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ZAINTEGRABILITY OF THE SECOND ORDER
DERIVATIVES OF GREEN POTENTIALS

IN CONVEX DOMAINS

VlLHELM ADOLFSSON

We give estimates in LP , 1 < p < 2, of the second order deriva-
tives of the Green potential of / e Lp , for convex domains. This is
done by interpolating between estimates in L1 and L2 of functions
in atomic Hι and L2, respectively. The crucial step is obtaining the
atomic estimate which is done by adapting to the present situation, a
technique introduced by Dahlberg and Kenig.

O Introduction. The purpose of this paper is to prove that for a
convex domain Ω in Rn , the second order derivatives of the Green
potential of / , V2Gf, are in LP(Ω) if / e LP(Ω) with 1 < p < 2 .
To avoid technicalities we assume throughout the paper that n > 3.
The main results of the paper are

THEOREM 1. Suppose D is a convex domain above a Lipschitz graph
in Rn, i.e., D = {xn > φ(x')} where φ is a convex Lipschitz function
with Lipschitz constant bounded by M and xf e R"" 1 . Let G be
the Green function for D and let the Green potential for f e LP(D),
1 < P < 2, be denoted by Gf. Then we have that

I \V2Gf\pdx<c I \fψdx,
JD JD

where V2 denotes the second order derivatives and the constant c only
depends on the Lipschitz constant M. u

Via a patching argument we will derive the case of a bounded convex
domain from the results of Theorem 1.

THEOREM 2. Let Ω be an open, bounded and convex domain in
Rn, n > 3. Let G be its Green function. Suppose 1 < p < 2. Then
V2GfeU>(Ω) and

I \V2Gfψdx<C I \fψdx,
JΩ JΩ
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where C can be taken to depend only on the Lipschitz character of the
domain. π

We note that a Lipschitz requirement is superfluous in the case
of a bounded domain since every bounded and convex domain is a
Lipschitz domain. That the theorems are not true for any Lipschitz
domains follows from simple examples, see e.g. [D]. It is readily seen
from the following simple example that we have to require p < 2 in
general. Let Ω be an infinite cone in R2 with vertex at the origin
and opening angle θ. Let ϋ(x,y) = y in {(x, y) : y > 0}. Take
v = ϋ(za) where a = π/θ. Then the second order derivatives of v
behave as | z | α ~ 2 . Hence, \V2v\ e LP (\z\ < 1) iff p(2 - a) < 2.
The work in this area can provisionally be divided into two groups,
see [MSa] and [MP]. In the first group attention is focused on global
smoothness conditions on the boundary; in the other group the singu-
larities are localized, and one considers a finite number of singularities
of a specific type on the boundary, e.g. such as edges, polyhedral an-
gles, conical points, etc. It is desirable to treat not only a finite number
of singularities, but to give a global smoothness condition in the spirit
of the first group of works, allowing for (not necessarily localized)
singularities of the type mentioned in the other group. Convexity is
of course such a condition. Although the case p — 2 of Theorem 2
is a classical result of Kadlec [Ka], for other p 's one has considered
domains with a finite number of singularities on the boundary. We
again refer to [MP], see also [Ko], especially the powerful method of
[MP] for estimates in related LP-spaces and Holder classes for more
general elliptic boundary value problems and domains, with a finite
number of singularities on the boundary. Recent results are contained
in [JK] for estimates in a bounded Lipschitz domain with data in
Sobolev and Besov spaces. Theorem 2 is well-known to be true for a
bounded smooth, i.e. C 1 ' 1 , domain, cf. [G]. For p — 2, Theorem
2 is also true for combinations of the smooth and convex case. Here
'combinations' is taken to mean bounded Lipschitz domains fulfilling
a uniform outer ball condition. Thus the domain admits not only a
finite number of singularities on the boundary. See [A].

In fact, it is a classical result that for Ω open and bounded, and
f E L 2(Ω), Gf is the unique solution in //Q(Ω) solving

Γ -An = / in Ω

I γ(u) = 0 o n d Ω ,

where γ is the trace operator on the boundary of Ω. Further, if Ω is
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of the type mentioned above, then also ||V2tt||L2,Ωv < C| |/ | | L 2 ( Ω ) . The
proof for a convex domain in this case, p = 2, rests on the following
simple application of Green's formula. We have

L ._ .,, v> ί du d2u
\V2u\2dx=y /

Ω

= Σ - L JΪT.τ£h.dx + boundary integral

d2ud2u ,
ax + boundary integral

= / |Δw|2 dx + boundary integral.
/Ω

The boundary integral, in the case of zero boundary condition, turns
out to be

where t r ^ is the trace of the second fundamental quadratic form on
the boundary, i.e. the mean curvature. For a convex domain we have

< 0 and consequently

/ \V2u\2dx< ί \Au\2dx.

Of course, in the above considerations a suitable approximation of the
boundary with smooth boundaries has to be used.

The natural way to try to extend the result to other p 's is to interpo-
late. However, it is not immediately clear how to extend the estimates
to Lι(Ω) since, as indicated above, the available proof technique is
strongly ZΛdependent. Moreover, if / e Lι then it is in general
not true that V2Gf e Lι. In fact, V2Gf e Lι may fail even if
/ G C°°(Ω), see [JK]. However, one can use the atomic space H\t

as a substitute for Lι when interpolating, to obtain the desired result
for 1 < p < 2. See [CW].

Theorem 2 follows from Theorem 1. The proof is given in §4. To
prove Theorem 1 we will adapt to the present situation, a method that
originated with Dahlberg and Kenig, [DK], for solutions to Laplace's
equation. As indicated above we interpolate between L2 and atomic
Hι. We thus have to show that V2Gf is a bounded operator on L2

and from H\t into Lι respectively. The L2 case is a more or less
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direct consequence of the estimate

\V2u\2dx< ί \Au\2dx,
JΩ

for a convex domain, together with some suitable local formulation.
For our purposes a function a e Loc(Rn) is an atom if

(i) suppacB = BR (Pa)
(ϋ) IMIoc < l/\B\

(iii) Jadx = 0,

and HΪt(Rη = {feLι(Rη:f=Σλjaj, Σjλy|<oo, ^ is an atom}
with norm || || = ]Γ \λj\. It follows that it is sufficient to show that
there is a constant c such that JD\V2Ga\dx < c for all atoms a.
Using the scaling properties of atoms the problem can be reduced to
consider the case of atoms with support in a ball with radius one.
For such atoms two cases arises, depending on whether the distance
of the ball to dD is less than or greater than some strictly positive
number. It will be seen that it is sufficient to show that Ga has the
right decay outside some ball of fixed radius. This is shown, utilizing a
variant of the method of [DK], by using a reflection principle to have
a solution u, extending Ga, of a uniformly elliptic PDE operator
L, with bounded measurable coefficients and ellipticity constant only
depending on the Lipschitz constant M , and Lu = 0 outside the
support of the reflected atom. Thus the representation formula of
[SW] applies to give a better decay than the fundamental solution
outside the support of the extended atom. This will take care of the
case when the distance from the support of the atom to d D is small.
When this distance is large, the radius of the smallest ball containing
the support of the extended atom might be arbitrarily large. In order
to have the decay outside a ball of uniform radius, we have to substract
off a solution, corresponding to the reflected part of the atom, with
the same decay properties.

Acknowledgment. During the final preparation of this paper, the
author learned that Tom Wolff has obtained (unpublished) weak type
(1,1) estimates for the second order derivatives of the Green poten-
tial. The method of proof uses the maximum principle and so does
not apply to other boundary conditions, e.g. the Neumann problerΐi
These problems can be treated by the methods of this paper and the
results will appear elsewhere. The results of Wolff have been reproved
by Steve Fromm, MIT, and used for higher order regularity properties
of the solution in the case of higher regularity of the data. He also
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considers, corresponding to less regularity, the case of one derivative
in the x-variable and one in the j/-variable, of the Green function
G(x, y). These mentioned results will be contained in a forthcoming
thesis.

1. Preliminaries. Let in the following φ: Rn~ι -* R be a convex
Lipschitz function with Lipschitz constant bounded by M > 0. Let
D = {(x', xn) e Rn~ι x R : xn > φ{x')} denote the domain above the
graph of φ in Rn. Define DR= DnBR(0) for R > 0 where BR(0)
is the ball centered at the origin with radius R. When deriving the
estimates for H\t we will lean on estimates for the L2 case. The L2

case includes the case of an atom. We reserve the notation a for an
atom.

As is well-known, if Ω is an open set in Rn, n > 3, then Ω has a
Green function GQ , or just G, and if Ωi c Ω2 then GΩ i < GQ2 , cf.
[H]. We denote by Gf the Green potential of / , i.e.

Gf(x)= I G(x,y)f(y)dy9 x e Ω.

The following is a result of Dahlberg, [D].

THEOREM 1.1. Let D c Rn be a Lipschitz domain and set pi =
4/3, pn = 3n(n + 3)" 1 for n > 3. Then there is a number ε = ε(D) >
0 such that if I < p < pn + ε and q is given by \/q — \/p - \jn,
then

\VGf\q dP}l " < C ( j \fψ ^Jl P

where C only depends on p and D. Also, there is a constant C only
depending on D such that

/ r \n/n-l

\{PeD: VGf(P) >λ}\<C ( r 1 J^\f\dPj

where \E\ denotes the Lebesgue measure of a set E. D

For future reference we note the following simple consequence of
the above theorem.

REMARK 1.2. For 1 < p < 2 we have that

for Ω an open, bounded and convex domain in R" , n > 3. To see
this, note that since i = i — I for the estimate of Theorem 1.1 to
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be true, we have that q > p, and therefore a simple application of
Holder's inequality to the gradient side yields the statement in the case
when 1 < p <pn. Since p — pn corresponds to q = 3 the statement
follows also for the range pn < p < 2. D

Another straightforward consequence of Theorem 1.1 is

LEMMA 1.3. Suppose Ω is a bounded Lipschitz domain in Rn , n>
3 and that / e L 2 ( Ω ) . Then Gf is the unique solution in H^{Ώ) of
the Poisson equation

-Au — f in Ω,

γ(ύ) = 0 on 5Ω,

where γ is the restriction operator on <9Ω. D

We recall some properties of uniformly elliptic divergence form
PDE operators. Let A(x) = (aij(x)) be an n x n-dimensional sym-
metric matrix valued function in an open set <f where the entries
aij(x) are realvalued measurable functions. Let L denote the opera-
tor — Σf j ^aij{x)-$y Then L is uniformly elliptic with elliptic-
ity constant λ in $ if there is a λ > 1 such that

for all ξ G Rn . Suppose / is a distribution in @. We call u a (weak)
solution of Lu = / in <? if u e L\ Xoc{&) and J# < AVu, Vφ >
dx = f{φ) for all φ e Q ° ( ^ ) . Here L2

χXoc{&) denotes the space

of functions in Lfoc(&) with distributional derivatives of first order
in L\oc{β). As in [DK] we introduce the following reflection proce-
dure for a solution of a divergence form PDE operator, which will be
used in the sequel. Let, as above, D be the domain above a con-
vex Lipschitz graph with Lipschitz constant bounded by M. Let
Φ : D —> D~ be reflection in the boundary <9Ω along the xw-axis,
given by by the bi-Lipschitzian map Φ(xf, xn) = (xf, 2φ(x') - xn).__
Define A(x) — (aij(x)) to be an nx n-dimensional symmetric matrix
valued function given by

A(x)-ίI{X)
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where I(x) is the identy matrix and

/ I 0 . . . 0 2|^(x')

0 1 ... 0 2§i-(x')

0 0 ... 1

B{x)=

From now on, we let L be the operator corresponding to this par-
ticular A unless otherwise indicated. It is not difficult to see that
L is a uniformly elliptic, self-adjoint, divergence form operator with
bounded real valued measurable coefficients and ellipticity constant λ
only depending on the Lipschitz constant M.

For a function u on D we define u~ on D~ by u~ = woφ" 1 and
we put

u(x) ϊorxeD,

We next indicate a proof showing that if u G HQ(DR) where DR =
D Π BR(Q), then u~~ e H^(Φ(DR)) . Approximate u with smooth
functions Uj in H^(DR) and smooth the boundary with φa(x') =
φ*φa{xt) + Ma, where <2 > 0, * denotes convolution and φa is a ap-
proximate identity; φa(x) = (l/an-2)φ(x/a) with O<0 G ^ ( R " " 1 ) ,
suppφ c 5i(0) and / φadx' = 1. Then we have that v~ k -^ u~ in
L2(Φ(Z>r)) where vτ f c = uj a (y). Here a,j^ depends on j and k

in a suitable manner and uj a(y) = u} o φ~ι(y). We have denoted by
Φa the function defined as Φ but relative to dDa — {(xf, <pa(x'))}
Now,

for 1 < / < n - 1 and similar for / = n . Hence / φ ( D x l - g ^ l 2 ^ <

independent of /, j and k. Consequently, using weak convergence

in L2(Φ(DR)), we have that a subsequence of - ^ converges weakly

so that w" G ̂ ( Φ ί D ^ ) ) . Furthermore, since vj k e H£(Φ(DR)) it

follows that u~~ G HQ(Φ(DR)) . Thus we have proved the statement.

From this fact follows easily that if u is a function in D such that

φu G H£(D) for each 0 G C ^ ° ( R W ) , then ^M~ G H^{D~) for each
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PROPOSITION 1.4. Let f e L2(D) and suppose u is a solution to
—Au = f as distributions in D. Suppose further that φu G HQ(D) for
each φ e C^(Rn), and V2u e L2(D). Then ύ is a weak solution to
Lύ = f in Rn .

Proof Take ψ e Cβ°(Rn) and choose R > 0 such that supp ψ c

d ύ , λ J

Then, since ψu and ί̂ w~ e /JΓQ , it follows that

f du , /
= / -—ψ dx - I

JDR

 ό χ i Jd

ί du-
- / ——ψψdx+

du ,

Hence, u G H^0C(Rn). Next we show that for each ψ G CQ°(RW) we
have that JR* < A(x)Vύ(x), Vψ > dx = f(φ). For R > 0 such that
supp ψ c i?κ(0) it follows that

/ (A(x)Vu(x), Vψ)dx
Jκn

= / VuVψdx- I (B(x)VιΓ, Vψ)dx,
JD JD~

and

ί ί f ίdu\
I VuVψdx = - / {Aύ)ψdx + / I —- I ψdσ,

JD JD JΘDR \^U)

since V2u G L2(D). Further, a change of variables, x = Φ - 1 (
having Jacobian + 1 , leads to

/ (JB(X)VW", Vψ)dx= / VuVψdx
JD~ JDΠΦ~1(D~)
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where ψ = ψ o φ e Hι(D) and the last equality is valid since
L2(D). Finally, while ψ = ψ on dΩ we have

)Vw(x), Vψ)dx

= — / (Δw)^dx + / (Au)ψdx
JD JD

ί (du\ j f (du

JdD\dvJ Ύ JdD\dv

= / fψdx- I fψdx
JD JD

= ί fψdx- ί f-(ψoφ~ι)dx = + (fψdx. D
JD JD~ J

2. The L2-case. Let, as in the previous paragraph, D be the set
above a convex Lipschitz graph φ with Lipschitz constant bounded
by M. Let G be the Green function of D in R", n > 3. Assume,
for the time being, that φ(0) = 0. This condition, of course, has no
real significance but makes the statements to follow more convenient.

LEMMA 2.1. Suppose f e L2(D). Then Gf e L2(DR) for each
R>0,

and —AGf — f as distributions in D.

Proof. Estimating the Green function with the Newtonian kernel,
the local L2-estimate follows directly, for the case n > 4, from the
estimate for the Riesz potential 1^ of smoothness 2; Ia(f)(x) =
c /RΠ \x~y\a~nf(y) dy We need a better estimate. Since D is convex
and the Laplacian is rotational invariant we might as well assume that
D c {xn > 0}. Hence, for x e D we have

\Gf{x)\ < ί G(x,y)\f(y)\dy< ί GH(x,y)\f(y)\dy,
JD J{χn>Q}

where GH is the Green function for the halfspace and / is extended
by zero outside D. Splitting the domain of integration into two parts
where {\y\ < 2\x\} and {\y\ > 2\x\} respectively, it is easy to see that
the local estimate can be achieved for the first part by comparing with
the Newtonian kernel and estimating as in Youngs inequality. For
the second part we note that GH(X , y) — c(\x - y\2~n - \x* - y\2~n)
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where x* = (x', — xn) so that a simple application of the meanvalue
theorem shows that GH(X, y) < 2(« — 2)xn\xQ — y\ι~n with XQ =
(x'? (1 -2θ)xn) and 0< 0 < 1. It is not difficult to see that there is a
constant c > 0 independent of x and y such that C?j/(.x,;y) <
cxn\x — y\ι~n. The inequality now follows from the theorem cited
above, with a = 1. As a consequence of this inequality it is suffi-
cient to consider the case of compact support of / when proving the
equality -AGf = f. For such functions the equality is an easy conse-
quence of the definition of the Green function and the same equality
for minus the Newton potential. D

Define Dj = Dv . Suppose / e L2(D) and φ(0) = 0. Let uj e
H^(Dj)nH2(Dj) be the unique solution in H^(Dj) to

-Auj = f in Dj ,

γ(Uj) = 0 on dDj.

Then Uj = Gjf where Gj is the Green function of Dj. From the
previous lemma follows

LEMMA 2.2. For each RQ > 0 there exists a y'o such that for j > JQ

we have

where CR does not depend on j . D

The following lemma is a classical fact due to the convexity of Dj ,
cf. [G, p. 139].

LEMMA 2.3. For each RQ > 0 there is a jo such that for j > J'Q we
have

\L\D ) < \\f\\L\D) '
" 0 ' ~ j' J

where V2 denotes second order derivatives, i.e.

= V
dXjdxk

3

D

Using a classical 'interpolation' inequality, cf. [Ag, p. 26], it now
follows from the above lemmas that also the intermediate derivatives
are estimated uniformly in j .
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LEMMA 2.4. For each RQ > 0 there is a J'Q such that for j > JQ we
have

where CR does not depend on j . D

THEOREM 2.5. Let D be the domain above a Lipschitz graph and let
f e L2(D). Then Gf{x) = JD G(x, y)f(y) dy solves -AGf = f in
D and ψGfeH^(D) for each ψeC^(W). Furthermore, V2Gf e
L\D) and JD\V2Gf\2 < fD\f\2dx.

Proof. It is sufficient to consider the case φ(0) — 0. From Lemma
2.1 follows that Gf is a solution of the equation and from the same
lemma also follows that Gf(x) < oo for a.e. x e ΰ . Since Gj(x, y) —•
G(x 9y) o n ΰ , a n application of the Lebesgue dominated convergence
theorem gives that Gjf(x) —• Gf(x) for a.e. x e D. Furthermore
\Gjf\2 < (G\f\)2 e Lι(DR ), and so another application of the same
theorem gives that Gjf —• Gf in L2(DRJ for each Ro > 0, so
that the distribution derivatives of Gjf converge to the derivatives
of Gf. From the previous lemma we have that for each i?0 there
is a subsequence of VGjf converging weakly in L2(DRQ) . Hence,
by uniqueness of weak limits we have that VGf G L2(DRQ) . There-
fore, VGf is defined a.e. globally and belongs to L2 locally. More-
over, ψGjf G HQ(DRQ) by choosing Ro and j large enough. Again,
the previous lemma shows that V(ψGjf) are uniformly bounded in
L2(DRJ so that a subsequence of ψGjf converges to ψGf weakly in
H^(DRJ . It follows that ψGf G H^(DRQ) . In particular, ψGf has
a trace on the boundary and choosing ψ appropriately we see that
Gf = 0 on dD. _

From Lemma 2.3 we have that a subsequence of V2G7/, defined
to be zero extension of V2G7/ outside Dj, converges weakly to an
element in L2(D). Consequently, V 2 G/ eL2{D). Now

I|V2G/||2 = (V

<ε + \\V2Gf\\L2{D)\\V2GJf\\L2{Dj)

for each ε > 0. This implies the estimate of the lemma. D

3. The atomic estimate. In this section the following lemma is the
main result.
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LEMMA 3.1. There is a constant C such that for all atoms a and all
domains, D, above convex Lipschitz graphs, φ, with Lipschitz constant
bounded by M, the following estimate is true;

L \V2Ga\dx< C.
D

Moreover, C depends only on M. D

As mentioned in the introduction, the main fact that needs to be
established is that there is a fixed radius such that for each atom a,
Ga has an extension u that solves Lu = 0 outside a ball with this
fixed radius. When the distance between the support of the atom and
the boundary dD is large, applying the reflection procedure of §1 will
give that the smallest ball containing the support of the reflected atom
is large. This explains the different cases, (i)-(iii), appearing below.

Before getting into the details of Lemma 3.1 we recall a standard
result from PDE. Following [LStW] and [GWi], let GL be the Green
function for L in Rn . Then there are constants Kj only depending
on the ellipticity constant A of I such that

< r (p n <

\p _ Q\n~2 ^ U ^ Γ ' U) ~ \p _ Q\n-2 '

We sketch a proof of the following particular, but to us useful fact.

PROPOSITION 3.2. Suppose f e L2(Rn) and has compact support.
Then the Green potential of f corresponding to L,

GLf{x) = jGL(x,y)f(y)dy ,

belongs to H^0C(Rn) and it is a weak solution of Lu = f in Rn .

Proof. Since G^f can be estimated pointwise by the Newton poten-
tial of the absolute value of / , it is clear that GLf e L2 (Rn)+L^ (Rn)
and therefore we have that <5χ/ e L2

OC(RW). It is not difficult to see
from the results of [LStW], that

f(x,y)<KG«(x,y)<K\x-y\2-\

for x, y in a compact set, and R sufficiently large. Here K does not
depend on R and Gf denotes the Green function for the Laplacian
in BR(0) . Hence,

\G«f(x)\2dx<CRn,
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where CRQ does not depend on R and supp/ U BRQ(0) C BR(0) .

It now follows that Gζf —> 6 χ / in L2(BRQ) and consequently, the

distribution derivatives of Gf / converge to those of <jχ/.

We claim that JB | VGf / | 2 rf c < C ^ for i? big enough. This fol-

lows from an easy variant of a standard Cacciopoli type inequality. To

see this, choose Ro so that supp/ c BRQ(0) . Take ψ eCβ°(Rn), 0 <

ψ < 1, ^ = 1 on i?Ro+i(O) and such that supp ψ c 2?RO+IO(O) . Let

R be fixed and put for convenience uR = (?£/ e //^(^(O)). Now u

solves

for each φ e Cfi°(BR(0)). Take R subject to 2? > Ro + 10 and let
φ= ψuR. Then we have

-I \VuR\2dx<\[ ψ\VuR\2dx

^ Σ / (aijDjURDiUR)ψdx
- JBR(0)

xr^ ί
= y / α, jDjUR(Di(ψuR) - uRDtψ)dx

~i JBJO)

Hence, using Holder's inequality it is enough to give a uniform es-
timate of the L2 norm of the derivatives DiψDjUR over the set
BR +io(O)\i?κ (0), which is immediate from a standard Cacciopoli es-
timate and the uniform estimate for the potentials themselves. The
claim is proved. By weak convergence of a subsequence in L2(BRQ(0))

we get that VGLf e L2(BRQ(0)) , as a consequence VGLf e Lfoc(Rn).
Using the weak convergence again, it is immediate that G^f is a weak
solution in Rn . D

Recall that for a function v in D we define
Γ v(x) forxeD,

V[X)~\-v~ (x)

where v~(x) = w o φ " 1 ^ ) for x e D~. Obviously, in general
ϋ Φ v in D~ for a function v defined in Rn. Now, Ga(x) —
JD G(x, y)a(y) dy for x e D. From Thm. 2.5 and Prop. 1.1 follows
that Ga is a weak solution to Lu = a in Rw .
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PROPOSITION 3.3. GLά = Ga.

Proof. There is an R such that supp a c # R ( 0 ) and a simple
estimate gives \Ga\ < C in R" \ 2 ? R + I ( 0 ) . A similar estimate of G^a,
using the bound of <5χ, gives \GLa\ < C in RΛ \2?Λ + 1(0). Moreover,
L(Gα - Giβ) = 0. It is immediate that this solution has a limit zero
at infinity, that it is continuous, and therefore bounded in Rn . Thus,
Theorem 4 of [Mo] shows that the solution is a constant which, in
view of the limit at infinity, must be zero, i.e. Gχό = Ga. π

We start by showing that Lemma 3.1 can be reduced to a particu-
larly simple situation. A straightforward verification gives that for a
translation of coordinates in the integral of the lemma, the new func-
tion is expressed as the Green potential of an atom with center on
the nth coordinate axis and a Green function for a domain above
a convex Lipschitz graph φ with the same Lipschitz constant as the
original graph and obeying φ(0) = 0. As a consequence it is sufficient
to prove the lemma in this latter situation.

We now claim that we can simplify the situation even further. The
following standard procedure exploits the dilation properties of atoms.
Suppose D is given as the domain above the convex Lipschitz graph
φ with Lipschitz constant bounded by M and suppose that φ(0) = 0.
Assume a is an atom with supp a c BRa(Pa) and put a+{x) = a(x)
in D and zero otherwise. Let Λ : Rn —• Rn be the C°°-isomorphism
given by y = A(x) = £(x -Pa) + Pa, x = A~l(y) = Ra(y - Pa) + Pa

and let D = A(D). Now dD = A(dD) and D is convex since Λ maps
lines onto lines. Further, yf = x'/Ra, yn = jξ-(φ(x') - Pa) + Pa since

Pa is on the xrt-axis. Let φ(y') = 4-(φ(x') - Pa) + Pa so that dD =

{{y! > Φ{y'))} - Therefore D is a domain above a Lipschitz graph with
Lipschitz constant bounded by M. Define w(y) = R%~2(Ga)(A~ι(y))
in D and let b(y) = Rn

aa(A-\y)) for y e Rn. Then -Aw = b as
distributions in D and b is a function with the following properties,

(i) supp bc{y: \A-ι(y) - Pa\ < Ra} = {y : \y - Pa\ < 1} so that
suppZ? c B\(Pa) and Pa is on the y^-axis,

(ϋ) | |έ | |o o = i?2HΛ- 1 ( ))lloo<i
(iii) Jbdx = 0.

Hence, b is an atom in Rw and solves —Aw = b in D. As in the case
of a translation it is, as above, a straightforward verification to show
that w is expressed as a Green potential. A more smooth way to show
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this j s to argue as^in Proposition 3.3. Let G be the Green function
of D. Then A(Gb — w) = 0 in D and it follows from Theorem
2.5 and Proposition 1.4 that the extension by an odd reflection in
the boundary, of this solution solves the homogeneous case of the
differential operator L in Rπ . Now this solution is bounded and Jias
a limit zero at infinity. Thus it must be identically zero, i.e. w = Gb .
Moreover, using a translation as above we can assume that φ(0) = 0,
and the statement is demonstrated.

In short; we have seen that without loss of generality we can restrict
ourselves to consider, in Lemma 3.1, the case supp a c B\(Pa) with
Pa on the xw-axis and φ(0) = 0.

For this situation we now split into three different cases.

PROPOSITION 3.4. Assume φ(0) = 0. There is a R$ > \ and a
R\>\ only depending on the bound of the Lίpschίtz constant M such
that the following is true. For each atom a, with suppα c B\(Pa)
where Pa = (0, ... , 0, pa) is on the xn-axis, we have that if

(i) Pa < ~ 1 then supp a c D~~,
(ϋ) Pa > - 1 and Pa e BR (0) then supp a c (B2{Pa) Πl))U

Φ(B2(PanD))cBRo,
(iii) pa > - 1 and Pa £ BRχ{Q) then Bx{Pa) c B2(Pa) C D απrf

) C Bι+2M(P-) c BΆUM)(P-) c D-, where P' - -P f l =

The proof of this result follows without difficulty from the cone
property enjoyed by a Lipschitz domain.

3a. Estimates at infinity.

PROPOSITION 3.5. Let a bean atom such that suppα c B\(Pa) with
Pa on the xn-axis and φ(0) = 0. Let a~ be extended by zero outside
D~ . Let (i)-(iϋ) be the cases of Proposition 3.4. There is a constant
C only depending on the Lipschitz constant M and not on the atom
a, such that in case

(i) Gja = 0 in D,

(ii) \Ga(p)\<C for \P\>R0,

(iii) \(Ga + GLa-)(p)\ < C for \P - Pa\ > 2 and \GLcr{p)\ < C
for | P - P - | > 2 ( 1 + M ) .

Proof. Assertion (i) is obvious. A simple estimate shows in case
(ii) that \Ga{P)\ < \/(n - 2)n2ωn for \P - Pa\ > 2. Therefore all



216 VILHELM ADOLFSSON

points P G D for which \Ga(P)\ > \/{n - 2)n2ωn are contained
in B2(Pa). Thus all points for which \Ga(P)\ > l/(n - 2)n2ωn

are contained in BR , which is the statement in (ii). Consider now
(iii). The function Gχα~ solves Lv = a~ in R" and supp a~ c
Φ(Bι(Pa)) C B(ι+2M)(Φ(Pa)) where Φ(Pa) = -Pa = Pά For P such
that \P - P~\ > 2(1 + M) we have from the estimate of GL, that
|Gχα~(P)| < C where C only depends on the ellipticity constant
λ of L. Using Proposition 3.3, it follows that (Ga + GLCI~){P) =
JR*GL(P,Q)(ά + a-)dQ = JR*GL{P, Q)adQ. Again, exploiting
the estimate of Gx gives the desired estimate. Remembering that λ
only depends on the bound of the Lipschitz constant M, the lemma
follows. D

We now refine these crude estimates at infinity using the representa-
tion theorem of [SW]. We will have use for the following well-known
result. For a proof, see Moser [Mo].

THEOREM 3.6. Suppose R > 1 and that L is a uniformly elliptic
divergence form operator with realvalued, bounded and measurable co-
efficients in BR(0) with ellipticity constant λ. Then, if ue H^(BR(0))
is a solution of Lu = 0 in BR(0) we have that u e C^c

a(BR(0)). If
IMIL°°(# (0)) < oo we also have

\u(P) - u(0)\ < c\\u\\L^{BRm\P\\

for P G BR(0). Here c and a > 0 depend only on λ and not on u
or R. The exponent a is bounded away from zero in terms of λ, i.e.
1/α is bounded in terms of λ. D

THEOREM 3.7. Suppose L is a uniformly elliptic divergence form
operator with realvalued, bounded and measurable coefficients in W
and ellipticity constant λ. Let Pά e Rn and let gL be the fundamental
solution of L in Rn with pole at PA, i.e. gA(P) = GL(P, P Δ ) , so
that

cx\P - PA\2~n < gά(P) < c2\P - PA\2~n ,

for constants Cι only depending on λ. Suppose u solves Lu = 0
N weakly in \P-PΔ\ > R and that u is bounded there. Further, suppose
that u is continuous on \P- PA\ > R. Then there exist constants u^,
α, c > 0 and v > 0 such that c and l/u are bounded by a constant
only depending on λ, and



Z/-INTEGRABILITY OF SECOND ORDER DERIVATIVES 217

for \P-PA\>R where w is a bounded solution of L in | P - P Δ | > R
with bound given by

UnfPW <r rPn~2\\v\\ Λ IP pΔ\2-n-v
\W{r)\ S CK | | ^ | IL O O ( | />_ J P

Δ |> J R) μ —r I

Furthermore, a = K[u]/K[gA] where K[v] = J{AVυ, Vψ)dx for a
solution υ of L in \P - PA\ > R and any ψ e C°°{Rn) such that
ψ = 0 in \P - P Δ | < R + 1 and ψ = 1 in a neighbourhood of infinity.

Proof. It is sufficient to consider the case P Δ = 0. We follow
[SW] more or less verbatim only giving a more explicit estimate of
constants in our special case, where the function is bounded outside
some bounded set. Denoting by G the function gL(P) = GL(P, 0)
multiplied by a suitable constant only depending on λ, we have

\x\2~n < G{x) <c\x\2~n,

for some constant c only depending on λ. The function given by
the well-defined quotient u(y/\y\2)/G(y/\y\2) solves a uniformly el-
liptic equation in 0 < \y\ < R~ι where the differential operator L'
is of the same type as L and with an ellipticity constant λf only
depending on A. It follows from the results in [SW] that w(y) =
(u(y/\y\2) - uOQ)/G(yl\y\2) is the unique solution of L' in \y\ <
R~ι continuously attaining the boundary values given by the func-
tion (u(y/\y\2) -Uoo)/G(y/\y\2), which is continuous on the boundary
\y\ = R~ι. As a consequence

u(y/\y\2)-uc

\y\=i

max
\x\=R

G(y/\y\2)

u(x) - u0

G(x)
\u\\L~{lxl>R),

since l i m ^ . ^ u(x) = u^ . Furthermore, for |x| > R we have that

u(x) = Woo + w(0)G(x) + (w ( pj2 J - w(0)) G(x).

This is the sought for expansion of the theorem since (w(y) - w(0))
solves Lfg = 0 in \y\ < R~ι, and by the previous theorem

- I U ( O ) W J C )

for \x\ > R. Here c depends only on λ. It follows from the results
in [SW], Lemma I and Lemma 2, that a = K[u]/K[G]. This finishes
the proof of Theorem 3.7. D
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LEMMA 3.8. Assume φ(0) — 0. Let a be an atom with supp a c
B\{Pa) and Pa on the xn-axis. Let (ii) and (iii) below be the cases of
Proposition 3.4. Then we have for atoms of case

Here C depends only on M and not on the atom a.

Proof. Let RQ and R\ be given as in Proposition 3.4^ We firs^claim
that for atoms of case (ii) we have for the solution Ga of LGa — a
that Ga{P) — w{P) for |P | > Ro where w is a solution of Lw = 0
in \P\ > Ro with \w(P)\ < cR%~2\P\2-n-u and c and l/v > 0 are
bounded in terms of A and do not depend on the atonwz. For atoms
of case (iii) we claim the following. For the solutions Ga + Gχα~ and

of Lg = a and Lg = a~ respectively, we have that

where the W( 's are solutions of Lg = 0 in \P-Pa\ > 2 and \P-Pa | >
2(1 +M) respectively. The w,:'s fulfill, \wx{P)\ < c\P - Pa\2~n~υ for
\P-Pa\>2 and |ty2(P)| < c | P - P ~ | 2 - " - ^ for \P-P~\ > 2(1 + M ) ,
where c and 1/z/ > 0 are bounded in terms of λ and do not depend
on the atom a. In view of Proposition 3.5, Theorem 3.7 and the facts
that the supports of a and a~ are contained in a compact subset of
BRQ(0) or \P - Pa\ > 2, \P - P~\ > 2(1 + M), so that the solutions
are continuous on the boundary, we need only prove the following;
K[Ga] = 0 in case (ii) and K[Ga+GLa~] = K[GLa~] = 0 in case (iii).
In case (ii) we have for ψ e C°°(Rn) such that ψ ΞΞ 0 in |P | < Ro + 1
and ^ = 1 in a neighborhood of infinity, that l-ψ e CQ°(RΠ) . Thus

-K[Ga]= l(AVGa,V{\-ψ))dx= ί ά(l-ψ)dx

= άdx = adx - a~dx = Q,
J JD JD~

since JD-a" dy = JDa~(Φ(x))dx = JDa(x)dx. From Proposition

3.3 we get iqCα + GLar\ = K[GLά + GLa~\ = K[GLa]. Therefore,

taking ψ e C°°(Rn) such that ψ = 0 in \P - Pa\ < 3 and ψ = 1 in
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a neighborhood of infinity, we get

-K[Ga + GLa-]= f{AVGLa, V(l - ψ)) dx

= / a( 1 - ψ)dx — adx = 0,

from the vanishing mean property of atoms. In the same way we have
K[GLCL~] = 0. The claims are proved.

Now assume a is an atom of case (iii). Let ^ m = {x e D : 2m <
\x-Pa\ < 2m + 1} for m = 0, 1, 2 . . . . Take φ e C$°(Rn) such that
φ = 1 in i?4(0) \ B2(0) and supp0 c 58(0) \ 5Γ(0). Put

Then φm = I on ^ m + i and supp0m c B2m+3(Pa) \ B2^(Pa) Now
A(φmGa) = φmAGa+2(Vφm, VGα)+(Gα)Δ(/>m E L2(£>) and 0 m Gα =
0 on <9Z). Hence,

< / \V2(φmGa)\2dx < ί \A(φmGa)\2 dx.
JD JD

Since suppφm c ZB\{Pa) and ΔGα = 0 in this set we have A(φmGa)
= 2VφmVGa + GaAφm there. The following variant of a well-known
result, see [Mo], reduces estimates of VGa to an estimate of Ga.

LEMMA 3.9. For any η e Cβ°(Rn) with supp?/ c ZBx{Pa) we have

[ η2\VGa\2dx < 4λ4 ί \Vη\2Ga2dx. D
JD JD

The proof follows easily by noting that ηGa e HQ(D) according
to Theorem 2.5 and consequently η2Ga e H^(D n {\x - Pa\ > 1}) •
Returning to the proof of Lemma 3.8, the last lemma implies that

\V2(Ga)\2dx<2\4 [ \Vφm\2\VGa\2dx + ί \Ga\2\Aφm\2dx
+i L JD JD

<

2

(2

c

_./

JDΠ{2

ί \Ga?
JD

m<\x-p\<:

v(dφm\
\ dXi )

dx

+ ί \Ga\2\Aφm\2dx
JD

\Ga\2dx,
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where c only depends on λ. From the above claim it follows that for
x eD we have Ga{x) = Ga{x), and for x e D n {2m <\x- Pa\ <

2m+3} we have , with c only depending on λ, that

\Ga{x)\ < \{Ga + GLaΓ){x)\ + \GLa'(x)\

< c\x - Pa\
2-n-" + c\x - P-\2-n~u,

if |x - P~\ > 2(1 + M ) , which is the case since i?2(i+Λf)(^Γ) c ^ ~
Moreover, there is a constant c only depending on the Lipschitz con-
stant M, such that for x e ΰ we have |x - P f l | < |JC — /^" | . There-
fore, for x e D Π {2m < |JC — P β | < 2m + 3} we have that |C?α(x)| <
c\x - Pa\

2~n~u with c only depending on M. This implies

dx<-£-4 I \x - Pa\^-n-^ dx
[2mp JDf\{2m<\x-Pa\<2m+3}

Consequently,

where c depends only on λ and RQ and not on the atom a. Finally,
while 2V > 1 we have

with a constant C only depending on Λ/ and not on the atom a.
Next we consider an atom of case (ii). Let %m = {p e D : 2mRo <

\P\ < 2m+ιRQ} for m = 0, 1,2... . Take <£ e Q°(R n ) such that
0 = 1 in B4Rυ(0) \ B2Ro(O) and suppφ c ^ ( 0 ) \ 5 ^ ( 0 ) . Put
^ ( j c ) = φ(x/2m). As before we get

/ |V2(Gfl)|2 dx < ί \A(φmGa))2 dx.

Since supp<^m c {\x\ > Ro} and AGa = 0 there, we have A(φmGa) =
2VφmVGa + (Ga)Aφm in this set. Using a lemma similar to Lemma
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3.9, we obtain

^ I \Ga\2dx,

where c only depends on λ. Since, by the claim, we have on Z)n{|x| >
Ro} that \Ga(x)\ = \Ga(x)\ = \w(x)\ < cRn

0~
2\x\2-n-ι/ we get in the

same way as above

L \V2{Ga)\2dx<

and consequently

with a constant C only depending on M and not on the atom a.
This finishes the the proof of Lemma 3.8. D

3b. Proof of Lemma 3.1.

Proof of Lemma 3.1. As we have seen it is enough to prove Lemma
3.1 for the case suppα c B\(Pa) with Pa on the xw-axis and ^(0) =
0. Any atom of this type is either an atom of case (i), (ii) or (iii).
If supp a Π D = 0 then Ga = 0 and the assertion of the lemma is
certainly true. Let now B be either BRQ(0) or B2(Pa) depending on
whether a is an atom of case (ii) or case (iii). Utilizing the estimates
of Lemma 3.8 we get

/ \V2Ga\dx= f \V2Ga\dx+ ί \V2Ga\dx
JD JDΠB JD\B

it Λ \ 1 / 2

< [\B\ \ \V2Ga\2dx) + C
V JBΠD J

< (\B\ ί \AGa\2dx) + C

<(\B\/\Bι(Pa)\)ι/2

where C depends only on M. This finishes the proof of the lem-
ma. D
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4. Main results.

Proof of Theorem 1. Define for each 1 < k, / < n the operator
TkJ:L

2(R")^L2(Rn) by

DkJGf{x) ΐovxeD,

where Dk jGf denotes the distributional derivative of Gf in D with
respect to the variables xk and x/. The linearity of this operator is
immediate and by Theorem 2.5 it is bounded. It is also defined for
atoms and the following simple considerations show that it is also
bounded: H*t(Rn) -> Lι(Rn). Suppose / = Σj^j e Hat(Rn) T h e

partial sums converge to / in Lι(Rn) and consequently the Green
potentials of the partial sums converge to Gf in L^0C(Rn). Hence,
DkjGf = ΣjλjDkjGdj as distributions in D. Since Dk jGctj e
Lι(D) by Lemma 3.1 and

N

j=M

N

L\D) j=M

we see that the partial sums of the derivatives form a Cauchy sequence
in Lι(D). Therefore, DkJGfeLι(D) and

\\Dk,ιGf\\Ll{D)<C\\f\\K{RΊ

From the results in [CW, p. 596] we see that TkJ: Z/(RΠ) -> LP(Rn)
is well-defined and bounded. Suppose that / € LP{W). According
to [CW] we can decompose / as / = g + h € L2(Rn) + H^t(R

n) and
then

T f-T r+T h \DkjGg + DkjGh for x eDTk,f-Tklg+Tkjh = \

Hence, for / e LP(D) extended by zero outside D, we get that
DkJGfeLP(D) and

\\DkJGf\\LP{D) = \\TkJf\\LP(RΊ < C\\f\\L,{D)m

This finishes the proof of the theorem. D

An open subset Ω of R" is said to be Lipschitz if its boundary
is locally given as a Lipschitz function. That is, for every X G 9 Ω

there is a rectangular neighborhood V of x in R" and a, with the
usual coordinate system, isometric coordinate system {y\, ... , yn}



iΛlNTEGRABILITY OF SECOND ORDER DERIVATIVES 223

such that V = {{y\, . . . , yn) : - α 7 < yj < a/, 1 < j < n} and
fulfilling the following properties. For every y' — (yΪ9 . . . , yn-\) £
V, \φ(y')\ < an/2, Ω n V = {y = (/ , yn) G V : ^ < ?>(/)}, and
9 Ω f l F = {); = ( / ) ^ ) € F : yΛ = (*>(/)} . Here V is the projection
of V onto the first n - 1 coordinates and φ is a Lipschitz function.

Via a patching argument we can now reduce the case of a bounded
convex domain to the graph case.

Proof of Theorem 2. Every bounded and convex domain is a Lip-
schitz domain. Accordingly, for each x G dΩ there is a coordinate
neighborhood Vx and a Lipschitz function, φx , describing the bound-
ary locally. There is no restriction to assume that ^(0) = 0 and that
Ω c {y : yn > 0}. Let XQ be a point on the negative jvaxis and
let Ωx be the shadow domain of Ω from XQ . That is, let for each
θ G Sn~ι, the line through x0 with directional vector θ be denoted
by IQ . Let XQ be the point nearest to Xo in the set ίθ n Ω, if this
set is non-empty. Then Ω x = \Jθ{x : x G 4> > I* - *ol ^ 1*0 ~ χo|}
where the union is taken over all θ such that 4 1 Ί Ω / 0 . Now,
Ω x is a convex domain above a Lipschitz graph and Ω c Ωx. Tak-
ing the coordinate neighborhood F^ smaller if necessary, we can ar-
range it so that (ΘΩx\dΩ) Π Vx = 0 . In virtue of the compact-
ness of dΩ we can cover it by a finite number of the Vx\ {Vj},
j = 1, ... , N. Let Po be an open, compactly contained subset of Ω
with a smooth boundary and such that {Vj}, j = 0, . . . , iV, cover
Ω. Let {θ7} be a partition of unity on Ω, subordinate to the cover
roJLo s o t h a t G Ώ / = ΈjGjGnf- F r o m Remark 1.2 follows that
hj = A(θjGςιf) e D>(Ω). We first consider the case j > 0. We
have that Ω c Ω ; = Ωx for each j = 1, ... , iV and Ω7 is a convex
domain above a Lipschitz graph. Let Gj be the Green function for
Ωj. We claim that Gjhj composed with a rotation and a transla-
tion, which we surpress notationally below, equals ΘjGςif. Taking
the claim for granted we see that ^2®jGnf £ LP(Ω), by Theorem 1.
Moreover,

< C\\V2Gjhj\\L,{ίϊj) < C\\hj\\LP{Ωj) = C||A7 | | L , ( Ω )

( Ω ) + \\θjf\\L,w)

< c\\f\\LP{Ω),

where C is independent of 1 < j < N and / e LP(Ω). For the case
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j = 0 the estimate

I|V2ΘOC?Ω/||L.(Ω) = | |V2θoC?Ω/| |L. ( K o ) < C\\f\\L,{ίk),

is a standard result using uniqueness and existence in W2>p(Ωo), a
priori estimates and an approximation technique with L2 functions.
That is, we use a standard local regularity theorem. Summing up we
have

We next consider the dependence of the constant C in (*). The
constant in Remark 1.2 actually depends on |Ω| . To get the constant
in (*) independent of this quantity we argue as follows. First we
prove Theorem 2 under the additional condition that |Ω| = 1. Then
the general version of the theorem is a consequence of a rescaling since
the inequality scales in the proper way. This is of course not true for
the estimate of Remark 1.2.

It remains to prove the claim. For notational convenience we drop
the index j , denote Ω7 by D and prove that Gh(y) = (ΘGΩ/)(i?y)
where R is a translation and rotation. Since (<9Ω; \<9Ω) nVj = 0 the
function (θ 7 G Ω /)oi? is well-defined in D. Let /)• G Q°(Ω) converge
to / in LP(O). Then (ΘGΩ/y ) o R e H£(D), V 2 ( ( Θ G Ω / 7 ) O R) e
L2(D) and gj = -Δ((ΘGΩ/})oi?) e L2(D). Hence, the odd reflection
of (ΘGςifj) o R, in the boundary dD, is a weak solution of Lu = g/
in Rn. By Theorem 2.5, LGgj = g/ since Ggj solves -ΔGgj =
gj weakly in D. Consequently, the difference of the solutions is a
solution of the homogenuous equation in Rn , and it has a limit zero
at infinity. Hence, it is bounded. Therefore, Ggj = (ΘGΩ/}) o R in
D. It is easily seen that GQ/J -» GQ/ in Z/(Ω) and the same is
true for the gradients. Hence, (ΘGΩ/)) o R converge to (ΘGΩ/) o R
in LP{D) and also, gj converge to g = -A((ΘGΩf) oR) in LP{D).
The functions g — gj have support in Ω. We extend them by zero
outside Ω. Since \G{g-gj){y)\ is estimated by the Newton potential,
(N * \g - gj\)(y), it is easy to see that Ggj -• Gg in Lfoc(D). Since
suppGgy c Ω we have that suppGg c Ω and as a consequence
Ggj —> Gg in LP(D). The claim is proved. D
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