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ON THE METHOD OF CONSTRUCTING
IRREDUCIBLE FINITE INDEX SUBFACTORS OF POPA

F L O R I N B O C A

Let US(Q) be the universal Jones algebra associated to a finite
von Neumann algebra Q and Rs c R be the Jones subfactors,
s € {4cos2 \\n > 3} U [4, oo). We consider for any von Neu-
mann subalgebra Qo C Q the algebra US(Q, Qo) defined as the
quotient of US(Q) through its ideal generated by [Qo, R] and we
construct a Markov trace on US(Q, Qo). If Z(Q) Π Z(Q*) = C
and Q contains n > s + I unitaries U\ = 1, Uι, ... , un, with
EQo(u*Uj) = δijl, 1 < /, j' < n, then we get a family of irre-
ducible inclusions of type Hi factors Ns c Ms, with [Ms : Ns] = 5
and minimal higher relative commutant. Although these subfactors
are nonhyperfinite, they have the Haagerup approximation property
whether Qo C Q is a Haagerup inclusion and if either Qo is finite
dimensional or Qo C

Introduction. Let M be a finite factor with the normal finite faithful
trace τ and denote by L2(M, τ) the completion of M in the Hubert
norm | |JC||2 = τ(x*x)1/2, x e M. For N c M subfactor of M
(\N = 1M), the Jones index [M TV] is defined as the Murray-von
Neumann coupling constant dim#£2(Λf) of iV in its representation
on the Hubert space L2(M, τ) . Jones [J] proved that [Λf : JV] can
only take the values {4cos2 ^\n > 3} U [4, oo] and constructed a one
parameter family Rs of subfactors of the hyperfinite type II i factor
R with [R:Rs] = s, se{4cos2^\n >4}U[4, oo).

When s = [M : N] = 4 cos2 \ , n > 3, the properties of the local
index [J] imply that the pair N c M is irreducible (i.e. iV'nM = C).
For 51 > 4 Jones' inclusions Rs c R are reducible and the problem
of characterizing the values s > 4 with the property that there exist
inclusions RQC R with [R : 7?o] = s and i ^ n i ? = C remained open.

The problem of finding all possible values of indices of irreducible fi-
nite index subfactors in arbitrary II i factors was completely answered
by Popa, who constructed in [P2] irreducible inclusions of nonhyper-
finite type Hi factors Ns c Ms, with [Ms : Ns] = s, for all s e
{4 cos2 jj\n > 4}(J[4, oo). His method consists in constructing certain
traces, that he called Markov traces, on some universal algebras US(Q)
canonically associated with a given finite von Neumann algebra Q and
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202 FLORIN BOCA

to the Jones sequence of projections {£/};> i of trace τ(βi) = s~ι, sub-
ject to the commutation relations [ β , e{\ = 0, i > 2. The algebras
US{Q) were called in [P2] universal Jones algebras. An interesting
feature that this method of constructing subfactors is shown to have
in [P2] is that any pair of subfactors (in particular hyperfinite) N c M
and [M : N] = s arises this way, for an appropriate Markov trace tr
on some universal algebra US(Q). The enveloping algebra M^ is in
this case nXx{Us{Q))n, M the smallest algebra containing τtT(Q) and
on which e\ implements by reduction a conditional expectation and
N the commutant of e\ in M . Then he considered on US(Q) the
free trace τ defined by τ(w) = 0 for all words w with alternating
letters X , G Q , J>, £ R with TQ(XI) = ERs(yf) = 0 and proved that this
is indeed a Markov trace with πτ{Us{Q))" = M^ = (Rs <g> β) * # i?,
where R = viV{ei}/>i and i?5 = vN{ei}i>2 are the Jones factors,
and that for any nonatomic finite von Neumann algebra β and any
s £ {4cos2 \\n > 4} u [4, oo), the appropriate inclusion Ns c ΛF is
an irreducible inclusion of II i nonhyperfinite factors with standard
matrix An for s = 4 cos2 | and ί̂oo for s > 4. Moreover, the factors
Ms are always non Γ in the sense of Murray and von Neumann and
do not have the property T of Connes [C].

In this paper we look for other Markov traces by factoring through
certain ideals of US(Q) which require parts of Q to commute with
R = vN{ei)i>\ - More precisely, given a von Neumann subalgebra
Qo of β , denote by US(Q, QQ) the quotient of the universal Jones
algebra US(Q) through the ideal generated by Q and R subject to
the commutation relations [Q, Rs] = [Qo, R] = 0. Then, we prove in
§1 that the trace τ on US(Q, Qo) defined by τ(w) = 0 for all words
w with alternating letters X; G Q, yt e R with EQQ(XΪ) = ERs(yι) = 0
and τ(gor) = τQ(qo)τR(r) for all qo £ Qo > r € #* is a Markov trace.
Following [P2], the algebras Ms and Ns are then defined as the small-
est subalgebra of πτ(Us(Q, Qo))" containing πτ(Q) and on which β\
implements by reduction a conditional expectation and respectively
as the commutant of β\ in Ms.

We prove in §2 that if ^ ( β ) n ^ ( Q ό ) = C and there exist n > s+1
unitaries Wi = 1, U2,...,un in β such that EQQ(U*UJ) = <5yl,
I < i, j <n, then we obtain irreducible inclusions of type II i factors
Ns c Ms with [Λfs: iV5] = s and standard matrix An for s1 = 4 cos2 f
and l̂oo for s > 4.

Our initial motivation was to look for "finer" Markov traces on
US(Q) that would get us closer to the construction of irreducible hy-
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perfinite subfactors. We fail in doing this and our subfactors are still
non Γ (hence nonhyperfinite) and contain copies of the II i factor
associated with the free group on two generators ^f(¥2)9 since our
Markov traces are still free in some sense, namely the enveloping al-
gebra of Ns c Ms is in this case the amalgamated product von Neu-
mann algebra M^ = πτ(Us(Q, QQ))11 = (^ s ® Q) *R*®Qo (R ® β 0 ) ,
defined as in [P2, §3] (see also [VI] for the C*-definition), with the
free trace τ = TR*®Q*T:R®Q0 (in fact M^ is also a factor under the pre-
vious required conditions on Qo C Q). However, we prove in §3 that
in many cases (e.g. when QQ C Q has the relative Haagerup property
and either QQ is finite dimensional or QQ C -Z*(β)), all the von Neu-
mann algebras from the Jones tower Ns c Ms ceι Mf ce2 Af| c ^ •
have the Haagerup approximation property, namely for any s there
exists a net (Φt)ιei of trace preserving unital completely positive maps
Φ,: Ms —• Ms converging to idM* in the point-1| H2 topology and in-
ducing compact operators on L2(MS, τM*)\ hence Ms are not very
far from being hyperfinite and for any s > 4 there exists an irreducible
inclusion of Hi factors with index s, Ns c Ms, with the Haagerup
approximation property.

An important problem which is still open at this moment is to decide
whether the factors Ms, or at least the enveloping algebras Af£>, are
isomorphic or not for nonrigid Q. This problem seems to be related,
at least for the isomorphism of the associated M^ in the case Q =
-S^Foo) to Voiculescu's type isomorphisms ^(Foo * ZΛ) ~ ^(Foo)
([V4], [D], [R]).

We would like to thank Professor Sorin Popa for suggesting this
problem and the idea of extending the results of [P2] in this way and
Professor Edward Effros for useful discussions concerning §3.

1. The construction of Ns c Ms and the Markov property of the
free trace. Let s e {4cos2 \\n > 3} U [4, 00), denote λ = s" 1 and let
R = vN{et}i>i, Rs = vN{ei}i>2, Rs.x = vN{ei}i>3 be the appro-
priate Jones factors. Then Rs_χ c Rs Cei R is the basic construction
for Rs_{ c Rs. Let Q and QQ (1Q = lgo) be finite von Neumann
algebras with a normal faithful trace XQ and denote by EQQ the trace
preserving conditional expectation from Q onto QQ . Then E\ =
EQo®\άRs: Q®RS

 -^QQ®RS and E2 = iάQQ®ERs\ QQ®R^QQ®RS

are trace preserving conditional expectations. Denote by M^ the re-
duced amalgamated product (Q®RS)*Q 0 ^ {Qo®R) of (Q<8>RS, E{)
and {QQ ® i?, Ej), by τ the free trace on Af£, and by E the τ-
preserving conditional expectation from M^ onto QQ ® Rs. The



204 FLORIN BOCA

algebras Q and R are identified with Q <g> Cl and respectively
C l ® i ? in Af£>.

Note that, denoting by US(Q, Qo) the algebra generated by i? and
β with the relations [R, Qo] = [#* > β] = 0 and by τ the trace on
US{Q, Qo) defined by τ(w) = 0 for all words w with alternating
letters xte β , yt € R with EQQ(XΪ) = ERs(yi) = 0 and τ(#o*) =
τ(tfo) τM for all qo G βo> ^ ^ ^ , the von Neumann algebra Af£>
can be also defined as M^ = πτ(Us(Q, β 0 ) ) " .

Let {mk}k be a Pimsner-Popa orthonormal basis of Rs over Rs_λ

with m\ = I and consider the unital completely positive map Φ: M^
-> Af£,, Φ(x) = Σkmkeχxe\m*k, x e M^. Then Ms is defined
as the smallest Φ-invariant von Neumann subalgebra of Af£> that
contains Q ? i.e. if Bo = β and £ / + 1 = Alg(5/? Φ(5, )), i > 0, then
M 5 = U; ̂ / Let Ns = {eij'ΠΛf5. One can easily check the following
properties of the averaging map Φ as in [P2, 6.1-6.3]:

LEMMA 1.1. (i) Φ((RsγnM^) c (Rs)fnM^. In particular [Ms, Rs]
= 0 and Φ\Ns = i d ^ .

(ii) e\Φ(x) = Φ{x)eχ = e\xex, x e M^. Consequently Φ(MS) c

The free amalgamated trace τ on Af£, has the remarkable property
that it is a Markov trace, i.e. τ(xe\) = λτ(x) for all x e Ms. This
can be proved following step by step the arguments in [P2, §5].

Sums of type J2k _k f(mkι, ... , mk, ml , . . . , m\) are denoted

by Y! f{mkχ ,...,mkr,m*κ,...,m*k).

DEFINITION 1.2 ([P2, §5]). A homogeneous reduced closed element
is an element of the form x = J2'w where w = Xoy\X\ - ..ynXn e M^
is an alternating word (i.e. X / G β , ^ G i?) such that there exists a
partition {1, . . . , n) = IU /* U /o with a bijection / 3 i <-* /* E /*
that satisfy:

(i) i < i * , V i e / ;
(ii) If /i, /2 G / , /'i < /2 then either /? < /2 or /̂  < /J

(iii) For each /Q ̂  ô there exists / e / with / < i$ < /*
(iv) If i el then y; = m^(^ - λl), y, = (̂  — λl)m^ for some fc
(v) If i0 6 /o then y/o = ^ - λl

(vi) EQo(Xj) = 0 for 0 < / < n and for 0 < i < n either xt e Qo
or EQo(Xi) = O.

The set of homogeneous reduced closed elements is denoted by

Hr.c.
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Following the arguments in [P2, §5] one can check that (J/^/ =
Q + sp3nHriC and since E(x(e\ - λ\)) = 0 for all x e Hr,c one
obtains

PROPOSITION 1.3. E{xe\) = λE(x) for all x e Ms. In particular τ
is a Markov trace on Ms.

Another proof of the markovianity of τ may be found in [B3].

2. Factoriality, index and irreducibility for Ns c Ms. Let M b e a
finite von Neumann algebra with a normal faithful trace (nff) τ . For
each a = a* eM denote, following [VI], by μa the linear functional
μa: C[X] -• C, μa(Xn) = τ(an), n > 0. Then μa can be viewed as a
probability measure with compact support on R.

LEMMA 2.1. Let e\, . . . , en be τ-freeprojections in M with τ(e/) =
λe(0, 1), 1 <i<n. Then

σ(ex + - + en) c {0} u [a(n, A), b(n, A)] u {n}

and

where

= max( 1 - λn, 0) cn = max( 1 - (1 - λ)w, 0)

ny/(l - An)2 + 2(1 + ( i - 2)A)f - t2

π - ί)
€ [a(n, λ), 6(«, λ)].

Proof. Denote μ = /^ i + . . .+^ . An elementary computation relying
on the formulae and notations from [V2] yields:

Rμei(z) = ?-γz

 }- , 1 < i < n

Aλz

Since Gμ(z) = / R ~z7 is the inverse of the function z —• Kμ(z ι)
one obtains

-(Λ - 2)z - Λ(1 - AΛ) ± ny^z2 - 2(1 -f (Λ - 2)λ)z + (1 -

2z(z-/ι)
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the choice of the branch of the square root obeying the rule Im z >
0 =* ImGμ(z) < 0. The measure μ is easily recovered from its
Cauchy transform Gμ as in the statement. D

COROLLARY 2.2. If n > max(\, JZJ) in Lemma 2.1, then a = a* =
β\Λ h en has support 1 and absolutely continuous spectrum; hence
{a}" is completely nonatomic.

Let Pi and Pi be finite von Neumann algebras with nff traces τx

and %i, B c P\, B c Pi be a common von Neumann subalgebra,
Ef be the τ -preserving conditional expectation from P; onto B,
p = px*B p2 be the reduced amalgamated product of (Pi, E\) and
(P2, Eι) and is the conditional expectation from P onto B which
invariates the trace τ = τi * τ 2 . Denote | |x| |2 = τ(x*x)1/2, x e P.

If PP = Ker £/, / = 1, 2, then Pz = B@Pf as J?-bimodules and let
P° be the *-subalgebra of P spanned by the formal reduced words,
i.e.

pθ = B Θ

Assume that there exist U\ = 1, uι, ... , un G ̂ ( P i ) with E(u*Uj)
= δfjl 9 I < i, j < n. Then any α G Pi can be written as α =
Y^i=\UiE{u*d) + a!, where E(u*af) = 0, 1 < z < n, and similarly
a = Σ?=i E{aUi)U\ + α", with E(anUi) = 0, 1 < / < «. Since wi =
1 we can talk about reduced elements from P° beginning with M, ,
2 < z < n, or with a e P\ orthogonal to {w/}i</<« , i.e. E(u*a) = 0,
1 < i < n, or ending with w*, 2 < z < n 9 or with a G Pi orthogonal
to {«/}i<ί<π , i.e. £(flM, ) = 0, 1 < i < n .

For each reduced word w = αi α m G P° , aj €.Pf, i\φ -- φ im

denote αi = o(ΐi ), αm = t(w) and define

M

12 = spanίtί; G P 1 2 k>(w) = utb, b e B}, 2<ι<n;

P 2 1 = span{w G P 2 1 | ί ( ^ ) = bu*, beB}, 2<i<n\

Pi1 = span{w G Pn\E{u}o{w)) = 0, 1 < / < Λ}

p 2 1 = sρan{tί; G P21|jEf(ί(tί;)w/) = 0, 1 < / < « } .

These subspaces give rise to the following direct sum of orthogonal
vector spaces

L 2 ( P , τ) = L2(iV ? τ) Θ P 1 ! Θ P 2 2 θ P i 2 Θ P 2 1 Θ 0 ( P W

1 2 Θ P 2 1 )
Ϊ=2
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with the suitable decomposition for each x e P°:

n

x = E(x) + xu+x22 + xl2 + x2ι + Σ( x«, 2 + xu!)

LEMMA 2.3. If there exist U\, ... ,un e %{P\) with Ei(u*(Uj) -
δijl, 1 < i, j < n, and e e &{&) with E2(e) = λ e (0, 1), then
{uieu*}\<i<n is a τ-free family in P.

Proof. Denote e° — e - λl and remark that

Mg{Uieu*} = {al+ βuie°u*\a, βeC}, \<i<n a n d

E(Ui e°u*m e°u* ...ut e°u* ) = 0 ,
1 1 2 2 m m

for h , • • •, im e { 1 , . . . , n), ixφ φim. u

LEMMA 2.4. With the assumptions of Lemma 2.3 and n > 1 +
max(j[, JZJ) , pick a koe{l, ... , n} and denote a = Σ f c ? έ ί ; ukeu*k.

Then, there exists a u e ^{{a}") with E(um) - 0 for all m φ 0
and {u, Uk eu*k} a τ-free family. Moreover, if i, j € Z, j ψ 0 and

x G P22 + P j 2 + P}2, x' € P22 + P21, then E^xu^x') = 0.

Proof. Remark that for each nonnegative integer m there exists a
finite set

Fm c {/ = ( i i , . . . , U)\h Φ 'φiιe{l9..., n}\{ko}}

s u c h t h a t

m

am = J ] ukeut

= τ(am)l + Σ α/M^̂ M* utιe
Quϊ, α/ e C.

Then for each / € C[X], f(a) can be written as

f(a) =

w i t h / y finite s e t a n d / i , . . . , ik e { 1 , . . . , n } \ { k o } , i x φ ••• φ i k .
C o n s e q u e n t l y , f o r a n y x e P 2 2 + P \ 2 + P } 2 , x ' € P 2 2 + P 2 1 , f , g €

*0
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C[X] we get

E{f{a)xg{a)xf)

•x \ τ(g(a))l + Σ γjUjeQul...Uje\ ] x'

= τ(f(a))x(g(a))E(xx>)

τ(g{a))E I V βIUieou*...uie
ou*xx'

i

= τ(g(a))E(f(a)xx').

The normality of E and τ yields i?(xiXX2X/) = τ{x2)E(x\XXf) for
*i > *2 G {tf}" and E{x) = τ(x)l for x G {#}". By Lemmas 2.1
and 2.3 {α}" is completely nonatomic; hence {a}" ~ L°°(T, dλ) and
there exists a w G %ί{{a}") with the required properties. D

PROPOSITION 2.5. L ^ P = P{ *B P2 be the reduced amalgamated
product of (P\, E\) and (P2, E2) and assume that there exist e G
&>{P2) with λ = E2(e) e (0, 1) and ux = 1, w2? . . . , un e %{P{)
with n > 1 + m a x ( ^ ? y ^ ) , Eι{u*Uj) = <J/;1, I < i, j < n. Then
there exist X\, . . . , xrt G J? ŵc/z ίAαί ̂ or αwy ε > 0, /Λ r̂̂  is a δ > 0
w/ίλ X G P , ||X|| < 1, \\[x,Xi]\\2<δ, 1 < / < n = > | | x - ^ ( x ) | | 2 < ε .

Proof. For each / G {2, . . . , n} denote by vt the suitable unitary
for i given by 2.3. Take X\ = e° = e — λl and xz = Vi, 2 < i < n.
Since P° is dense in P we can assume by Kaplansky's density theorem
that x G P°. Let β, ef > 0 such that εf < ε2/φ(n, A), where

ώ(n λ\-*(n n , iφ(n, A) - 8(n - 1) +

and r be an integer with 1 <(2r+ l)ε'. Assume that x G P° satisfies

l | [^ ,v/] | | 2<Sτ, 2 < I < Λ and | | [ x ^ ] | | 2 < V ^ .
Denote xf = x 2 2 + x j 2 + x^2, x[ = x - xf{, for 2 < / < n. Since

||[x, vfr||2 = ||x - ̂ fx^lb < \\x - vf-'xv-^h + ||x - ̂  x<||2
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we obtain that ||[x, vt]\\2 < \k\ | |[x, Vi]\\2 and

X -
2r+

k=-r

<

~ 2r+ k=-r

Consequently

1
Λ , υfxv; k

2r + 1 ^ ' /

k--r

Γ̂ Y Σ vh>7h

ΪF+1
n —k

v

k=-r

ikίih 2r
lr ft —Ir

J z f

A:=-r

f/vj'kBy Lemma 2.4 {t^xf/vj'k}_r^jc^r are mutually orthogonal in || ||2
hence

^ ± vfx-v-

_ ll- î 112

and

The last inequality shows that

IMΊIi = (ll^lb - IÎ Ίl2)
max(| |x 2 2 | | 2 ? | |x i 2 | | 2 ? | ^ 2 | | 2 )

Since {t f (x 2 2 + x
by Lemma 2.4, a similar computation yields

m a x ( | | x 2 2 | | 2 ? | | x 2 1 | | 2 , | | x 2 1 | | 2 ) < 2 v / ? .

^' and

? for 2 < i < n.

are still mutually orthogonal
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We obtain
llv- T7 fvΛ ^ H | | 2 II ̂ 2 2 i i 2 _, II v . l 2 i | 2 _. II v-211|2

\\X-LB{X)-X II2 = \\x Ita + ll** 112 + I F * II2

ι=2

< 4β ' + 4 ε ' + 4(2,2 - 4)e' = ε£.

The end of the proof is the same as in [P2, Theorem 7.1], Since

xιιx\ e Pn and x\Xn e P21, they are orthogonal in || | | 2 hence

HΓv-ll v- i | | 2 ι i v - 1 1 ^ | | 2

\\[x ,χι\\\2 = \\χ Xι\\

+

Since [^(x) , x j G i ^ ^s orthogonal on X\X11 and on xnxχ, one
obtains

> \\[EB(x) + x n , Xl]\\2 -

= (\\[EB(x), jCilHl + \\[xϊι, xι]\\2

2)
ι/2 - 2βo | |*i| |

= (\\[EB(x), Λ l ] | | 2 + 2(λ - λ2)\\xιι\\l)1'2 - 2eo||*iII •

In particular

(+/Tι J_ Oi>«llv- Ih2
||vll||2 .^
IF 12 S

and

Consequently

)||2 = \\x-EB(x)-xn\\l + \\xιψ2 < φ(n,λ)ε' < ε2. •

COROLLARY 2.6. If there exist e^^iPi) with E2(e) = λ\ e (0, \],

n unitaries U\ = l,u2,... ,un e %{P\) with Eι(u*Uj) = δijl, 1 <

i,j<n, n>\ + \ and S(B)n^(P1) = C or &(B)Γ)&(P2) = C,

then P is a factor and contains a copy of

Proof. By the previous proposition there exist * i , ... , xn e P such

that {*i,..., Xnj'nP C B hence JT(P) = P'nP cBnP' c BnP[ =
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By Lemma 2.3 we obtain a τ-free family of n projections
{Uieu*}\<i<n. According to Corollary 2.2 {Uieu*}'2<i<n contains a
copy of L°°(Ί, dλ) ~ -^(Z); hence P contains a copy of the von
Neumann algebra J?(Z) *c (Ce θ C(l - e)).

Pick 2N unitaries w, G J?(Z) with iV > \ and τ(u*Uj) = J//1,
1 < /, j < n. Using again Lemma 2.3 we obtain 2iV τ-free pro-
jections {e/}i<κ2jv of trace \ and by Corollary 2.2 (N > £) two
unitaries u e ^({ex + + eN}") and v e %{{eN+x + + e2N}")
such that τ(uk) = τ{vh) = 0, Vfc φ 0.

Since {«, ^} is τ-free, it follows that {u, v}" ~ &{Z * Z) =
D

Define

MS_X=NS

9

{ ^ ! ^ , . . . , ek), k>\.

Sometimes we simply denote Mk instead of Ms

k , k > -1.

COROLLARY2.7. /f Q contains n>s+l unitaries u\ — \, u2

EQo(u*Uj) = δijl, I <i, j <n, then

Proof. Applying Proposition 2.5 for i^ = Q ® i? 5, P 2 = βo ® ̂  >
B = Qo® Rs we get Xi, . . . , x« E Λ/i with {xi, . . . , xn}

r Π Moo c
Qo ® ̂ 5 hence

(2.1) ^(A/i) = M( n ^ c (Qo®^) n Q ; n { e } ' n M i

Let J5/, / > 0 as in §1. Clearly

[3T(Q) n j r ( β o ) , B0] = [ ^ ( β ) n j r ( β o ) , β] = o.

Assume that [^(β)ΓΊ^(Q 0 ) , B{\ = 0 for i > 0. Since [ β 0 , R] = 0

it follows that for any x € 5*(β) Π JΓ(βo), y € Bt we have

χφ(y) =

A:

Thus [^(βln^(β6) ,Φ(5/)] = 0. But J?/+1 =

and Mo = U/^ίί h e n c e [-^(β) n ^ ( β o ) ? M>] = ° a n d therefore



212 FLORIN BOCA

By Lemma 1.1 [Rs_{, M{] = 0 and thus

We get

hence according to (2.1) 3T{M{) c 3Γ{Q) Γ)^(Q0).
The other inclusion was already proved.
Denote Aι

k — vN{ej)i<j<k for 1 < k < oo. Arguing as before we
obtain

(2.2) 3Γ(Mk) c ( ( ^ ( β ) n JT(βo)) ®i?ii) n ( 4 / n

Since [jr(<2)nJr«2o),M] = [ β o , 4 ] = 0 and [RLk,A
ι

k] =
[Rs_k, M] = 0, we get [(^(β) n ^(βo)) ® Rs_k ,Mk] = 0\ hence

n 3T(QQ)) ® Λi f c) n

According to (2.2) this yields Z{Mk) c ^ ( β )
The other inclusion is straightforward since Q c Mk , [£?o ? ̂ ] = 0

and [ J r ( β ) n J T ( β o ) , M ] = O. D

The following is a rewriting of Lemma 6.4 in [P2].

LEMMA 2.8. IfQ contains a partition of unity {Pi}iei with EQO(PΪ)

= τ{Pi) <λ or if QQ C Q is as in 2.7, then

(i) M; = spanΛf/.i^ M/.!, / > 1 (Mo = M, M_i = N)
(ii) τ ( ^ x) = τ(ei)τ(x) = λτ(x), x e Mt_x, i > 1

(iii) βixβi = EM._2(x)eif x e Af/_i and Af/_2 = feFnM-i, / > 1.

Proof. In the first case the computation from the end of [V3] shows
that τ(s(piβpi)) = τ(pι) hence one obtains a e spanβeiQ with sup-
port 1. When QQ C Q is as in 2.7, such an element is produced by
2.1 and 2.3. Then the proof in [P2] applies literally. D

REMARK 2.9. Under the assumptions of Lemma 2.8 the tower of
von Neumann algebras

M = Mo cei Mi cei - - - c*'-1 Af, _i Ce' Mi c satisfies

e/x^ = EMt_2(x)ei, x € M/_i Jl/f = span Af/.i^JI/^it_2(

1 * i - , 1 et) = λl,
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hence the arguments of [PiPo, Proposition 2.1] apply and we get

λ = max{μ e R+|JFΛ//_i (x) > μx , x e Mf}.

This shows that the probabilistic index of the trace preserving con-
ditional expectation EM from A/j onto Af/_i is always s when
Qo C Q is as in 2.8.

COROLLARY 2.10. 7/7λe hypotheses of 2.1 are fulfilled then

1 < / < 7 < oo.

Proof. It is obvious that

Since Λj = spanΛj^έfcΛj^ , A\_χ c M^_j and EMkχ{ek) =

Al, it follows that JEj^^ jJ) = ^ J _ t , k > 1 thus for any A: >

i w e o b t a i n EM[f,Mμl) = EM[ςλMEMEMi+λ"ΈMk_λ{Al) = ••• =
EM[nM(Al) = A and consequently £M;n M j(^^c) = 4

Moreover, since M{ n M^ c (^(β) Π^(βo)) ® ̂ ^ and 3T(Q) n
^(βo) C M{ n M/, it follows that

M[ n M; = E

On the other side, the inclusion (-Z'(β) Π.2*(βo)) ® ̂ 4? c Af{ Π Aff
is obvious. A similar argument yields

COROLLARY 2.11. Let Qo c Q as in 2.7 with ^(Q)Γ\2'(Qo) =
C. Then Ns c Ms are II i factors with [Ms : Ns] = s. Moreover,
(NSY Π Mf = A}, ί > 0 (Jlίg = Af5) and the enveloping algebra of
Ns c Ms is MZe = (i?5® β) * ^ β o (Λ®

Proof. The arguments from the proof of Theorem 6.7 in [P2] apply
in our case, due to 2.7, 2.8 and 2.10. D

COROLLARY 2.12. Let QocQ as in 2.7 and 2T(Q) Π^(Q 0) = C.
Then Mf, i > - 1 , {Ms_χ = Ns) are non Γ factors.

Proof. By 2.5, if x G Mf almost commutes with the elements X\ =
ex, x2, . . . , xn € Mf, then x is "concentrated" on (-2*(β)nJΓ(βo))®
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Rs and the arguments in [P2, 7.1] show that x is "concentrated" on

Since [Mf, i ? i j = 0 it follows that E# (a) = τ(α)l for all α G
Mf hence x is "concentrated" on C. By [PiPo, 1.11] each Mf,
/ > — 1 is non Γ. D

REMARK 2.13. The analogue of Theorem 6.10 in [P2] is also true,
namely if QQ C Q C Q\ are finite von Neumann algebras and Ns>* c
M 5 ' z c Mj5 ' ' c c M£; ι , / = 1, 2, is the tower of factors associated
to Qo C Q\ respectively Qo c Q2 and the inclusion M^1 c Λf̂ '2

is implemented by Qi C Q2, then Mγx c M j ' 2 , for all j > - 1
{Msj{ = Ns^) and

(i) EMS,IEQ2 = E Q ι , 0 < 7 < 00

(i i) EMs,ιEMs,2 =EMs,i, -I < i < j <oo.

3. Haagerup type approximation property for ΛF . Since the hyper-
finite Hi-factor 31 is an increasing limit of finite dimensional matrix
algebras, its identity can be approximated in the point-1| H2 topology
by a net of conditional expectations of 3% onto finite dimensional
subalgebras. One can replace this property for a finite von Neumann
algebra M with trace τ , assuming only the existence of a net of τ-
preserving unital completely positive maps Φ z : M -» M, 1 e / , such
that lim z e / ||Φ,(ΛΓ) - x||2 = 0, x e M, and each Φf induces a com-
pact operator on L 2 ( M , τ) . An important example, the IIχ-factor
<Sf{Έn) associated with the free group on n generators (n e Nu{oc} ,
n>2), was pointed out by Haagerup ([H]). It is known by [CJ] (see
also [PI]) that the von Neumann algebras with this property don't
contain subfactors with the property T of Connes.

In this section we prove that the algebras Mf , / > - 1 , constructed
in § 1 from pairs Qo c Q satisfying a property that we call the relative
Haagerup property with Qo finite dimensional or with Qo c 2^{Q)
have the Haagerup approximation property. In particular the sub-
factors Ms constructed in [P2] starting with a nonatomic finite von
Neumann algebra Q (or with an algebra Q that contains n>s+\
unitaries orthogonal in the trace as in Chapter 2) have the Haagerup
approximation property if and only if Q has this property. In order
to do this, we shall use the method of construction of completely pos-
itive maps on amalgamated C*-products from [Bl] and [B2]. As a
consequence, it follows (from [CJ] or [PI]) that in these cases the von
Neumann algebras Mf don't contain subfactors with the property T.
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We define first a Haagerup type property for inclusions of finite von
Neumann algebras. Let N c M be finite von Neumann algebras, τ be
a fixed normal faithful trace on M, which acts by left multiplication
on L2(M, τ) in the GNS representation of τ . Let xτ G L2(M, τ) be
the appropriate vector for each x G M and let Ejq be the τ-preserving
conditional expectation from M onto N.

Let Φ: M —• M be a ^-preserving 7V-bimodule unital completely
positive map. Then the Cauchy-Schwarz type inequality Φ(x)*Φ(x) <
Φ(x*x), x eM, yields the contraction Γφ e &(L2(M, τ)), Γφ(xτ)
= (Φx) τ, x G M.

The TV-linearity of Φ yields Tφ(xτ) = Φ(x)τ = Xτ, x e N; hence
^IL2(AT,T)

 = IL\N,τ)- W e check that 7φ(xτ) = x τ ? x e N. Indeed,
for aeM, x e N one obtains

(Γφ(α τ) ? Xτ)2,τ = τ(x*Φ(a)) = τ(^(x*Φ(α)))

Consequently T = (Q ̂ o) subject to the orthogonal decomposition

L 2 (M, τ) = L2(N, τ) Θ L2(iV, τ)1. Note also that 7 ^ = ^ =

P^fM9^- A n operator α ^ * ? a,b e M, acts on L 2 ( M , τ ) by

aeNbxτ = (aEN(bx))τ, xeM.
Set ^r(M) = { Γ G N'n^(L2(M, τ))\T = ΣieF

aie*hi* F finite

set, a,, δ/ G Af} and let 3£χ{M) be the norm closure of ^N(M) in

DEFINITION 3.1. The finite von Neumann algebra inclusion N c M
has the Haagerup property (or is of Haagerup type) if there exists a
net {Φt}ιei of £Άr-preserving iV-bimodules unital completely positive
maps Φ,: M —> Λf such that:

(i) l im z | |Φ,(x)-x | | 2 = 0, X G ¥ ;
(ii) TΦιeJ

REMARK 3.2. If Λ̂  = C, the usual definition of the Haagerup ap-
proximation property of M is recovered. Note that, in the literature,
the condition τΦ = τ is sometimes replaced by τ(Φ(x*x)) < τ(x*x),
x G M, that ensures the contractivity of Γφ.

REMARK 3.3. Assume that the maps Φt are as in Definition 3.1 and
l e t Φι,ε = Ί}Γe(Φι + ε E N ) , ε>0.

Clearly Φιε are ^-preserving N-linear unital completely positive
maps with lim (ze)€^ ||Φϊ>e(jc) - x\\2 = 0, x eM, where /* = / x R+
endowed with the order (i\, e\) < (iι, £2) <& h ^ *i and e2 < βi.
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We obtain 7$ = T+Ϊ^Φ
 a n d consequently ||Γ$ || < 1. This

remark shows that we always are allowed to assume that | |7^ || < 1 in

the definition of the Haagerup property.

REMARK 3.4. Let N c M be a Haagerup inclusion and P be a von
Neumann algebra with N c P c M. Then N c P is still a Haagerup
inclusion (with respect to the trace induced on P from M).

Proof. Let Φ,: M
ψ ϊ = i ϊpφ^p. Then

M be as in Definition 3.1 and let Ψ,: P -> P,.

- Λ:||2 ,

= ePTφ | L 2 ( p i T ) =

Since epxe^yep = epxepe^βpyep = Ep{x)exEp{y), x, y, G Af,
we get

Tφ -

Moreover, since ep e N' we get J2iEp(ai)eNEp(bi)\L2,p τ^ E N' n
2 P , τ)) and ΓΨj eJTN(P).

At this moment we recall some facts about completely positive maps
on amalgamated products. Let Pi and Pi be finite von Neumann
algebras with fixed traces τ\ and respectively %ι and let N be a com-
mon von Neumann subalgebra of Pi and Pi. Denote by Et: P, —• iV,
Ϊ = 1, 2, the τ -preserving conditional expectations of P/ onto N.

Denote P? = KeτEj, 7 = 1,2, and consider the *-algebra

Following [P2, §3], consider the canonical "projection" EQ from
^ onto N, that agrees with Is; when restricted to P/, defined by
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0,
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x, for x € N,

the trace τ = τi2s0 = τ2E0 on P^ and the finite von Neumann algebra
P = Pι*NP2 = π τ(P0

0)" acting on

(L*(Piι9τ)θL2(N9τ))
n>\\iχφ-~φin

®N ..®N(L2(Pin,τ)θL2(N,τ)).

Then P$ is a weakly dense *-subalgebra of P and EQ extends to
a τ-preserving conditional expectation E: P -* N.

The following lemma shows a proof of the Cauchy-Schwarz type
inequality for unital completely positive maps on (unital) *-algebras
without using Stinespring dilations.

LEMMA 3.5. If A is a unital *-algebra and Φ: A -+ S8{%?) is a
unital completely positive map, then Φ(x)*Φ(x) < Φ(x*x), x e A.

Proof. Consider K: AxA-+&{β?) defined by K(x, y) =
x, y eA. Then the kernel K is positively defined, since

> 0,

Consequently Kolmogorov's theorem yields a vector space «̂ Γ and
VxE&i^,^), xeA, such that K(x,y) = V*VX9 x,yeA.

Since ί ( l , l) = / j , V\ is an isometry and we obtain

^vx < v;vx = Φ(JC*JC),

Let Φ | : Pi -> P| , / = 1, 2, be ^-preserving iV-bimodule unital
completely positive maps. Consider the N-linear map Φ o : P® -• PQ
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defined by

{ x, f or x G N,

Φ/i(αi)...Φίjι(flπ), forx = α 1 . . .α r t , ajeP?,

hΦ' φin
Then Φ o is known to be completely positive on P§ ([Bl], [B2]) and

since Φj(Pf) C Pf, 7 = 1, 2, we get £oΦo = ̂ 0 - This last equality
together with Lemma 3.5 yield E(ΦQ(x)*Φ0(x)) < E(x*x), x e Po°,
and since Is is τ-preserving we get τ(Φo(x)*Φo(^)) < τ(x*x), x e A.
The following lemma shows that ΦQ extends to a strongly continuous
iV-linear unital completely positive map Φ = Φi *£ Φ2: P\ *N PI —>

Λ *w ̂ 2 and has been proved in [B2].
LEMMA 3.6. Let P be a finite von Neumann algebra with a nff trace

τ, acting on L2{P, τ) by left multiplication, let PQ be a unital weakly
dense *-subalgebra of P and Φo: PQ —• PQ be a unital linear map such
that (O\ΦQ = ω\ and ΦoCx)*Φo(*) < ΦoC***), x € PQ. Then ΦQ
extends to a strongly continuous contractive map Φ: P —• P. If ΦQ is
completely positive on the *-algebra PQ , then Φ is completely positive
on P.

For any contraction 7} e &{L2(Pi, τ)) with 7} = 7L2(ΛΓ τ ) Θ Tf in

the decomposition L2(P/, τ) = L2(JV5 τ)®L2{Pf, τ) , we define as in

[VI, §5] the contraction T=T^ T2e^(L2(P, τ)) by

f τ)

Denote J?i(fti^0 = £#(£1*1) and J?π(6i, . . . , bn, ^ , . . . , xn) =
EN(bnEn_x(bu . . . . ftπ-i,xi, . . . ?xΛ-i)x«) for n > 2, x7 , bj e P,

LEMMA 3.7. 7/JC ; e Pf, bj e Pz ., I < j <n, iλ φ ••• ̂  /„

Proof. For any x e P, denote x° = x - Eχ(x). Since the length of
1 )°X2 - Xn is n and bn-"b2 is a sum of words of length < n-1,

then £ iv(^ *2(*i^i)°^2 xn) = 0 and

ENφn - M l * * -Xn) = ̂ Jv(ftn "b2EN(blXl)X2 '' ' Xn)
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Denote

Ei{bχ, ... , bn, Xι, ... , Xn)

= Eφn • • • bi+xEi{bx, ... , bi, xι,... , *ί)*/+i xn),

1 < i < n - 1,

and assume that

ENΦΠ • • b{X\ • • • xn) = Ei{b\, ..., bn, X\, ... , xn)

for some i < n — 2.
T h e l e n g t h o f (bi+ιEj(bι, ... , bi} xγ, ... , Xi)xi+{)

0xi+2 •••xn i s

n - i and bn •• • bι+2 is a sum of words of length < n - i - 1,

t h u s EN(bn • • • bi+2{bi+χEi{bι, ..., bif x i t ..., Xi)xi+ι)0xi+2 •• xn) =

0 and

= EN(bn • • • bi+2EN(bi+iEi(bi, ... , bit x ι , . . . , x ; ) x / + i ) x i + 2 •• xn)

— Ei+\ (b\, ... , bn , X\, ... , xn).

Finally

= En-i(bi, . .. , bn, xx, ... , xn)

= En(bx, ..., bn,xι, . . . , xn). Ώ

LEMMA 3.8. Let Xf = Σk£FajkeNbjki e N'nB(L2(Pf, τ)) with

Fj finite sets and ajk , bjk e P,. Then

(3.1) Xf®-- ®Xf
1 n

for all i\Φ '- Φ in, n > 1 .

Proof. The equality is done by induction on n. The case n = 1
is obvious. Assume that (3.1) is true for ί\ φ •• Φ in and take
in+\ Φ in Using the TV-linearity of X? and Lemma 3.7 we obtain
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for any x} € Pf, 1 < j < n + 1:

Σ &i k &i k E f j i b j k " m b j k
l l K

l {
 l n K ι n

 I y y l n K ι n

 l \ K ι χ

\kl9...,kn

Σ Eλίibj h- XΠA-\ )

Σ &ί k ' ' ' &i k Eλi(bf i- bf h X\ ' * * XM-LI)

// I-

Ί n + 1 '/i+l " + 1
 'Λ+1

PROPOSITION 3.9. If N <z P\, N c P2 have the Haagerup property,
then the inclusion N c P = P\ *# P2 has the Haagerup property (with
respect to the free trace τ ^ * τ/>2).

Proof. Using the product net we can assume that the completely
positive maps which approximate the unit in P\ and respectively P2
are indexed by the same set / . Let (Φi ) Z)Z G / and (Φ2,z)zG/ be the
appropriate nets of completely positive maps for N c P\ and N c P2
according to Definition 3.1. By a previous remark we can also assume
that Pι = max(||Γθ | |, \\Tg ||) < 1, 1 e I, where

1 , ' 2,1

0

according to L2(Pj, τ) = L2(N, τ) Θ L2(Pf, τ) , j = 1, 2.
Denote Φt = Φ\ z * Φ 2 ? / . By the previous comments ^ Φ z = EN,

Φt: P —• P is a iV-bimodule unital completely positive map and

Since | |Γ Φ | | < 1, the equality limzG/ ||ΦI(Λ:) - X\\I = 0, x e P,
should be checked only on finite sums of reduced words. Since
L2(P, τ) decomposes in an orthogonal direct sum according to the
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type of the words, it is enough to check that equality only for reduced
words x and in this case it follows by the definition of Φ, and by
lim i e/ \\Φj,,(a) - a\\2 = 0, a e Pj, j = 1, 2 .

It remained to check only that Tφ € %N(P) , ι € / . Fix an index
i € / and denote 7) = Γφ , j = 1 \ 2. For any 0 < ε < 1 - p, let
Xj € &~N(M) with ||7) - i ; || < ε, \\Xj\\ < I, j = 1, 2, and denote

Then Xf e fN(M), Xf(L2(Pf,τ)) c L2(Pf,τ), \\Xf\\ < 1,
\\T9-Xf\\<ε, 7 = 1 , 2 , a n d we get for all ixφ-..φin

+ />f~2 + + />< + ! ) <

hence ||ΓΦ | -Ym\\< ^

By Lemma 3.8 Ym = IL2{N[τ) Θ Θ Λ < w ; ^ ξ ^

and consequently Γφ e <%N(P) - " π

The following lemma contains a couple of immediate examples of
inclusions of von Neumann algebras with the Haagerup property.

LEMMA 3.10. (i) If QQ C Q is an inclusion with the Haagerup prop-
erty, then N ® Qo c N ® Q is a Haagerup pair for any finite von
Neumann algebra N.

(ii) If N c M is an inclusion of finite factors with [M : N] finite,
then N c M is a Haagerup pair.

(iii) If N ® Qo c M is a Haagerup pair with N, M finite von
Neumann algebras and Qo is finite dimensional then N c M is a
Haagerup pair.

(iv) If N c M is a Haagerup pair with N finite factor and N$ c N
is a subfactor with finite index, then NQ C M is a Haagerup pair.

(v) If Pod P\ C P2 C are type IIχ factors with [Pi: Po] < oo,
/ > 0, and Poo = \JPn> then Po c Poo has the Haagerup property.

(vi) If Q is finite dimensional, then Qo C Q is a Haagerup pair.

Proof, (i) Let Φι: Q —> Q be EQQ-preserving <2o-bimodule unital
completely positive maps with 7φ €<%QO(Q) and

( x ) - x | | 2 = 0, xeQ.
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Then Ψ, = idjv ® Φ,, i e / , satisfy the required properties for the
pair N ® Qo c N ® <2.

(ii) Follows from the equality i d ^ = Σ/ w ^ m * , where {mz}z is
an orthonormal basis of M over TV with m\ — \.

(iii) Since βo is finite dimensional, it is isomorphic to 0™=1 A/jt .
Let {eirs}ι<i<m,ι<r,s<k be a matrix unit for QQ. Since the condi-
tional expectation onto N ® Qo is

E(srx) , X E M ,

then

as operators on L2(M, τ ) . Consequently ^r®ρo(AΓ) c ^N(M) thus
any net that approximates the unit in N ® QQ as in Definition 3.1
satisfies automatically the same property for N c M.

(iv) Since e^ = Σ/m/^v^ mz* a s operators on L2(M, τ) for any
orthonormal basis {m, }| of TV over NQ , then &Ή(M) c «̂ v (Af).(

(v) The trace preserving conditional expectations Φ, = E'p00, / >

0, satisfy Definition 3.1.
(vi) By Proposition 3.1.5(iv) in [J], the central support of eQQ in

{Q9 βQo) is 1 i.e. Vwe^(Q) ueQo

u* ~ ^ a n c ^ s i n c e Q is finite dimen-
sional it follows that Q = span{^/€i7α/^ρoδ/|α/? bi e Q, F finite}.
Consequently idρ G ̂ QO(Q) and we set Φt = idρ, i e I. D

PROPOSITION 3.11. Let (Q c N c M; Q c P c M) be a commu-
tative square such that N c M has the Haagerup property and Q is
finite dimensional Then P has the Haagerup approximation property.

Proof. Let (Φi)i€/ be a net of unital iV-linear completely positive
maps Φ,: M —• M with ENΦt = £ # , lim ί G / ||Φ,(JC) - x\\2 = 0, x e
M and Tφ e 3?N(M). Consider Φ, = E^Φt\P: P -> P9 i € I,
which are unital Q-linear completely positive maps, τΦ, = τ and

\\Φt(x) - x\\2 = WEPmx)) - EP(x)\\2 < ||Φ, (x) - x\\2 , « P . ,.
Finally, we have to check that T~ e 3?{L2{P, τ)). Since Tφ e

, it follows that for any ε > 0 there exists T — γ\li a^e^bi e
such that | |ΓΦ - Γ|| < e and consequently | |7~ -efTeψ\ =

\\ejf(TΦt-T)ejf\\<B.
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Therefore we have only to check that efTef e Jf(L2(P, τ)). Let
{ηj)jeJ C L2(N, τ) be an orthonormal basis of N over Q (cf. [P3,
1.1.3]) with fj = EQ{η)ηj) e ^ ( β ) . Since x = Σj njEQ{η)x) for all
x e N, it follows that

where /? is the orthogonal projection from L2(M, τ) onto
®jηjL

2(P,τ).
For any a, b eM we get

eP
aeN beP - 2_^eP ar1jeP

j.k

j

Since Q is finite dimensional and
2

ι2<Nl2,τ<OO,
2

ί ,τ<°°

it follows that eψTeψ is a compact operator on L2(P, τ ) . D

REMARKS. (1) The previous computations show that if Q c N has
a finite orthonormal basis, then Q c P is also a Haagerup inclusion.

(2) The proof didn't use the fact that Tφ e N'. In fact that condi-
tion is important only to achieve Proposition 3.9.

COROLLARY 3.12. If N c M is a Haagerup inclusion and the center
of N is finite dimensional then the relative commutant Nf Γ\M has
the Haagerup approximation property.

COROLLARY 3.13. If β 0 is finite dimensional and Qo C Q is a
Haagerup inclusion, then all the von Neumann algebras Ms_x = Ns,
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Mξ = Ms, Mf+χ = t7ΛΓ(Af/, eM), i > - 1 , wiίΛ M* α/u/ iV* defined
as in Chapter 1 {not necessarily factors), have the Haagerup approx-
imation property {the trace on each Mf is the restriction of the free
trace on Af£,).

Proof. By Lemma 3.10 Rs®Qo C RS®Q and RS®QO c i?Θ<2o are
Haagerup inclusions and by Proposition 3.9 the inclusion Rs ® Qo c
M£> = (2?* ® (?) * ^ Θ ρ o (i? ® <2o) is also of Haagerup type. Since Qo

is finite dimensional and [Rs : Rs_t] < oo, / > 0, the same property
is still true for Rs_t = A]+2 c M^. According to Corollary 3.12, the
von Neumann algebra (I?!,-)'ΠM^ has the Haagerup approximation
property. But [Ms, I?5] = 0 hence Mf c (i?^)' Π M ^ and Mf has
itself the Haagerup property for all / > - 1 . D

COROLLARY 3.14. If Q is finite dimensional, then all the von Neu-
mann algebras Mf, i > - 1 , have the Haagerup approximation prop-
erty.

Proof. It follows by Corollary 3.13 and by Lemma 3.10(vi). D

COROLLARY 3.15. If ζ?o c 3£{Q) and QocQ is a Haagerup inclu-
sion, then the von Neumann algebras Mf, i>-\, have the Haagerup
property.

Proof. Since Q commutes with Qo, it follows that [Ms, Rs®Qo] =
0 and consequently [Mf, Rs_t Θ Qo] = 0. Since Rs_t ®QocRs®Qo

is a Haagerup inclusion it follows that Mf has the Haagerup proper-
ty. D

COROLLARY 3.16. If Qo = C, then the corresponding algebras Mf,
i>-\, have the Haagerup property if and only if Q has this property.

COROLLARY 3.17. If βo and Q are as in Corollary 3 A3 or Corollary
3.15, then none of the von Neumann algebras Mf, / > — 1, contains
a rigid subfactor.

Proof. It follows by Corollaries 3.13 and 3.15 and by the arguments
from [CJ, Theorem 3] or [PI, Theorem 4.3.1]. D

At the end of this chapter we show that the Haagerup property for
an inclusion of group von Neumann algebras is related to the existence
of certain positive definite functions on the group, with some special
properties.
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Let G be a discrete countable group with unit e. The group von
Neumann algebra J?(G) associated with G is defined as follows: let
G acting on 12(G) by g - f = δg * f 9 f G 12(G), g eG (δg is the
evaluation function in g) and denote by ug the unitary operator on
12(G) given by ugf = δg*f, fel2(G), geG.

Then 3*{G) is the bicommutant of {ug}geG in 3§(l\G)). Note
that this action of (7 on 12(G) extends to a *-representation λ: C[G]

of the group algebra C[G] on 12{G) defined by:

The use of the notation Σ' signifies that only a finite number of
α^'s are nonzero.

The linear functional τ: λ(C[G]) —• C defined by τ{^geGagug) =
α̂  , fl^EC, extends to a nff trace on &{G) and this will be the trace
considered on ^f(G) from now on.

For GQ subgroup of G, Jΐ?(Go) is isomorphic to the weak closure
of λ(C[G0]) in &(G) and the map E: λ(C[G]) -* ^ ( G o ) , defined by
E{Σ!geG

agug) — Σ'geG asus' % ^ C ? extends to the τ-preserving
conditional expectation E =

PROPOSITION 3.18. // i?(Go) c <^(G) w α Haagerup inclusion,
then there exists a net (φι)ιei of Go-bivariant positive defined functions
on G such that

(i) ^(e) = l , i el;
(ii) limZG/ 0z(x) = lim l€/ φ^y) = 1, for all x e G/Go, y e G0\G,

where φt (respectively φt) denotes the map induced by the Go-invariant
map φt on the left cosets G/GQ (respectively on the right cosets GQ\G) .

(iii) Each φξ (respectively φt) vanishes at infinity on G/GQ (re-
spectively on GQ\G) i.e. for any i e /, ε > 0, there exists a finite
set Ft\£ c G/GQ (respectively F2

ε c G0\G) such that \φt(x)\ <ε,for
x e (G/Go^F^ (respectively \ φi(y)\ <e,for xe (G0\G)\F2

ε).

Proof. Let Φ,: &{G) -> &{G), i e I, be a net of ^(G 0)-linear
unital completely positive maps and define the functions φι: G —• C,
Φι(g) = τ(u*gΦt(ug)), geG.
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The ^(Go)-linearity of Φ, yields for any g eG, goeGo:

Φι(ggo) = τiu^tfgΦtiUgtygJ = τ(u*gΦι(Ug))

= Φι(g) = τ{(ugug)*Φι{ugug)) = φt(gog).

Since φι are Go-invariant, (ii) is equivalent to limιeI φt(g) = 1,
for all g € G, and this follows by

\φξ(g) - 1| = |(ΦZ(^) - ug, ug)τ\ < \\Φt(ug) - ^ | | 2

and by lim / 6 / | | Φ , ( ^ ) - ug\\2 = 0, ^ G G .
Fix i e I and denote Φ = Φ,, φ = φx. Clearly φ(e) = 1 and the

complete positivity of Φ yields

iλjφ(g-1 gi) = ^ ^
ϊ,7=l

J^ (w*^^μ/^-i, λjug-ήτ > o,

for all g i , . . . , f o 6 G , λi, ... , Art e C hence 0 is positive defined
on G.

Finally, let us check that φ vanishes at infinity on G/GQ . Let S be
a complete system of representations in G for G/GQ. Since {ug}geo
is a left orthonormal basis of ^(G) over -S^Go), we get

(o)u*gb)9 be^f(G) and
ges

\\b\\2 = Σ ιι^^(Go)(«jft)iιi = Σ ife(σo)
ges ges

Let ε > 0. Then there exists a finite set i ^ e c S1 such that

Since Γφ € ^2'(GO)(-S"(G !)) »there exist α, , *, € ^(C?), 1 < i < n,
such that || Γφ - Σ?=i aieS'(G )^ll ̂  ε ^n particular
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i=\

geG

and

\φ(g)\ = \τ(Φ(ug)ul)\

i=\

for all geG.

Denote M = maxi</<rt | |α/||2 and let ε0 =

The previous inequality yields \φ(g)\ < 2ε,
Fε = U"=i Fb*,εQ

G\FεGo. •

Remark that in order to prove the previous statement we used only
that Tφ e span11 ]l{ae^{Go)b\a, b e ^ ( G ) } .

Consider the action h gGo = A^Go, h e GQ, g e G of Go on
the left cosets G/GQ. The orbit of an element gGo e G/GQ under
this action is {W^CJOIW £ Go}. If Go is normal in G, then Go acts
trivially on G/Go, the orbit of each element gGo being

PROPOSITION 3.19. Let Go be a subgroup of the countable discrete
group G. Assume that the orbit of each element gGo £ G/GQ under
the action of Go is finite and there exists a net of Go-bivariant positive
defined functions φt: G -* C such that

(i) Φi{e) = l;
(ii) liml€/0i(£) = 1, geG;

(iii) each φt vanishes at infinity on G/GQ .

Then the inclusion 2"[Go) c 3*{G) has the Haagerup property.
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Proof. Define Φ,: λ{C[G]) -> λ{C[G]) by

gug, ageC.
geG

In order to check that each Φt is completely positive on λ(C[G]),
let ζi e /2(<?) and

geG

Denote ηg = Σ" = 1 agJugξi e 12(G), geG. We obtain

Σ ("ϊjagjφι(uhug)ξi>ξj)
i,j=l g,heG

Σ' Wjagjφ

= Σ' ^U

since the (finite) matrix [0z(<?~1A) ( ^ , Ήh)]g,heG i s positive, as the
pointwise product of the positive matrices [^(^~1Λ)]^,/ze6! a n d
[(%? Vh)]gfheG a n d the sum of the entries of a positive matrix is
positive.

Since φt(g) = 1, £ G GQ , it follows that E^G )Φ* = E^G ) and
each Φ, extends to a E^^G ^preserving unital completely positive
map Φι\S?{G)-^£?(G) (cf.°[H, Proposition 1]). The G0-bivariance
of φt implies the <£?(Go)-linearity of Φ,.

In order to check lim/G/ ||Φ,(JC) - JC||2 = 0, x € <2f{G), note that,
since | |7φ | | < 1, it is enough to consider only the case x = ug,
geG, and the equality follows by lim ί €/ φ(g) = 1, geG, and by

I|Φ*K) - ug\\l = mug)\\2

2 + \\ug\\2

2 - 2Re(Φ l(κ,), ug)τ

< 2 - 2Reτ(uJΦI(M^)) = 2 -

We prove now that Tφ e ^^(^(G)), i e I. Fix i e I and
denote φ = φl9 Φ = Φ,. Let *S be a complete system of representants
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for G/Go in G and let XIGQ , i > 1 be the orbits of G/GQ under the
action of Go, with Xt finite subsets of S, i>\, and (Ji>i Xt = S.
Note that X,G0 = g0XiG0, go € Go, i > 1.

For each orbit XGo of G/GQ under the action of Go, we check
that Σgex^^(G0)Ke^(G0y.

Indeed, for any g0 e Go, x = Σ'weGawuw,aw€C,we have

Σ Ugesr{GjU*gUg,Xτ
gex

= Σ Σ'α^^^(Go)(v^) = Σ Σ' a^gwumv
geXweG geXweG0

= Σ' v*M*= Σ' v*M*= Σ' β*«w
X G JS:G ^ G

= Σ Σ ag™Ugog™ = Σ Σ a™U

gex

Since

) = Σ agwUgw ,
weG I τ weG0

we get

Σ
g€X

Let Sn = U?=i Xi C S and define Tn = Σgesn Φ(g)^g^{G0)K =

Σges Φ(s)Pιi} L Note that, since φ is Go-bivariant, it is constant

on each orbit X;, and hence Tn e ^(GQY . Since φ is positive defined

and φ(e) = 1, one easily checks that \φ(g)\ < 1, g e G, and hence

Since φ vanishes at infinity on G/GQ , there exists a subsequence
{kn}n>l s u ^ h that SUp£Gs\£ \Φ(g)\ ̂  ^

Let x G ^{G). Since { w ^ } ^ is a left orthonormal basis for
&(G) over -2s7(Go) ? it follows that for any β > 0, there exists k(ε) >
1 such that \\x - Σgesk

 ugE&(G0)(u*gX)h < e\\x\\2, for all k > k(e).
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Then, pick an n > 1 and assume that k(ε) > kn . We obtain

τ - Tkxτ\\2 = \\Φ{x)τ - Tkxτ\\2

Consequently \\TΦ - ΓΛJ| < J and Tφ e 3&(GQ)(&(G)) . D

COROLLARY 3.20. If Go is a normal subgroup of the discrete count-
able group G, then ^f(Go) cJ?(G) has the Haagerup property if and
only if there exists a net (φι)ιei of unital positive defined functions on
the quotient group G/GQ that vanish at infinity on G/Go and such
that limI€/ φι(g) =l,for all g e G/Go.

The Propositions 3.18 and 3.19 were proved in [Ch] for Go = {e}.
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