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CONGRUENCE PROPERTIES OF FUNCTIONS
RELATED TO THE PARTITION FUNCTION

ANTHONY D. FORBES

In this paper we describe a straightforward and almost entirely
elementary method for establishing congruence properties of certain
functions that are related to the partition function.

For integer k define Pk{n) by

m=l n=0

In particular, P-\(n) is p{n), the partition function and P24(n - 1)
is Ramanujan's τ-function.

We are interested in congruences of the form

(1) Pk(nP + b) = 0 (mod p) for all n > 1

for prime p, as typified by the partition congruences

(2) p(5n + 4) = 0 (mod 5),

(3) p{ln + 5) ΞΞ 0 (mod 7)

and

(4) p ( π π + 6) = 0 (mod 11)

discovered by Ramanujan and proved in [13] and [14]. Ramanujan
also conjectured that if 24b = 1 (mod q) and q = 5aΊβ\\y then
p(qn + b) = 0 (mod q). He was able to supply proofs for q = 25, 49
in [13] and q = 121 in an unpublished manuscript [15]. Ramanu-
jan's conjecture was incorrect as stated for powers of 7 and Wat-
son [16] proved a modified version; if 246 = 1 (mod 5aΊ2β) then
p(5aΊ2Pn + b) = 0 (mod 5aΊβ+ι). Watson's proofs have been simpli-
fied by Hirschhorn and Hunt [6] and Garvan [4]. Lehner [9] dealt with
q = 1331 and the proof of the conjecture was completed by Atkin [1].

Congruences modulo powers of 13 have been considered by Atkin
and O'Brien [2]. A general treatment of Pkiv) modulo powers of
2, 3, 5, 7 and 13 is given in Atkin [3], modulo powers of 11 in
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Gordon [5] and modulo powers of 17 in a forthcoming paper by
Hughes [7].

In everything that follows, p is a prime number > 5. The variable
x always satisfies |x| < 1 to ensure absolute convergence and we write
f(x) ΞΞ g(x) (mod p) to mean that f{x) - g(x) is a power series in
x with integer coefficients that are all divisible by p.

Euler's pentagonal number theorem,

oo oo

Y[(\-Xm)=

and Jacobi's identity,

oo o

(5) fj (1 - xmγ =
ra=l n=0

completely determine P\(n) and p${n). Also it suffices to consider k
modulo p because, as is easily shown, if Pk(n) satisfies a congruence
of the form (1) for some prime p then the same is true for Pk±p(n).

With certain values of k, other than 0, 1 and 3, it is possible
to establish congruences by well-known methods which are entirely
elementary. For instance, Ramanujan's original proofs of (2) and (3)
in [13] are easily extended to show that (1) holds when

k = 4, p = 5 (mod 6), 6b + I = 0 (mod p) and when

k = 6, p ΞΞ 3 (mod 4), 4b + 1 = 0 (mod p).

For an alternative proof of (2), the congruence

p9(5m + 4) ΞΞ 0 (mod 5),

follows from

ft(^)ft(« -r-s).

By (5), if n = 4 (mod 5) and the r, s term of the double sum is
non-zero then

ftW2+ftW2 +P3(n - r - s)2 = 8/2 + 3 = 0 (mod 5),

which cannot be true unless at least one of the terms on the left-hand
side is divisible by 5. But then p${n) will also be a multiple of 5.

In Table 1 we give an exhaustive list of congruences of the form (1)
for p< 199 and 2<k<p- 1, kψl, 4, 6.
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A theorem of Newman [10] established using modular function the-
ory states that if Λ: = 4, 6, 8, 10, 14, 26,/? is a prime > 3 such that
k(p+l) = 0 (mod 24) and b = k(p2-1)/24 then pk(n) = 0 (mod p)
for n = b (mod /?). This theorem disposes of all the k = 8 cases in
Table 1 as well as k = 10, 14 and 26 when p = 11 (mod 12). An-
other of Newman's results [11] is that for even k, 4 < A: < 24 and
prime /? > 3 such that b — k(p - l)/24 is an integer,

Pfc(np + b)= pk{n)pk{b) (mod p) .

Thus k = 19, p = 12 and A: = 22, p = 61 in Table 1 reduce to
single congruences. Newman's method is described in Chapter 7 of
Knopp [8].

In [14], Ramanujan gives proofs of (4) by two different methods
one of which we extend in order to deal with any congruence of the
form (1) for which 24b + k = 0 (mod p). In particular we can prove
all the entries in Table 1 (see next page).

We illustrate the method with k = 10, p = 19, b = Π and for
convenience we use the same notation as Ramanujan. Let

m=l n-\

P=\-24φOΛ{x),

β = 1+24000,

and

R=\ -

It is well known from the theory of the Dedekind eta-function that

oo

(6) 123x J | (1 - xm)24 = Q3-R2.

In fact, P, Q and R are the normalised Eisenstein series E2, E4

and Et. They are related to the discriminant Δ and the invariants
g2(τ) and g3(τ) by

J > . = L ^ , fl-!*W and R=
2πι Δ(τ) ^ 4 π 4 8

where x = e2πιτ for τ in the upper half plane.
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TABLE 1

Pk(np + b) = 0 (mod/?)

P
11

17

19

23

29

31
41

43
47

53

59

61
67

71

79

83

89

101

103
107

113
127

131
137

139

149

151

163
167

173

179

191
197

199

k
8

7

11

15

19

27

31

35

39

47

55

59
67

71

75

87

91

99

111

115

119
127

131

10

6

17

13

28

39
27

34

61
41

72

48

94

62

116

76

127

138

149
97

104

111

182

12

-

9

14

-

15

9
26

37

19

48
24

29

34

81

92

44

103

54

125

136

69

158
74

79
180

18

-
—

5

22

-
—
—

55

26

-
—
—

—

42

53

64

75

97

119

152

163
174

In [12], Ramanujan establishes in a direct and elementary manner
a number of identities involving P, Q and R, including

(7)

(8)

(9)

(10)

and

(Π)

QR=l -264φ0>9(x),

441<23 + 250R2 = 691 + 6552Oφo>n(x),

P2-Q= 12ΘP,

PQ-R = 3ΘQ

PR-Q2 = 2ΘR,

where θ is the differential operator x d/dx.
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Now to prove that Λ0(19w + 17) ΞΞ 0 (mod 19) for all n > 0, it
suffices to show that the same is true for p^(l9n + 17). By (6) this
is equivalent to showing that in

the coefficients c(19), c(38), . . . are multiples of 19 and one way
of doing this is to find a power series f(x) with integer coefficients
satisfying

(Q3 - R2)2 ΞΞ 120/(JC) (mod 19).

We succeed because of the identity

(12) \2Θ{9P
3
Q
4
 + 16P

3
QR

2
 + 13P

2
Q
3
R + 1P

2
R
3

+ 5PQ
5
 + \3PQ

2
R
2
 + ISQ

4
R + 14QR

3
)

= (Q
3
 - R

2
)
2
 + \9{9P

4
Q
4
 + 16P

4
QR

2
 - 4P

3
Q
3
R + 4P

3
R
3

- 3P
2
Q
2
R
2
 + 6PQ

4
R + 10PQR

3

- 6Q
6
 - 29Q

3
R
2
 - 3R

4
)

which is easily verified using (9), (10) and (11).

To obtain an identity like (12) we consider the matrix -4"'^'J de-

fined by equating coefficients of PλQμRv in

4«>f/l = 12ΘPλQμR»

λ+2μ+3>v=6s

as a 9 β and γ run through the non-negative integers satisfying a
2β + 3γ = 6s - 1. Here s satisfies

24s = k (mod p).

Next we solve the linear congruences

Σ Aaχ:ί;>a9β9y=tλ9μ9U (mθd/7)

,β,V\

for aa^βiγ, where

a,β,y>0
a+2β+3γ=6s-\

= 0 f o r Λ > l
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TABLE 2

\2ΘPaQPRy for a + 2β + 3γ = 11
λ μ v
0 0 4
0 3 2
0 6 0
1 1 3
1 4 1
2 2 2
2 5 0
3 0 3
3 3 1
4 1 2
4 4 0
5 2 1
6 0 2
6 3 0
7 1 1
8 2 0
9 0 1
10 1 0
12 0 0

a
β
7

-4
-18
0
22

0
1
3

-16
-6
0
22

0
4
1

-1
0

-8
-12
21

1
2

" 2

-1
0

-20
0
21

1
5
0

-2
0

-18
0
20

2
0
3

-2
-12
-6
0
20

2
3
1

0
-4
-12
19

3
1
2

-3
0

-16
0
19

3
4
0

-4
-8
-6
18

4
2
1

-5
0

-12
17

5
0
2

-5
12
0
17

5
3
0

-6
-4
-6
16

6
1
1

-7
-8
15

7
2
0

-8
-6
14

8
0
1

-9
-4
13

9
1
0

-11
11
11
0
0

and, as before, λ + 2μ + 3v = 6s. Then aa; β 17 are the required
coefficients, for

120
a,β,γ>0

a+2β+3γ=6s-l

Σ
a,β,γ>0 λ,μ,is>0

a+2β+3γ=6s-\ λ+2μ+3v=6s

(mod*)

The case 5 = 2 is illustrated in Table 2.
What is interesting is perhaps not the actual method, for it merely

involves routine computations, but rather the existence of the identity
itself. It seems that there is no simpler expression of the form 12θf(x)
that will serve our purpose.

In the other case for p = 19, namely k = 12, the corresponding
expression is somewhat longer. The exponent of Q3 — R2 is 10 and
we are dealing with PaQpRy where a + 2β + 3γ = 59. The result of
solving the congruences is
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12Θ{4P4Q26R+ 16P4Q23R3 + 12P4Q2OR5 + \ΊP4QX7R7

+ IOP4Q14R9 + &P4QnRn + 16P4β8Pv13 + 6P4Q5R15

+ 13P4Q2R17 + 5P 3Q 2 8 + P3Q2SR2 + 8P3Q22R4

+ 2P3QΪ9R6 + 5P3<216i?8 + 5 P 3 β 1 3 i ? 1 0 + 4 P 3 β 1 0 # 1 2

+ ΊP3Q7RU + 2P3Q4R16 + 9P3QRn + 9P2Q21R

+ 7P2Q24Ri + l3P2Q2ίR5 + 2P2Qι*R7 + ΊP2Qι5R9

+ 5P2Ql2Rn + 7P2Q9R13 + 16P2Q6R15 + 15P2Q3R17

+ ISP2R19 + 4PQ29 + 6PQ26R2 + PQ23R4

+ 14PQ2OR6 + 8Pβ 1 7 i ? 8 + 8 P β 1 4 i ? 1 0 + P Q 8 ^ 1 4

+ 13PQ5R16 + 12PQ2RIS + \5QnR + 4Q25R3

+ 13Q22R5 + 16Q19R7 + 3Qι6R9 + \0QnRn

+ 15β1 Oi?1 3 + 5Q7R15 + ΊQ4Rλ7 + 14QR19)

= (Q3-R2)10 (mod 19).

In one of his proofs of (4), Ramanujan uses (7) and (8) as well as

2PQ2 - P2R -QR= 172802,?(*)»

P3Q - 3P2R + 3PQ2 -QR = 3456φ3y6(x)

and

15Pβ 2 - 20P2R + ίOP3Q - 4QR - P 5 = 20736</>4)5(x)

in order to establish

? 2 s (mod 11)

in which it is clear that the coefficients of xlln on the right-hand side
are divisible by 11.

Alternatively, using our method we obtain

126>(10P3β13 + P3Ql0R2 + ΊP3Q7R4 + ΊP3Q4R6 + 5P3QR*

+ 4P2QnR + 10P2Q9R3 + SP2Q6R5 + 9P2R9 + 5PQ14

+ 6PQnR2 + SPQSR4 + 2PQ5R6 + 3PQ2R%

+ lOQnR + QιoR3 + Q7R5 + WQ4R7 + 3QR9)

=={Q3-R2)5 (mod 11).
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For the other p — 11 case, namely k = 8, b = 7 we use

\2Θ{2>P2Q9R + 9P2Q6R3 + 8P2Q3R5 + 5P2RΊ + ΊPQn

+ 6PQ8i?2 + 5Pβ 5 l? 4 + 9PQ 2i? 6 + 6β 1 0 i? + 8ζλR7)

= « 2 3 - i ? 2 ) 4 (mod 11).

In a similar manner we can complete the proof of all the congru-
ences in Table 1 except for k = 26, p Φ 179 where, as can be verified
by computation, it turns out that there is no formula of the form

(13) 120 Σ aa,β,γP
aQPRV = (Q3-R2y-b (mod/?).

In fact we obtain

(14) 120

= « 2 3 - JR2)(P+13)/12 +

(mod /;)

for some aa,β,y and i/(p) (mod/?). As noted above, «(179) = 0.
Nevertheless, using the same method we can show that, for p = 11

(mod 12), 47 < p < 197, there are congruences of the form

(15) 120 Σ aaiβiγP«QPRV = QP(Q3 -R2)p'b (mod/?)

<*,β,y

which have the desired property. Indeed, Q~p is congruent modulo
p to a power series in xp . So multiplying the right-hand side of (15)
by Q~p preserves the divisibility by p of the coefficients of xnp . For
example with p = 47, k = 26, b = 42 we have

11 (123-α)/2

a=0 β=a
β=a (mod 3)

= { 2 4 7 « 2 3 - ^ 2 ) 5 (mod 47)

where the coefficients αα j are given by Table 3.
Of course the congruences in Table 1 are really statements about

Cauchy powers of Ramanujan's τ-function and can be established us-
ing modular function theory as already indicated. The author conjec-
tures that, corresponding to every congruence of the form (1) there is a
congruence (13), except possibly when p = 11 (mod 12) and k = 26
in which case both (14) and (15) apply.
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β
0
3
6
9
12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60

a

0
15
21
7
21
17
19
18
45
33
41
25
26
40
33
41
32
24
4
7
30
29

3

35
32
0
7
23
4
15
39
1
37
15
16
1
36
34
15
9
30
29
16

6

3
8
15
13
16
29
36
35
38
3
45
34
1
14
2
45
38
7

9

33
29
31
42
9
29
17
45
27
26
14
43
44
38
22
4
23

β
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
58
61

TABLE

α

1
6
41
40
38
6
11
44
23
22
37
45
18
31
12
19
2
45
22
37
25
13

4

41
21
2
10
0
3
31
33
8
28
38
41
33
25
31
34
46
3
6

3

7

19
27
46
40
23
45
21
25
27
4
36
3
36
25
16
18
6
42

10

4
13
2
25
29
12
25
16
46
1
3
21
5
24
29
7

β
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
50
53
56
59

a

2
31
45
41
33
46
22
28
37
24
5
26
9
13
38
13
33
38
14
17
45

5

12
42
16
22
36
11
14
2
28
44
39
3
27
3
39
43
16
11
9

8

20
20
22
9
44
31
1
41
10
25
18
28
45
35
11
28
17

11

30
2
2
44
28
17
43
27
8
33
46
5
43
14
44
26

Further congruences can be established by the same method. For
example each of the following functions is congruent modulo p to a
power series of the form I2θf(x).

6P*Q23(Q3-R2),

p=Π

Qι3(Q3 - R2)1 + 2P4Qn(Q21 - RH),

(Q3-R2)4 + 3Pl2R2(Q3-R2),

(Q3 - R2)5 + 6P7Q7R(Q3 - R2),

«23 - R2)s + ΪOP9Ql5R(Q3 - R2),

«23 - i?2)11 + 9PnQ23R(Q3 - R2),

(Q3 - R2)n + IOP6Q3O(Q3 - R2),

QlΊ(Q3 - i?2)1 2 + 12P6Q23(Q21 - Rιs)

= 23 + 4PHQl7(Q3-R2),

(Q3 - R2)16 + 21P6Q42(Q3 - R2),

(Q3 - R2)20 + 4P*Q53(Q3 - R2),
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= 29: (Q3-R2)8 + \9P7Qι6R(Q3-R2),

(Q3-R2Ϋ3 + 2P9Q3OR(Q3-R2),

(Q3 - R2)n + 20PnQ44R(Q3 - R2),

+ P6Q54(Q3-R2),

+ 9P8Q68(Q3-R2),

Q29(Q3 - R2)6 + 5Pi2Q3S(Q3 - R2),

p = 3l: (Q3-R2)6 + 29P8Qn(Q3-R2),

(Q3-R2)21+2P2Qn(Q5l-R34),

{Q3 - R2)30 + 16P17Q7ΊR{Q3 - R2),

p = 3Ί: (Q3-R2)4 + 16P9Q3R(Q3-R2),

(Q3 - R2)1 + 32P*Ql4(Q3 - R2),

(Q3 - R2)10 + 3βP1Q22R{Q3 - R2),
( β 3_ j R 2 ) 25 + p2 β 17 ( ( 2 57_ j R 38 ) ?

p = 41 : (Q3 - R2)n + 40P7Q25R(Q3 - R2),

(Q3 - R2)1S + 30P9Q45R(Q3 - R2),

(Q3 - i? 2 ) 2 5 + 22PnQ65R(Q3 - R2),

(Q3 - i? 2 ) 2 8 + 4P6Q7*(Q3 - R2),

p = 43: (Q3-R2)8 + SP&Ql7(Q3-R2),

(Q3-R2)29 + 4P2Ql7(Q69-R46),

p = 4Ί: (Q3- R2)32 + 34P6Q90(Q3 - R2),

(Q3 - R2)40 + 2 5 P 8 β 1 1 3 ( β 3 - R2)

and

p = 54\: (Q3-R2)136.

Finally we have a general result:

THEOREM. Suppose p = βt + 1 is prime. Then there exist integer
coefficients ciβ such that

± £ aβQ'R>
β,y

2β+3γ=5p

= (Q3 - RψP+W - ^ W - ^ e 3 ^ 1 ) / 2 - RP+ί) (mod p).
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Proof. If β and γ are related by 2β + 3γ = 5p then

\2x-^-QβRy ΞΞ 4βQP~ιRγ-1(Q3 - R2) (mod p).

Writing w for the integer ^ p - , we have to solve the following set of
rnnffnienres morhiln n .congruences modulo p.

- 3)αp_3 - 4(p - 6)αp_

«<-'>*•'(*:,)+O

6)ap+6 -

_ 4
a(5p-3)/2 — l

A solution is possible since

= 0.
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