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SKEINS AND HANDLEBODIES

W. B. R. LICKORISH

The Temperley-Lieb algebra is used to find a base for the vec-
tor space that is associated to a closed surface by the Topological
Quantum Field Theory corresponding to the original Jones polyno-
mial invariant.

1. Introduction. The Kauffman linear skein SM of an oriented 3-
manifold M, that has a (possibly empty) finite collection of (framed)
points specified in its boundary, is defined as follows. Throughout, A
will be a fixed complex number later to be chosen to be a primitive
4rth root of unity (though it is equally possible to work with the ring
of Laurent polynomials in A, quotiented by the ideal generated by
a cyclotomic polynomial). SM is the vector space of formal linear
sums of isotopy classes of framed links in M of disjoint simple closed
curves and arcs that agree with the specification in 9 M , quotiented
by the following relations.

(ii) LuU = (-A~2-A2)L.

In (i) a framing on a curve is depicted by a parallel to the curve, and in
(ii) U is a zero-framed unknotted component in a ball disjoint from
the link L. It is often convenient to project M to some surface F (for
example, S3 less two points projects to S2 , a handlebody projects to a
disc-with-holes) and then SM is interpreted as the linear skein SF of
link diagrams in F as in [5], [7], [10], the framings being determined
by parallel curves in F. In particular the nth Temperley-Lieb algebra
is the Kauffman skein of the ball with two sets of n points specified
on its boundary. It is convenient to consider that via link diagrams
in a rectangle with n specified points on the left edge, n points on
the right edge, the product in the algebra coming from juxtaposition
of the rectangles. Now, it is clear that S£3 = C in fact a zero-framed
link corresponds in SS3 to its Jones polynomial evaluated at t — A~4 .
Suppose that M is embedded in S 3 , that Mr is the closure of S3 — M
and that M and M1 have the same specified framed points in their
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common boundary. There is then a natural bilinear map

SM x SM' -> C

induced by the operation of taking framed links L and U in M and
M' and regarding L U1/ as an element of SS3 . Such bilinear forms
will be used in the usual way to associate to any element X of SM
an element X* of the dual of SM'. This idea was considered, for
the Temperley-Lieb algebra, in some detail in [6] where it was noted
that the bilinear form could become degenerate when A was a root
of unity.

The Slq(29 C) invariant introduced by Witten [12] for a closed 3-
manifold "at a certain level" (here to be interpreted as "at a 4rth
primitive root of unity A"), was in [7] and [8] shown to be essentially
an element of SS3 (indirectly) associated to any framed link in S3

that produces the manifold by means of surgery. Atiyah and Witten
[1] laid down the axioms for a "Topological Quantum Field Theory"
within the framework of which it might be desirable to view quantum
invariants. That involves the association of a vector space with every
closed oriented surface and an element of that space to every oriented
3-manifold bounded by the surface. Vogel [11], paying due regard to
framings of manifolds, explained how the relevant Topological Quan-
tum Field Theory for the Slq{2, C) invariant could be viewed in the
context of the combinatorial methods of [7] and [8]. If a surface is
regarded as the common boundary of a 3-manifold M in S3 , and the
closure of its complement M' as already considered, then the vector
space to be associated to that surface is the quotient of SM by the
kernel of the map X \-> X*. The purpose of this paper is briefly
to give a base for that quotient space, thus in principle determining
its dimension, and thus giving, from this viewpoint (as explained in
[1]), an approach to the Sl^(2, C)-invariant of the product of a closed
surface and a circle.

2. Using the Temperley-Lieb algebra. In what follows diagrams rep-
resent elements of the (Kauffman) linear skein of link diagrams in a
rectangle with n specified points on the left edge and n' on the right
edge. An integer i beside an arc will denote the intended presence of
/ parallel copies of that arc. When n = n! this skein is the Temperley-
Lieb algebra TLn. Recall (for example from [7] or [8]) that this is
generated, as an algebra, by elements 1, β\, e-i, . . . , en_\ where 1 is
n arcs going straight from the left side of the rectangle to the right,
and that β\ is the same except that the rth arc doubles back to the
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(/ + l)th point on the left edge, the /th and (/ + l)th points on the
right edge being connected similarly. For generic values of A, TLn

contains a central idempotent / M with the properties that / w e z = 0
for all /, fWfW = fW and 1 - /W belongs to, and is indeed the
identity of, the ideal generated by {ei, £2, . . . , en-\} I*1 the dia-
grams that follow a small square will denote the presence of an /W
the relevant value of n being deducible from the labels on the strings
entering the square; this follows the convention of [2]. The number
An will be defined by

An = (- '2)- A'2),

this being characterised by the Chebyschev recurrence relation

where Δi = -A~2 - A2 and Δo = 1. The inductive defining formula
for / M is shown in Figure 1, fW being the identity in TL\.

FIGURE 1

The formulae depicted in Figure 2 are immediately deducible (the
third by induction on 1).

- Δ
n

FIGURE 2

Note that when A is chosen to be a primitive 4rth root of unity,
Δn Φ 0 when n < r - 2, Δπ = 0 when n = r - 1 and f^ is not
defined in n>r.

Consider the diagram shown in Figure 3.
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FIGURE 3

It consists of x parallel copies of a circle, y of another circle and
z of a third with fix+y), / ^ + z ) and fiz+χϊ inserted as shown. Let
Γ(x9y,z) be the element of SS2 that this diagram represents. It
will be important to know when Γ(x 9y9 z) is and is not zero. This
element is thus calculated in the following which serves also as an exer-
cise in the use of the Temperley-Lieb algebra (the result of the lemma
is inherent in [4] and implied in [2]; a simultaneously derived version
of this proof appears in [9]). Here Δπ! denotes ΔwΔw_iΔw_2 Δi,
this being interpreted as 1 if n is - 1 or zero.

LEMMA 1.

Γ(x,y, z) =

Proof. Consider the equations depicted in Figure 4. The first line
follows from the defining relation in Figure 1 (together with / ( z ) e z _i =
0), the second line follows by iterating the first line (and using the third
equality of Figure 2).

Next, the defining relation in Figure 1 followed by a double application
of Figure 4 produces the identity of Figure 5.
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FIGURE 5

Now apply the identity of Figure 5 to the required object in Figure
3 using the second and third formula of Figure 2. The following
recurrence relation results:

Γ(x,y, z) = Γ(x,y, z-

- Γ(x + 1, y - 1, z -

This is ready for a verification of the given formula by induction
on z . That formula is clearly true when z = 0 and inserting it into
this recurrence relation reduces the proof to a demonstration of the
equality

The truth of this can however easily be checked either directly from
the formula for An or using a double induction on

Δ x + y =AxAy-Ax_{

FIGURE 6

Consider the triad Tabc of Figure 6, introduced by Kauffman [2].
It is an element of SD, the linear skein of the disc D, where now D
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has an even number a + b + c of specified boundary points partitioned
into three subsets as shown. Ta^bc has the idempotents f^ , f^ ,
and f^ placed just inside the disc adjacent to the three subsets. It is
required that the integers x, y and z defined by a = y+z, b — z+x
and c = x + y should all be non-negative. Suppose that D' is the disc
complementary to D in S2 with the same specified boundary points.
By means of the bilinear form SD x SD' —• C, TajjC corresponds to
the element T* b c of the dual of SD'.

LEMMA 2. Let A be a primitive Arth root of unity. Then T* b c is

non-zero if and only if a + b + c < 2(r - 2).

Proof. SD' has a base consisting of all diagrams in D' with no
crossing. However, for all but one of these diagrams there is an arc
from a point of one of the three specified subsets (for example that
with a points) to another point of the same subset. The presence
of the idempotent adjacent in Taj,c to that subset ensures (using
βa)βi = 0) that T* b c annihilates such an element. There remains to
consider the base element of SD' that consists of z arcs from the first
boundary subset to the second such subset, x from the second to the
third and y from the third to the first. Of course T* b c maps this
element to Γ(JC , y, z) . It follows from Lemma 1 that, as x + y + z
increases, this is non-zero until Ax+y+z\ = 0 and that occurs when
x+y + z = r— 1.

From now onwards fix A as a primitive 4rth root of unity.

DEFINITION. A triple (a, b,c) of non-negative integers will be
called admissible if a + b + c is even, a + b + c < 2(r — 2), a < b + c,
b <c + a and c < a + b . This will be written (a, b, c) G A.

Note that the admissibility condition is just that a triple of non-
negative integers (x,y9 z) should exist as above and that x+y + z <
r - 2. In such circumstances define θ ( α , b, c) = T(x, y, z ) .

3. Independence in 3-manifolds. Consider now the following situa-
tion. Let Ma be a 3-manifold M in S 3 having, as specified framed
points in dM, a points grouped in a small disc and N other points.
These N points do not change in what follows. Let M'a be the closure
of the complement of Ma . Suppose that for each α, 0 < a < r - 2,
{Xί,a: i £ 3(α)} is a collection of elements of SMa, 3(a) being some
indexing set, and that each XiyCL has the idempotent / ( α) placed adja-
cent to the a points. Let Yi9a9b9c be obtained from Xita by adding
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the triad Tabc as in Figure 7 (the 2-dimensional projections will be
considered only in a neighbourhood of the a points).

Y:

FIGURE 7

LEMMA 3. Suppose that the {X* a: i e 3(a)} are, for each a, in-
dependent elements of the dual of SM^. Then, for any b and c,
{Y*a b c: (a, b, c) e A, i e 3(a)} are independent.

Proof Suppose Σi,a*i,aYUb,c = ° T h e n Σ ^ A f l Z . α . ^ c , ^
0 where Zx• a ^ c ^ is as shown in Figure 8. Note that in Figure 8,
and in the remainder of the paper, a black dot is used, as in [2], to
indicate the presence of a triad of the type of Figure 6.

FIGURE 8

However it follows at once (see [2], for example) that

So, letting d = a, for each a such that (a, b, c) is admissible,

iel(a)

But the admissibility means that Θ(a, b, c) Φ 0 (and Aa Φ 0) so
Xia = 0 for all a and /.

COROLLARY. If triads are added together to form a tree

X(aΪ9 a2, . . . , as; iΪ9 i2, . . . , ^-3)

as in Figure 9, then, fixing a\, a^, . . . , as and allowing i\,h, . . . Js-3
to vary in all ways so that admissibility occurs at each node of the tree,
the elements {X{a\, a2 , . . . , as i\, h, > ^-3)*} a r e independent.
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FIGURE 9

Suppose that an even number a\ \ a,2 H h ^ of points are spec-
ified on the boundary of a disc D the points grouped into s sub-
sets each containing a\ points. Then, it is easy to see, in the fol-
lowing way, that the duals of all diagrams that have, for all /, the
idempotent flaJ adjacent to the ith subset, span the same subspace
as {X{a\, d2, ... , as

m

9 i\, h> > h-3)*} This is because in the
Temperley-Lieb algebra TLn , 1 = fW +R where R is some sum of
products of the e\. As fir~ι>)* = 0 the dual of any diagram cutting a
chord of the disc in more than r - 2 points may be replaced by the
sum of duals of diagrams cutting the chord fewer times. For n < r - 2
the dual of a diagram whose arcs cross a given chord n times may be
replaced by a sum of duals of diagrams, in one of which the arcs cross
the chord n times but are then decorated with an / ^ and in the oth-
ers the arcs cross fewer than n times. At any stage an inadmissible
triad can be neglected as its dual is the zero map. When s = 4 this
means there are two obvious bases for the same space. The situation
is depicted in Figure 10 in which the diagrams represent elements of
the dual space to SD' when D has a + b + c + d specified points in
3D. This is familiar from [2]; the summation is over all / for which
(j, b, c) and (i, a, d) are admissible. The elements {̂  b

d !} of
this change of base matrix are referred to as (quantised) 67-symbols.

FIGURE 10

There now follows a somewhat technical little lemma that will prove
useful.

LEMMA 4. Suppose that (b, b, a) and (a, c, c) are admissible
triples. Then there is some j , 0 < j < r - 2, such that the element of
SS2 depicted by Figure 11 is non-zero.
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FIGURE 11

Proof. Note that the idempotent / ( j ) does not appear on the j
strands. Suppose that, to the contrary, the diagram represents zero
for every j . Then, using the above-mentioned base change, the sum-
mation shown in Figure 12 is zero.

b b
c c s}

FIGURE 12

However, by Lemma 6 of [7], this means that

where α, = — A2(l+l>> — A 2 ( ' + 1 ) . Because A is a primitive 4rth root
of unity ao, a\, ... , ar-2 a r ^ aU distinct. Thus the Vandermonde
matrix (α/)-7 is non-singular, and so there can be no non-trivial linear
relation between its rows (compare [7]). Thus

• b
c i

for all i for which (b, /, c) is admissible. But then θ(b, i, c) Φ 0
so that {£ ^ ^} is zero for all such /. That however means that a
whole row of a change of base matrix is zero, a contradiction.

Note that it follows that the lemma is equally true if the idempotent
f^ is now inserted on the j strands.

COROLLARY. Let Ua^bj be the element of SD in Figure 13.
Then U* b . = μa^jT* • , and for each a and b with (a, b, b)
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admissible, there exists a j , with 0 < j < r -2 and (α, j , j) admis-
sible, such that μa,b,j Φ 0

FIGURE 13

Proof. U* b . and Γ* . • both annihilate all but the same single
base element of SDf. Thus they differ by multiplication by a scalar
μa,b,j- However by Lemma 4, for each a and b, with (a, b, b)
admissible, there is some j for which U* b . is not the zero map.

Return now to the notation at the beginning of this section in which
{Xi,a' i € 3(tf)} is a collection of elements of SMa each having the
idempotent f^ placed adjacent to the set of a points in dM. Sup-
pose that Wiab is as shown in Figure 14.

W:
•>,* ~

FIGURE 14

Note that Wι^a^ is in the linear skein of a new 3-manifold in 5 3

obtained by adding a 1-handle to M in a trivial manner.

LEMMA 5. Suppose that the {X* a: i e 3(α)} are, for each a, in-
dependent elements of the dual of SM^ . Then {W* a b\ (α, b, b) e
A, / G 3(α)} are independent.

Proof. Suppose that Σia,b^i,a,bW*a b - 0, the sum being over
al l (i,a, b) s u c h t h a t 0 < a < r - l\ Ί e 3{ά) a n d ( a , b , b) i s
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admissible. Then, for all j and k,

i ,a,b

where W+a b .: fc is shown in Figure 15.

FIGURE 15

Then

347

/, α,

where, as before, the {o-b)k are the elements of a non-singular Van-
dermonde matrix. Hence, for each b ,

By the corollary to Lemma 4, for each b

i,a U μa,b,jTa,j\jT = 0.

Then, by Lemma 3, if (α, 7, 7) is admissible Λ,/^a,bβa,b,j = 0 B u t

the corollary to Lemma 4 states that, for each a and Z?, such a 7 can
be selected so that μa,bj Φ 0 Hence Λ/>Λj^ = 0 for all (a, b, i) for
which i G 3(α) and (a9 b, b) is admissible.

THEOREM. Suppose that M is a handlebody in S3 (with no specified
points in its boundary), and that Mf, the closure of its complement,
is also a handlebody. Let A be a primitive Arth root of unity. A
base for the quotient oj JM by the kernel of the natural map §M —•
Hom(SM7, C) is as follows. Project M to a disc with holes. The duals
of all diagrams as shown in Figure 16 that have an admissible triad at
each node form the required base.
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FIGURE 16

Proof. That the given set spans the quotient follows in a way similar
to the remarks following Lemma 3: The infinite spanning set consist-
ing of the duals of all diagrams with no crossing and no null-homotopic
closed curve can, as there explained, be reduced to a finite set in which
no diagram cuts any of the dotted chords of Figure 16 in more than
r — 2 points, and the Temperley-Lieb idempotents can likewise be
inserted where the diagrams cross those chords. The only remain-
ing diagrams with non-zero duals are those consisting of admissible
triads between the dotted chords. Independence is an immediate con-
sequence of Lemmas 3 and 5.

Note 1. Other bases can be obtained by modifying the above base at
two adjacent nodes of Figure 16, using the 67-symbols as the change
of base matrix as in Figure 10.

Note 2. The idempotents can be removed from all the triads of
Figure 16 and the result is still a base (the result is clearly still a
spanning set and it has the same number of elements as has the base).

Note 3. If M is a ball the dimension of the quotient space is 1. If
M is a solid torus the dimension is r — 1 and if M has genus 2 the
dimension is (r3 - r ) /6 .

Note 4. If one begins with a closed connected orientable surface and
specifies in it a collection of simple closed curves that separate the sur-
face into copies of a disc with two holes ('pairs of pants'), spanning,
those curves with discs, then adding 3-balls, produces a handlebody
bounded by the surface. The discs give a decomposition of the han-
dlebody into triad-like pieces ready for the construction of a base of
the relevant (quotient) vector space as above.
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