p f i k , f o r 2k <j< 2 k + ι - 1 .

We will apply when x is the element of L2(G) such that the Fourier
transform of x is 2~kl2e~Θ^>k\ where θ(j, k) is the argument of
Lj9k — \ if that difference is non-zero, and zero otherwise and y = ββk.
Then

>-fc(3.4)

< .

Therefore, for at least half the terms in (3.4), \LjΛ - 1| < \ . That
means that

(3-5) | L M | > i

for at least 2/:~1 terms. For A: sufficiently large, that contradicts
Corollary 3.2. D

When G is a compact abelian group, Lι(G) has a dense subset
consisting of elements whose Fourier transforms have finite support.
That is not possible for Bilσ , since the characteristic function of any
graph of a one-to-one function from G to H is the Fourier transform
of an element of BiP . In view of Corollary 3.2, one might hope that
"finitely supported" could be replaced by "summable on sets of the
form γ x H, with uniform bound on the sums." That is not possible,
as the next result asserts.

THEOREM 3.8. Let G and H be compact abelian groups. Then the
set of elements L in Bilσ for which sup^ Σγ \L(y, p)\ < oo is not
dense.

Proof. We adapt the proof of Theorem 3.7, using the same F as
there.
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Suppose that L e BiΓ7 is close to F . Then the Grothendieck mea-
sures for L must be close (in an L2 sense) to those of F, that is
they must be near to the respective Haar measures. That means that
if \\F - L|| is sufficiently small, then

\(F-L9x<g>y)\<2K\\F-L\\\\x\\2\\u\\2

for all xeL2(G),yel2(G).

Suppose that | | L - F | | < j% . Suppose also that sup^ Σγ \L(γ)\ < oc.

Then for sufficiently large k, \LjΛ\< 2~χ-kl2 for at least half the j

in the range 2k < j < 2k+x - 1.
Then

Σ \Lj9k ~ Fj,k\2~k/1 > 2-k/22-ι-V22k-1 = 2~2

2k<j<2k+ι-\

(evaluate at the same x, y as in the proof of Theorem 3.7). That
implies that |L ; ^ - 2~kl2\ < ε, which is impossible for small e . D

4. Problems. We list in this section some open questions.
(1) What happens if L°° is replaced with LUC(G) ? C(G) ? [And

one looks at the corresponding spaces defined via weak* limits?]
(2) What happens when we replace L°° with VN(G) ?
(3) Does either Bilσ or Bi\(L°°(mG), L°°(mH)) characterize the

underlying groups? (WendePs Theorem.)
(4) Same question for BM(G, H).
(5) What is the dual of Bi\(L°°(mG), L°°(rnH)) ?
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