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ON THE METHOD OF CONSTRUCTING
IRREDUCIBLE FINITE INDEX SUBFACTORS OF POPA

FLORIN Boca

Let U°(Q) be the universal Jones algebra associated to a finite
von Neumann algebra Q and R° C R be the Jones subfactors,
s € {4cos’Z|n > 3} U[4, c0). We consider for any von Neu-
mann subalgebra Qy C Q the algebra U*(Q, Qo) defined as the
quotient of U°(Q) through its ideal generated by [Qo, R] and we
construct a Markov trace on U°(Q, Qo). If Z(Q)NZ(Qy) =C
and Q contains n > s + 1 unitaries u; = 1, uy, ..., u,, with
Eg,(uiu;) = di;1, 1 < i,j < n, then we get a family of irre-
ducible inclusions of type II;, factors N° C M°, with [M°: N] =35
and minimal higher relative commutant. Although these subfactors
are nonhyperfinite, they have the Haagerup approximation property
whether Qyp C Q is a Haagerup inclusion and if either Q, is finite
dimensional or Q) C Z(Q).

Introduction. Let M be a finite factor with the normal finite faithful
trace 7 and denote by L2(M, t) the completion of M in the Hilbert
norm |x|, = T(x*x)/2, x € M. For N C M subfactor of M
(1y = 1), the Jones index [M; N] is defined as the Murray-von
Neumann coupling constant dimy L?(M) of N in its representation
on the Hilbert space L2(M, 7). Jones [J] proved that [M : N] can
only take the values {4 cos? Zln > 3} U[4, oo] and constructed a one
parameter family RS of subfactors of the hyperfinite type II; factor
R with [R: R’]=s, s€{4cos’Z|n>4}U[4, 00).

When s = [M : N] = 4cos? 2, n >3, the properties of the local
index [J] imply that the pair N C M is irreducible (i.e. NNM =C).
For s > 4 Jones’ inclusions R® C R are reducible and the problem
of characterizing the values s > 4 with the property that there exist
inclusions Rg C R with [R: Rg] =s and Ry;NR = C remained open.

The problem of finding all possible values of indices of irreducible fi-
nite index subfactors in arbitrary II; factors was completely answered
by Popa, who constructed in [P2] irreducible inclusions of nonhyper-
finite type II; factors NS c M*, with [MS : N] = s, for all s €
{4cos? Z|n > 4}U[4, o). His method consists in constructing certain
traces, that he called Markov traces, on some universal algebras U’(Q)
canonically associated with a given finite von Neumann algebra Q and
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to the Jones sequence of projections {e;};>; of trace 7(e;) = s~!, sub-
ject to the commutation relations [Q, e;] = 0, i > 2. The algebras
U*(Q) were called in [P2] universal Jones algebras. An interesting
feature that this method of constructing subfactors is shown to have
in [P2] is that any pair of subfactors (in particular hyperfinite) N ¢ M
and [M : N] = s arises this way, for an appropriate Markov trace tr
on some universal algebra U’(Q). The enveloping algebra M., is in
this case 7, (U%(Q))", M the smallest algebra containing 7(Q) and
on which e; implements by reduction a conditional expectation and
N the commutant of e; in M. Then he considered on US(Q) the
free trace 7 defined by 7(w) = 0 for all words w with alternating
letters x; € Q, y; € R with 19(x;) = Eg:(y;) = 0 and proved that this
is indeed a Markov trace with 7, (U%(Q))” = M3, = (RS ® Q) *g R,
where R = vN{e;};>1 and R® = vN{e;},>> are the Jones factors,
and that for any nonatomic finite von Neumann algebra Q and any
s € {4cos? Z|n > 4} U[4, ), the appropriate inclusion N° C M* is
an irreducible inclusion of II; nonhyperfinite factors with standard
matrix A4, for s = 4cos? 2 and A for s > 4. Moreover, the factors
M?* are always non I' in the sense of Murray and von Neumann and
do not have the property T of Connes [C].

In this paper we look for other Markov traces by factoring through
certain ideals of US(Q) which require parts of Q to commute with
R = vN{e;};>1. More precisely, given a von Neumann subalgebra
Qo of Q, denote by U*(Q, Qp) the quotient of the universal Jones
algebra U*(Q) through the ideal generated by Q@ and R subject to
the commutation relations [Q, R’] = [Qp, R] = 0. Then, we prove in
§1 that the trace T on US(Q, Qo) defined by t(w) =0 for all words
w with alternating letters x; € @, y; € R with Eg (x;) = Eps(yi) =0
and t(qor) = to(qo0)Tr(r) for all go € Qp, r € R® is a Markov trace.
Following [P2], the algebras M* and N° are then defined as the small-
est subalgebra of 7,.(US(Q, Qp))” containing 7n,(Q) and on which e,
implements by reduction a conditional expectation and respectively
as the commutant of e; in M?S.

We prove in §2 that if Z(Q)N.Z(Qy) = C and there exist n > s+1
unitaries ¥; = 1, u3,...,u, in Q such that EQO(u;fuj) = 0;1, -
1 <i, j < n,then we obtain irreducible inclusions of type II; factors
N3 ¢ M’ with [M* : N°] = s and standard matrix 4, for s = 4cos2§
and A, for s > 4.

Our initial motivation was to look for “finer” Markov traces on
U’S(Q) that would get us closer to the construction of irreducible hy-
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perfinite subfactors. We fail in doing this and our subfactors are still
non I' (hence nonhyperfinite) and contain copies of the II; factor
associated with the free group on two generators < (F,), since our
Markov traces are still free in some sense, namely the enveloping al-
gebra of NS C M* is in this case the amalgamated product von Neu-
mann algebra M, = 7.(U*(Q, Qo))" = (R° ® Q) *rgg, (R ® Qo).
defined as in [P2, §3] (see also [V1] for the C*-definition), with the
free trace 7 = Tpg*TrReg, (Infact M, is also a factor under the pre-
vious required conditions on Oy C Q). However, we prove in §3 that
in many cases (e.g. when Qp C Q has the relative Haagerup property
and either Qg is finite dimensional or Qy C Z(Q)), all the von Neu-
mann algebras from the Jones tower N* C M* C&% M} C% M3 C% ---
have the Haagerup approximation property, namely for any s there
exists a net (®,),c; of trace preserving unital completely positive maps
®,: M* — M* converging to id;,s in the point-| || topology and in-
ducing compact operators on L2(M?*, T, ); hence M® are not very
far from being hyperfinite and for any s > 4 there exists an irreducible
inclusion of II; factors with index s, N c M, with the Haagerup
approximation property.

An important problem which is still open at this moment is to decide
whether the factors M, or at least the enveloping algebras M7, are
isomorphic or not for nonrigid Q. This problem seems to be related,
at least for the isomorphism of the associated M3 in the case Q =
Z(Fx) to Voiculescu’s type isomorphisms & (Fo, * Z,) ~ £ (F)
([v4], [D], [R]).

We would like to thank Professor Sorin Popa for suggesting this
problem and the idea of extending the results of [P2] in this way and
Professor Edward Effros for useful discussions concerning §3.

1. The construction of N° C M* and the Markov property of the
free trace. Let s € {4cos? Z|n > 3} U[4, o0), denote A =s~! and let
R = vN{e;}i>1, R® = vN{ei}i>», R®, = vN{e;};>3 be the appro-
priate Jones factors. Then R®, C R® C% R is the basic construction
for R® ) C R°. Let Q and Qp (lg = 1p) be finite von Neumann
algebras with a normal faithful trace 7y and denote by Eg the trace
preserving conditional expectation from Q onto Q. Then E; =
Ep ®idg:: Q®R* — Qy®R® and E; = idg ® Ep:: Qo®R — Qo®R°
are trace preserving conditional expectations. Denote by M3, the re-
duced amalgamated product (Q® R¥) *Q ®R* (Qo®R) of (Q®RS, Ey)
and (Qp ® R, E3), by t the free trace on M3, and by E the t-
preserving conditional expectation from M3 onto Qy ® R°. The
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algebras Q and R are identified with Q ® Cl1 and respectively
CI®R in M3, .

Note that, denoting by U*(Q, Qo) the algebra generated by R and
Q with the relations [R, Qp] = [RS, Q] = 0 and by 7 the trace on
US(Q, Qo) defined by 7(w) = 0 for all words w with alternating
letters x; € Q, y; € R with Eg (x;) = Eps(y;) = 0 and 7(qox) =
7(qo)7(x) for all gy € Qyp, x € R°, the von Neumann algebra M},
can be also defined as M3 = 7. (U*(Q, Qp))”.

Let {m;}; be a Pimsner-Popa orthonormal basis of R® over R’
with m; = 1 and consider the unital completely positive map ®: M3
- M5, ®(x) = ), mexeym;, x € M5, . Then M* is defined
as the smallest ®-invariant von Neumann subalgebra of Af3 that
contains Q, i.e. if By = Q and B;,; = Alg(B;, ®(B;)), i > 0, then
M =, B;. Let N* = {e;}’nM?. One can easily check the following
properties of the averaging map ® as in [P2, 6.1-6.3]:

LemMA 1.1. (i) ®((R*)NMS,) C (RSYNMSE, . In particular [MS, RS]
=0 and ¢|NS = ldNS .

(i) e;®P(x) = D(x)e; = eyxe;, x € M3, . Consequently ®(MS) C
N5,

The free amalgamated trace T on M$ has the remarkable property
that it is a Markov trace, i.e. 7(xey) = A1(x) for all x € M*. This
can be proved following step by step the arguments in [P2, §5].

Sumsoftype > | & Sy, ..., My, M s ens my ) are denoted

by E'f(mkl,...,mkr,m;;l,...,m;;r).

DEeFINITION 1.2 ([P2, §5]). A homogeneous reduced closed element
is an element of the form x = ' w where w = Xgy1 X1 ...YnXn € M5,
is an alternating word (i.e. x; € Q, y; € R) such that there exists a
partition {1,...,n} = IUI*U]I, with a bijection I 5 i < i* € I*
that satisfy:

(i) i<i*,Viel,;

(i1) If iy, ip €1, iy < iy then either if < i, or i3 <ij;

(i) For each iy € Iy there exists i € I with i < iy < i*;

(iv) If i €1 then y; = my(e —Al), y;» = (e — Al)my for some k;

(v) If ip € I then y; =e—41;

(vi) Eg (x;) =0 for 0 <i<n and for 0 <i < n either x; € Qy
or Eg (x;)=0.

The set of homogeneous reduced closed elements is denoted by
H, ..

>
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Following the arguments in [P2, §5] one can check that |J; B; =
Q + spanH, . and since E(x(e; —A1)) = 0 for all x € H, . one
obtains

PRrOPOSITION 1.3. E(xey) = AE(x) for all x € M*. In particular t
is a Markov trace on M?* .

Another proof of the markovianity of 7 may be found in [B3].

2. Factoriality, index and irreducibility for NS C MS. Let M bea
finite von Neumann algebra with a normal faithful trace (nff) 7. For
each a = a* € M denote, following [V1], by u, the linear functional
Ua: C[X]1— C, us(X")=1(a"), n>0. Then pu, can be viewed as a
probability measure with compact support on R.

LEMMA 2.1. Let ey, ..., e, be t-free projections in M with t(e;) =
A€(0,1), 1<i<n. Then
oey+---+en) C{0}Ula(n, 1), b(n, A)JU{n}

and
Ue +-te, = codo + cndn + #(2) dt,
where

a(n, ) =(V1-i-n-1a%
b(n, i) = (V1-A++/(n-1)4)?;
co=max(l —4An,0); ¢, =max(l1-(1-2A)n,0);
_ny/(1=2An)2 +2(1 4 (n —2)A)t — 12
(1) = 2nt(n —t) ’
forany tela(n, i), b(n, A)].

Proof. Denote u = i 1.+ - An elementary computation relying
on the formulae and notations from [V2] yields:

— )
R, (2) = 1+zi\/(212 z) +4lz’ l<i<n:

Ru(z) =nRy (z) = Ku(z7') - 2715
(n=2)++/(1-2)2+44z
2z )
Since Gu(z) = [ dz"_(? is the inverse of the function z — K,(z7!)
one obtains
~(n=2)z = n(1 = An) £ ny/2% = 2(1 + (n = DA)z + (1-An)?
2z(z —n) ’

Ku(z~l) =22z

G,(2)=
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the choice of the branch of the square root obeying the rule Imz >
0 = ImGy(z) £ 0. The measure u is easily recovered from its
Cauchy transform G, as in the statement. m]

COROLLARY 2.2. If n > max(}, 113) in Lemma 2.1, then a = a* =
e; + -+ ey has support 1 and absolutely continuous spectrum; hence
{a}" is completely nonatomic.

Let P; and P, be finite von Neumann algebras with nff traces 1;
and 7o, B C P;, B C P, be a common von Neumann subalgebra,
E; be the t;-preserving conditional expectation from P; onto B,
P = P, xg P, be the reduced amalgamated product of (P;, E;) and
(P,, E;) and E the conditional expectation from P onto B which
invariates the trace 7 = 1; * 7. Denote |x|, = t(x*x)!/?, x € P.

If PP=KerE;, i=1,2,then P,=B®P? as B-bimodules and let
PO be the *-subalgebra of P spanned by the formal reduced words,
i.e.

0 __ 0 0
P —B@ @ Pil®B~..®BPik.
kZI ) l]##lk

Assume that there exist uy =1, uy, ..., u, € Z(P;) with E(uju;)
=9;;1, 1 <1i, j<n. Then any a € P, can be written as a =

T uiE(uta) +a', where E(uta’) =0, 1 < i < n, and similarly
a=>Y7,E(au)ut +a", with E(a"u;) =0, 1 <i<n. Since u; =
1 we can talk about reduced elements from P° beginning with u;,
2< i< n,orwith a € P, orthogonal to {u;}1<i<s,1.e. E(uja)=0,
1 <i<n,orending with 4}, 2 <i < n, or with a € P; orthogonal
to {u;}1<i<n,ie. E(au;)=0, 1<i<n.

For each reduced word w =a; ---am € PP, a;j ePiQ, W #Finm
denote a, = o(w), a, = t(w) and define

PV ={wePi=i, in=j}, i,j=1,2;
P,? = span{w € P?lo(w) =w;b, be B}, 2<i<n;
P?! = span{w € P?!|t(w) = bu}, b€ B}, 2<i<nm;
P!? = span{w € PY}|E(ufo(w)) =0, 1<i< n};
P2! = span{w € P! |E(t(w)u;) =0, 1<i<n}.

These subspaces give rise to the following direct sum of orthogonal

vector spaces

n
L*P,7)=L*N,7)@ Pl o P2 o P2 o PXl o DB o P2)
i=2
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with the suitable decomposition for each x € PO:

n
x=EX)+x" +x2+x2+ x4 2+ 1)),
i=2

LEMMA 2.3. If there exist uy, ..., u, € Z(P,) with E;(uju;) =
6ij1, 1 <i, j<n,and e € P(P,) with E;(e) = A€ (0, 1), then
{uieut}i<i<n is a t-free family in P.

Proof. Denote €% = e — A1 and remark that

Alg{ueuw’} = {al + pu;e®ulla, peC}, 1<i<n and
E(uileou}‘lu,'zeou}*Z ... uimeou;‘m) =0,
foril,...,ime{l,...,n}, W # - Flim. ]

LEMMA 2.4. With the assumptions of Lemma 2.3 and n > 1 +
max(}, 1£3), picka ko €{1, ..., n} and denote a = e, ic€U] -

Then, there exists a u € Z({a}") with E(u™) =0 forall m # 0
and {u, ukoeuzo} a t-free family. Moreover, if i,j€Z, j#0 and
xeP?24 Pu’:) + P12, x' € P24+ P2 then E(u'xu/x')=0.

Proof. Remark that for each nonnegative integer m there exists a
finite set

FonC{I=(y,.... 0l # - #ie{l,..., n}\{ko}}
such that

m
am = (E ukeu;>

k#k,
= 1(a™)1 + > alui‘eou}‘, iy -u,-leou}‘l , areC.
I=(i,,...i)EF,

Then for each f € C[X], f(a) can be written as
f@=tfant+ > Brueu;---uelu

I=(iy,...,i,)€F,

with F, finite set and iy, ..., ik € {1,..., n}\{ko}, i1 # -+ # Ik.
Consequently, for any x € P%2 +P"1:3, +P2 xeP24 Pl f g€
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C[X] we get
E(f(a)xg(a)x")

=E ((r(f(a))l + ) Brui ...y eou*)

I€F,
X (r(g(a))l + > })Jujleoujl ...ujleouj-[> x’)
JEF,
= 1(f(a))r(g(a))E(xx")
g(a))E (Z Bru; €° Ui ..., eOu’ xx)
IEF
= 1(g(a))E(f(a)xx').

The normality of £ and 7 yields E(x;xx2x’) = 7(x;)E(x;xx’) for
X1, Xy € {a}’ and E(x) = t(x)1 for x € {a}’. By Lemmas 2.1
and 2.3 {a}” is completely nonatomic; hence {a}” ~ L>°(T, d1) and
there exists a u € Z({a}") with the required properties. o

PRroOPOSITION 2.5. Let P = P, xg P, be the reduced amalgamated
product of (P, E\) and (P, E,) and assume that there exist e €
P(Py) with A = Eye) € (0,1) and uy =1, up,...,u, € Z(Py)
with n > 1+ max(}, &), E\(ujuj) = ;;1, 1 <i,j < n. Then
there exist Xy, ..., X, € P such that for any ¢ > 0, thereisa 6 >0
with xeP, ||x|| <1, |[[x,x]2<d, 1 <i<n=|x—Ep(x)|2<e¢.

Proof. For each i € {2, ..., n} denote by v; the suitable unitary
for i given by 2.3. Take x; =e®=e— 11 and x; =v;, 2<i<n.
Since PV is densein P we can assume by Kaplansky’s density theorem
that x € PY. Let ¢, & > 0 such that & < &2/¢(n, A), where

1+4(1-2)y/2(n-1)
2(A—22)
and r be an integer with 1 < (2r+1)e’. Assume that x € P satisfies

I, villla < Zr, 2<i<n and |[x, e]ll2 < Ve'.
Denote x” = x?2 + x!2+x)}?, x/=x—x/, for 2<i<n. Since

p(n,A)=8n-1)+

Ix, vE1)l2 = flx — vk

= I, v~ il + 1l s vallla

_ _ —(k-1
x07k|ly < flx = vE Lxw E |, 4 lx — vixwf|l
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we obtain that ||[x, v¥]||, < |k|-||[x, v]|l» and

r r
1
_ E : kyo=kll < 2 —vkxuk
2r+1 Vi X, —2r+1 lbx = vixo; 7
k=—r 2 k=—r
Dk=—r Kl
< — .
= 2r+ 1 ”[xa vl]"Z

_r(r+1) ‘ ,
- 2r + 1 ”[xa vl]l|2S8 .

Consequently

1 - 1 < _
Ixll2 < 1575 > vkxork| 4+ ||x - T > vfxvik
k=—r k=—

2 2
k / —k k Il —k
= + 2r+l E Vi
2 2
1
< ’ k // —-k
e + |\ xll2 + T Z v
2
By Lemma 2.4 {v{‘x”'ui“ k}_,sks, are mutually orthogonal in || ||5;
hence
2
- 1 . k1, —k 12
xj'v k =(—27j_-"1—)§ Z vy x;'v; ™|z
k=—r 2 k=—r
17113 1 )
= < <
1l -2rrl1 o0
and

lxll2 < 2¢" + |Ixill2.-
The last inequality shows that

IX713 = (lxllz = lxill2)(Ixll2 + 1x7ll2) < 4¢’  and

max([x?[lz, %22, 1x2l2) < I1xflla < 2ve', for2<i<n.

Since {vF(x22+x2' +x2")v;*}_, ;< are still mutually orthogonal
by Lemma 2.4, a similar computation yields

max(|x2]l2, K2z, |2 ) < 2V
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We obtain
llx = Ep(x) — x"M|3 = 1x*215 + lx2113 + 2113
n
212
+ Z(”x:ﬁ?”% + [l 112)
i=2
<de' +4¢ +4(2n - 4)e’' =€}
The end of the proof is the same as in [P2, Theorem 7.1]. Since
x!x; € P12 and x;x!! € P!, they are orthogonal in || ||, ; hence
I, 03 = et tx 3 + e x 13
= t(xx xfx ) + o(x M xfx xth
= 1(x N Ep(x;x7)x"*) + t(x ™ Ep(x{x;)x!1)
201,112 2\(1+ 112
= 2llxill3flx I3 = 2(A - A3)[Ix M3
Since [Eg(x), x;] € PY is orthogonal on x;x!! and on x'lx;, one
obtains

Ve > |[x, elll2 = [IIx, xill2
> [[Es(x) + x', xi]ll2 = Ilx — Ep(x) — x', xi]ll2
> [Ep(x) + x', xi]ll2 — 2e0llx1 |
= (ILE(x), X113 + lIx"", x11(13)"72 = 2¢o]|x |
= (ILEs(x), x1]l13 + 2(2 = A7) |Ix"1[3)!/2 = 2¢0]lx1 ] -
In particular

(Ve + 2ellx1[)? _ (1+4/2(n—T)(1 = A))¢’
20—22) 204 = A2)

i3 <

and
I[Es(x), x11ll2 = llEp(x), elll2 < (1 +4+/2(n - 1)(1 - A)Ve .

Consequently
Ix — Ep(x)1} = llx — Ep(x) = x" |5 + Ix"' |} < 6(n, e’ <&*. O

COROLLARY 2.6. Ifthere exist e € F(P;) with Ey(e) =A1 € (0, %],
n unitaries u; =1, uy, ..., up € Z(Py) with E\(uju;) = d;;1, 1<
i,j<n, n>1+1 and Z(B)NnZ(P)=C or Z(B)NZ(P,) =C,
then P is a factor and contains a copy of & (F,).

Proof. By the previous proposition there exist x;, ..., X, € P such
that {x;, ..., x4}’NP C B; hence Z(P)=P'NPCBNP C BNP =
Z(B)NZ(P)=C.
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By Lemma 2.3 we obtain a 7-free family of »n projections
{uieu}i<i<n. According to Corollary 2.2 {u;eu;}, ., contains a
copy of L®(T, dA) ~ Z(Z); hence P contains a copy of the von
Neumann algebra .Z(Z) ¢ (Ce @ C(1 —¢)).

Pick 2N unitaries u; € Z(Z) with N > 1 and t(uju;) = d;1,
1 <i,j < n. Using again Lemma 2.3 we obtain 2N t-free pro-
jections {e;}1<;<on of trace + and by Corollary 2.2 (N > 1) two
unitaries u € Z({e; +-- -+ en}’) and v € Z({ens1 + -+ + ean}")
such that t(u%) = 1(vk) =0, Vk £0.

Since {u, v} is t-free, it follows that {u, v}’ ~ L (Z =+ Z) =
Z(F,). a

Define
M, =N°, M{=M°', M=uNM,e),
]i=vN(Mi:_l,ek)=lvN(Ms,el,---,ek), kZl.

Sometimes we simply denote M) instead of M7, k > —1.

COROLLARY 2.7. If Q contains n > s+1 unitaries uy =1, up, ...,
un with Eg (uju;) =6;j1, 1<1i,j<n, then

Z(M)=Z(Q)NZ(Qo), forallk>1.

Proof. Applying Proposition 2.5 for P, = Q® R°, P, = Qy® R,
B =Qy®R° weget xi,...,%Xn, € My with {x1,..., X} N My C
Qo ® R*; hence
(2.1) Z(M)=M{NnM C(Qe)NnQ@ Nn{e} nM

= ((Z(Q)NZ(Qo)) ® A1) N M.

Let B;, i >0 asin §1. Clearly

[Z(@)NZ(Qo), Bol =[Z(Q)NZ(Qo), Q] =0.

Assume that [Z(Q)N.Z(Qy), B;] =0 for i > 0. Since [Qy, R]=0
it follows that for any x € Z(Q)N.Z(Qy), ¥ € B; we have

x®(y) =Y xmyeyem; = D(xy) = ®(yx)
k
= Z meyempx = O(y)x.
k
Thus [Z(Q) N Z(Qo), ®(B;)] = 0. But B, = Alg(B;, ®(B)))
and M, = U; B;; hence [Z(Q) N Z(Qp), Mp] = 0 and therefore
[Z(Q)NZ(Qo), M1]1=0.
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By Lemma 1.1 [R®,, M] =0 and thus

[(Z(@)NZ(Qo) ®RL;, Mi]=
We get
(Z(@)NZ(Qo) @R )NM c Z((Z(Q)NZ(Q)) ®RL))
=Z(0Q) ﬁ~2'(Qo),
hence according to (2.1) Z(M;) Cc Z(Q)NZ(Qy) -
The other inclusion was already proved.
Denote A} = vN{e;};<j<x for 1 <k < oo. Arguing as before we .
obtain
(2.2) Z (M) C (Z(Q)NZ(Qo)) ® R ) N (A) N M,
=((Z(Q)NZ(Qo)) ® RL) N M.
Since [Z(Q) N Z(Qp), M] = [Qy, A}(] = 0 and [R,, 4]] =
[RS,, M]=0, weget [(Z(Q)NZ(Qy)® RS, , M]=0; hence
(Z(@)NZ(Qo) ® R )N M, ¢ Z((Z(Q)NZ(Qo)) ® RLy)
=Z(Q)NZ(Qo)-
According to (2.2) this yields Z (M) C Z(Q)NZ(Qy) .

The other inclusion is straightforward since Q C M}, [Qp, 4 }(] =
and [Z(Q)NZ(Qo), M]=0. o

The following is a rewriting of Lemma 6.4 in [P2].

LemMMA 2.8. If Q contains a partition of unity {p;}ic; with Eg, (p:)
=1(p;)) <A orif QoCQ isasin?2.7, then
(i) M; =spanM,;_1eM;_y, i>1 (Mo=M,M_; =N);
(1) t(eix) =t(e))t(x) =At(x), x € M;_y, i 21,
(iil) e;xe; = EM__z(x)ei, xXeM;_; and M;_, ={e;})nM;_y, i>1.

Proof. In the first case the computation from the end of [V3] shows
that 7(s(p;ep;)) = t©(p;) ; hence one obtains a € span Qe;Q with sup-
port 1. When Qp C Q is as in 2.7, such an element is produced by
2.1 and 2.3. Then the proof in [P2] applies literally. O

REMARK 2.9. Under the assumptions of Lemma 2.8 the tower of
von Neumann algebras
M=Mych M C%---C%1 M;_ C% M; C--- satisfies
eixe;=Ey (X)e;, Xx€M,; M; =span M;_e;M;_y;
lei, M;_»]=0; Ey_(e) =41, i2>1;
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hence the arguments of [PiPo, Proposition 2.1] apply and we get
A=max{u € Ri|Ep_ (x) 2 ux, x € M}.

This shows that the probabilistic index of the trace preserving con-
ditional expectation Ej;_ from M; onto M; ; is always s when
OpC Q isasin 2.8.

CoOROLLARY 2.10. If the hypotheses of 2.7 are fulfilled then
M{NM;=(Z(Q)NZ(Q)) ® 42, 1<i<j<oo.

Proof. 1t is obvious that
M{ N My C (Z(Q)NZ(Q0) ® RS = (Z(Q)N.Z(Qo)) ® 43 -

Since A} = spand}_,ee A} |, A, C My_, and Ep_ (e)
Al, it follows that Ep_(A43) = 43_,, k > 1; thus for any k
i we obtain Eppny(4}) = Eypoy EmEm,, - Em,_(4}) = -+
Eppom (A7) = A} and consequently Ejyiqy, (43,) = A7

Moreover, since M| N My, C (Z(Q)NZ(Qp)) ® 43, and Z(Q)N
Z(Qo) C M| N M;, it follows that

M{NM; = EM,’nM,.(Moo) = EM,’nM,(M{ N M)

C Epom,(Z(Q)NZ(Qo)) ® A3) = (Z(Q)NZ(Q) 4] .

On the other side, the inclusion (Z(Q) N2 (Qp)) ® 43 C M| N M;
is obvious. A similar argument yields

MinM;=(Z(Q)NZ(Q))®4"?, 1<i<j<oo. O

v

COROLLARY 2.11. Let Qp C Q as in 2.7 with Z(Q) N Z(Qp) =
C. Then NS C M are 11y factors with [M*® : N°] = s. Moreover,
(NYNM: =4}, i>0 (M§ = M?*) and the enveloping algebra of
NS C M is M, =(R°®Q) *R'8Q, (R® Qo).

Proof. The arguments from the proof of Theorem 6.7 in [P2] apply
in our case, due to 2.7, 2.8 and 2.10. m]

COROLLARY 2.12. Let Qo C Q asin 2.7 and Z(Q)N.Z(Qp) =C.
Then M7, i > -1, (M*, = N°®) are non I" factors.

Proof. By 2.5, if x € M} almost commutes with the elements x; =
ey, X2, ..., Xn € M7, then x is “concentrated” on (Z'(Q)N-Z(Qo))®
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R* and the arguments in [P2, 7.1] show that x is “concentrated” on
(Z(@Q)NZ (D)) @R =R,

Since [M7, R°,] = 0 it follows that ERs_l(a) = t(a)l forall a €
M7 ; hence x is “concentrated” on C. By [PiPo, 1.11] each M,
I>-11isnon I. O

REMARK 2.13. The analogue of Theorem 6.10 in [P2] is also true,
namely if Qp C Q C Q, are finite von Neumann algebras and N*-' C
MS:tc Mt c---Cc MS', i =1, 2, is the tower of factors associated
to Qo C Q) respectively Qp C Q> and the inclusion M3;! ¢ M3;?
is implemented by Q; C Q,, then M]S.’1 C Mj.’z, for all j > -1
(M3} = N*-1) and

(1) EysiEg =Eg , 0<j <oo;

J

(ii) EM;V,IEMIS,Z = Ms,l, —1 SZS]SOO.

3. Haagerup type approximation property for A/°. Since the hyper-
finite II;-factor % is an increasing limit of finite dimensional matrix
algebras, its identity can be approximated in the point-|| ||, topology
by a net of conditional expectations of % onto finite dimensional
subalgebras. One can replace this property for a finite von Neumann
algebra M with trace 7, assuming only the existence of a net of 7-
preserving unital completely positive maps ®,: M — M, 1 € I, such
that lim,c; || ®,(x) — x| = 0, x € M, and each ®, induces a com-
pact operator on L?(M, t). An important example, the II;-factor
Z(F,) associated with the free group on n generators (n € NU{oo},
n > 2), was pointed out by Haagerup ([H]). It is known by [CJ] (see
also [P1]) that the von Neumann algebras with this property don’t
contain subfactors with the property T of Connes.

In this section we prove that the algebras M7, i > —1, constructed
in §1 from pairs Qg C Q satisfying a property that we call the relative
Haagerup property with Q, finite dimensional or with Qy C .Z'(Q)
have the Haagerup approximation property. In particular the sub-
factors MS constructed in [P2] starting with a nonatomic finite von
Neumann algebra Q (or with an algebra Q that contains n > s+ 1
unitaries orthogonal in the trace as in Chapter 2) have the Haagerup
approximation property if and only if Q has this property. In order
to do this, we shall use the method of construction of completely pos-
itive maps on amalgamated C*-products from [B1] and [B2]. As a
consequence, it follows (from [CJ] or [P1]) that in these cases the von
Neumann algebras M} don’t contain subfactors with the property T.



IRREDUCIBLE FINITE INDEX SUBFACTORS OF POPA 215

We define first a Haagerup type property for inclusions of finite von
Neumann algebras. Let N C M be finite von Neumann algebras, 7 be
a fixed normal faithful trace on M , which acts by left multiplication
on L?(M, ) in the GNS representation of 7. Let x, € L>(M, 1) be
the appropriate vector for each x € M and let Ey be the t-preserving
conditional expectation from M onto N.

Let ®: M — M be a Ey-preserving N-bimodule unital completely
positive map. Then the Cauchy-Schwarz type inequality ®(x)*®(x) <
®(x*x), x € M, yields the contraction Tg € Z(L*(M, 1)), To(x:)
=(®x);, xeM.

The N-linearity of @ yields Tgp(x;) = ®(x); = x;, x € N; hence
Tlran, o) = T2y, - We check that Tg(x:) = xc, x € N. Indeed,
for a € M, x € N one obtains

(To(ac), X:)2,: = T(x*D(a)) = T(En(x"D(a)))
= 17(x*Eyn(a)) = 1(x*a) = (ar, X¢)2,7-

Consequently T = 6}’0) subject to the orthogonal decomposition
L>(M, 1) = L*(N,1)® L*(N, 7). Note also that Tz, = ey =

2
PLLZ((I{;{’T;). An operator aeyb, a,b € M, acts on L*(M, 1) by

aer5c1 = (aEN(bX))t , XEM.

Set Fy(M)={T € NNB(L>*(M, 1))|IT =¥ ;cpaiexb;, F finite
set, a;, b; € M} and let Zy(M) be the norm closure of Fy(M) in
B(L*(M, 1)).

DEeFINITION 3.1. The finite von Neumann algebra inclusion N C M
has the Haagerup property (or is of Haagerup type) if there exists a
net {®,},c; of Ey-preserving N-bimodules unital completely positive
maps ®,: M — M such that:

(1) lim, ||®,(x) - x|, =0, xe M;

(il) To € Zn(M).

REMARK 3.2. If N = C, the usual definition of the Haagerup ap-
proximation property of M is recovered. Note that, in the literature,
the condition 7® = 7 is sometimes replaced by 7(®(x*x)) < 7(x*x),
X € M, that ensures the contractivity of T .

REMARK 3.3. Assume that the maps ®, are as in Definition 3.1 and
let @, ;= - (P, +¢eEy), £>0.

Clearly ®, . are Ey-preserving N-linear unital completely positive
maps with lim ges [|[®,e(X) — x|l =0, x € M, where I, =I xRy

endowed with the order (1;,¢€1) < (17, &)< 131 <1; and & <L¢;.
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We obtain 7§ = =79 and consequently |7 | < 1. This

remark shows that we always are allowed to assume that 173l <1 in
the definition of the Haagerup property.

REMARK 3.4. Let N C M be a Haagerup inclusion and P be a von
Neumann algebra with N ¢ P ¢ M. Then N C P is still a Haagerup
inclusion (with respect to the trace induced on P from M).

Proof. Let ®,: M — M be as in Definition 3.1 and let ¥,: P — P,
\Ill = EP¢’|P . Then

I¥:(x) = x[l2 = |Ep(Pox) — x|l
= |Ep(®x = X)]2 < [|@x - x[l2,  x€P;
T\y, = ePT¢,|L2(P,1) = equ>lep .

Since epxenyyep = epxepenepyep = Ep(X)enEp(y), X,y,€ M,
we get

epTpep— Y ep(aienbi)ep

1

To, — Y aienb
i

1Ty, - Z Ep(ai)enEp(bi)|| =

<

Moreover, since ep € N’ we get E,-Ep(al-)eNEp(b,-)|Lz(P’1)) eN'nN
B (L*(P, 1)) and Ty € Zn(P).

At this moment we recall some facts about completely positive maps
on amalgamated products. Let P, and P, be finite von Neumann
algebras with fixed traces 7; and respectively 7, and let N be a com-
mon von Neumann subalgebra of P; and P,. Denoteby E;: P, — N,
i=1, 2, the 7;-preserving conditional expectations of P; onto N.

Denote P]‘.) =KerEj, j=1, 2, and consider the -algebra

P(?zNEB @ Pi?®N"'®NPi?-
n>1;i,##i,

Following [P2, §3], consider the canonical “projection” E; from
Pg onto N, that agrees with E; when restricted to P;, defined by
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£ x, forxeN,
ox) = 0, forx=a...an, a;€P?, iy# - #in,
J
the trace 7 = 71 Ey = 12E on Pg and the finite von Neumann algebra
P =Py %y P, = n,(P{)" acting on

L*(P,1)=L*N, 1)
o P w€p,1eL*N,)
n>1;i A
®N te ®N (Lz(Pin ) T) e LZ(N9 T)) .

Then Pé’ is a weakly dense *-subalgebra of P and E; extends to
a 1-preserving conditional expectation E: P — N .

The following lemma shows a proof of the Cauchy-Schwarz type
inequality for unital completely positive maps on (unital) x-algebras
without using Stinespring dilations.

LEMMA 3.5. If A is a unital x-algebra and ®: A — B (#) is a
unital completely positive map, then ®(x)*®(x) < P(x*x), x € 4.

Proof. Consider K: AxA — Z(#) defined by K(x, y) = P(y*x),
x,y € A. Then the kernel K is positively defined, since

n

> (K(ai, a))é, &) = Y (D(ajaé;, &) >0,

i,j=1 i,j=1
al,...,anEA, fl’-'-:énez‘

Consequently Kolmogorov’s theorem yields a vector space .Z and
Vi€ B(# ,Z), x€A,suchthat K(x,y)=V;Vy, x,y€A.
Since K(1, 1) =I5, V; is an isometry and we obtain

O(x)"®(x) = K(x, 1y'K(x, 1) = (V) T
=VINViVe S ViV =®(x*x), Xx€EA. O

Let ®;: P, - P;, i = 1,2, be Ey-preserving N-bimodule unital
completely positive maps. Consider the N-linear map Py: P(‘,’ — Pg
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defined by
X, forxe N,
Dy(x) = @i (ar)...®; (an), forx=ay...an, ajePfj’,
iy #--Flin.

Then @, is known to be completely positive on Pg ([B1], [B2]) and
since @;(PP) C PJQ , j=1,2, we get Eg®y = E;. This last equality
together with Lemma 3.5 yield E(®y(x)*®y(x)) < E(x*x), x € P?,
and since E is t-preserving we get 7(®p(x)*Py(x)) < 1(x*x), x € 4.
The following lemma shows that ®, extends to a strongly continuous
N-linear unital completely positive map ® = @, xg ®,: P, xy P, —
P, x5 P, and has been proved in [B2].

LEMMA 3.6. Let P be a finite von Neumann algebra with a nff trace
1, acting on L*(P, t) by left multiplication, let Py be a unital weakly
dense *-subalgebra of P and ®y: Py — Py be a unital linear map such
that w, @y = w;and Po(x)*Py(x) < Po(x*x), x € By. Then @,
extends to a strongly continuous contractive map ®: P — P. If ®, is
completely positive on the *-algebra Py, then ® is completely positive
on P.

For any contraction T; € & (L*(P;, 7)) with T; = 2,1 ® T? in
the decomposition L2(P;, 1) = L*(N, ©) @ L*(P?, 1), we define as in
[V1, §5] the contraction T = T; * T, € & (L*(P, 1)) by

T'L’(N, 7)=1,

2,0

It oo 0 = T © @ TL foris o #in.

Denote E;(b1x1) = Enx(b1x1) and E,(by, ..., bp, X1, ..., Xp) =
EN(bnEn—l(bl s eee s bn—-l s X1s eees x,,_l)x,,) for n > 2, Xj, bj eP,
1<j<n.

Lemma 3.7. If x; € PP, bje P, 1< j<n, iy # - # iy, then
EN(b,,---blx]---x,,) =En(b1, ceey bn, X1y oees x,,).
Proof. For any x € P, denote x° = x — Ey(x). Since the length of

(b1x1)%x,---x, is n and by, --- by is a sum of words of length < n—1,
then En(b,---by(b1x1)%x;3---x,) =0 and

En(bn---bix1---xn) = En(bp - DyEn(b1X1)X2 - Xp) .
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Denote
E,‘(b],.. bn,Xl,... Xn)

—E(b l+1E(b1>-">bi>x19"°,xl')xl’-l-l'”xn)a
1<i<n-1,

and assume that
EN(bn--~b1x1--~x,,)=E,-(b1, ...,bn,xl, ,xn)

forsome i <n-—2.

The length of (b1 Ei(by, ..., b, X1, ..., Xi)Xit1)?Xip2 - Xn 1is
n—i and b,---b;;, is a sum of words of length < n —i -1,
thus En(by - bipa(bip1 Ei(by, ooy biy X1y oov s Xi)Xi41) X142 -+ - Xn) =
0 and
EN(bn"'blxl o Xn)

=EN(by- - bip2 EN(bi1Ei(by1, ..., biy, X1y ooy Xi)Xig1)Xig2 - Xn)

=E,‘+](b1, ey bn, D% ,x,,).

Finally

EN(bn“b].xl .xn) n l(bl,...,bn,xl,-.-,xn)
—En(b],...,bn,xl,...,Xn). O

LemMA 3.8. Let X) = ijeFj ajxenbj € N'N B(L*(P?, 1)) with
Fj finite sets and aji , b € P;. Then
(3.1) X°®-~®X°

= Z Z al kx ' ainki,l erinkx,, o bilkll ILZ(P,(: > T)®®LZ(P:, > T)
Jj=1k€F,

forall i, # - -#i,, n>1.

Proof. The equality is done by induction on n. The case n = 1
is obvious. Assume that (3.1) is true for i; # --- # i, and take
iny1 # In. Using the N-linearity of X ? and Lemma 3.7 we obtain

n+1
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forany x;€ P?, 1<j<n+1:
J

(X0®- @ X0 )(x1)e® - @ (Xns1)e)
= th'?((xl)‘l') ® - ® Xgﬂ((xnﬂ)r)

= > @ik, ik En(big o big X1 Xn)
koo k
> En(i k Xni1)
n+l1
L
n T

= ( E ailk ...ai“k EN(bin. ...bilk xl..‘xn_‘_l))
B n 'n+1 n In+1 Bl
k.,

= Y aik a x enb; i

'y n+l n+l

T

bk () ® - ® (Nnet)e) . O

ProrosiTION 3.9. If N C Py, N C P, have the Haagerup property,
then the inclusion N C P = Py xy P, has the Haagerup property (with
respect to the free trace t P *Tp).

Proof. Using the product net we can assume that the completely
positive maps which approximate the unit in P; and respectively P,
are indexed by the same set 1. Let (®; ,),c; and (P, ,).er be the
appropriate nets of completely positive maps for N C P, and N C P,
according to Definition 3.1. By a previous remark we can also assume
that p, = max(||T£‘ |8 ||T<?,2 <1, 1€, where

I 0
T(Dj,z: 0 Tg )

according to L2(P;, 7) = LA(N, 1)@ L*(P}, 1), j=1, 2.
Denote @, = ®; , * @, ,. By the previous comments Ex®, = Ey,
®,: P — P is a N-bimodule unital completely positive map and

T@I=Tq>l’l*Tq>2,’= LZ(N,‘r)EB @ T'g, ’®"'®T£l -
n>1,i A, "
Since [|Tp || < 1, the equality lim,e; [|®,(x) — x|l = 0, x € P,
should be checked only on finite sums of reduced words. Since
L?*(P, 1) decomposes in an orthogonal direct sum according to the
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type of the words, it is enough to check that equality only for reduced
words x and in this case it follows by the definition of @, and by
lime/ ||®),,(a)—all=0,aeP;, j=1,2.

It remained to check only that Tp € Zn(P), 1 € I. Fix an index
1 €1 and denote T; = Tq)j’, j=1,2. Forany 0 <e<1—p, let
X; € In(M) with ||T; - Xj|| <e, |X;]l <1, j=1,2, and denote
XJO = (1 ——eN)Xj(l —eN).

Then X? € Fy(M), XNL*(PY, 7)) € L(PY, 1), X7 < 1,
IT? - X9 <&, j=1,2, and we get for all iy # -+ # iy

T ®-eT) - X) & -oX]|
<170 = X2NTN - T2+ IXNTE — X2 NTO - (T2
+o XKD TR - XD

[
1—-p°

Se(pl '+ o4+ p+ 1) <

hence ||To, — Y|l < max(:%5-, o).
By Lemma 3.8 Yy = Ipay ) ® @pam;i zi, X}? ® - ®X}"n € Fn(P)
and consequently Tp € Zn(P). O

The following lemma contains a couple of immediate examples of
inclusions of von Neumann algebras with the Haagerup property.

LemMma 3.10. (i) If Q¢ C Q is an inclusion with the Haagerup prop-
erty, then N ® Qy € N ® Q is a Haagerup pair for any finite von
Neumann algebra N .

(ii) If N C M is an inclusion of finite factors with [M : N finite,
then N C M is a Haagerup pair.

(iii) If N® Qo C M is a Haagerup pair with N, M finite von
Neumann algebras and Qq is finite dimensional then N C M is a
Haagerup pair.

(iv) If N C M is a Haagerup pair with N finite factor and Ny C N
is a subfactor with finite index, then Ny C M is a Haagerup pair.

(v) If BhbC Py C P, C--- aretype 11, factors with [P;: Py] < o0,
i>0,and Py =P,, then Py C Py, has the Haagerup property.

(vi) If Q is finite dimensional, then Qo C Q is a Haagerup pair.

Proof. (i) Let ®,: Q — Q be Eg -preserving Qop-bimodule unital
completely positive maps with T € Zo,(Q) and

lim||®,(x) - x|, =0, xeQ.
1€l
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Then ¥, = idy ® ®,, 1 € I, satisfy the required properties for the
pair NQyC N®Q.

(i1) Follows from the equality idy = Y, m;eym}, where {m;}; is
an orthonormal basis of M over N with m; = 1.

(iii) Since Qy is finite dimensional, it is isomorphic to @), M .
Let {€irs}i1<i<m,1<r,s<k b€ a matrix unit for Qy. Since the condi-
tional expectation ontolN ® Qp is

m
EN®Q0(X) = Z Z ezrsEN(etsrx) xXeM,

zrr

then

H’r

m k
eN®Q, = Z Z ezrseNeisr

as operators on L2(M , 7). Consequently JN®QO(M ) C Fn(M); thus
any net that approximates the unit in N ® Qy as in Definition 3.1
satisfies automatically the same property for N C M .

(iv) Since ey = Y ; miey m; as operators on L*(M, 1) for any
orthonormal basis {m;}; of N over Np, then Fn(M) C Fy (M).

(v) The trace preserving conditional expectations ®; = EII:“’ , 2>
0, satisfy Definition 3.1. '

(vi) By Proposition 3.1.5(iv) in [J], the central support of ep in
(Q,eg) is 1 ie Vg Uegu* =1 and since @ is finite dimen-
sional it follows that Q = span{} ;. a,-erbi|a,-, b; € Q, F finite}.
Consequently idg € % (Q) and we set @, =idg, 1€ 1. o

ProrosITION 3.11. Let (QC NC M; Q C P C M) be a commu-
tative square such that N C M has the Haagerup property and Q is
finite dimensional. Then P has the Haagerup approximation property.

Proof. Let (®,),c; be a net of unital N-linear completely positive
maps ®,: M — M with Ey®, = Ey, lim,¢; |®,(x) = x|, =0, x €
M and Ty € Zy(M). Consider o, = E¥M®|p: P - P, 1€ 1,
which are unital Q-linear completely positive maps, t®, = 7 and
1®:(x) = x|z = |EF (@i(x)) = EFf(x)]l2 < [|@:i(x) ~ x]l2, x € P.

Finally, we have to check that Ty € Z(L*(P, 1)). Since Tp €
Fn(M), it follows that for any & > 0 there exists T = S aie¥b; €
Fn(M) such that || Tp —T|| < ¢ and consequently [T —ep/ Tep!|| =

lep! (To, — Tep'|| < e.
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Therefore we have only to check that eM Te} € Z (L*(P, t)). Let
(n;)jes € L*(N, 1) be an orthonormal basis of N over Q (cf. [P3,
1.1.3]) with fj = Eg(njn;) € Z(Q). Since x = 3 n;Eq(n;jx) for all
X € N, it follows that

el{’l Sp = Zﬂjeﬁlﬂ;,
J
where p is the orthogonal projection from L2(M,1) onto

@] ”jLZ(P9 T)'
For any a, b € M we get

M
eplaelfbep! = eplanjep nted niep nibep!
j.k

) E; Ep(an;)ep'ex n;ncex ep' Ep(nib)
Js
= ZkEP(am)EQ(n}nk)eng(n;;b)
Js
= Ep(an))fieb fiEp(;b)
J
= Y Ep(an;)efEp(n;b).
Since Q is finite dime;sional and

§ : Lz(fu 7") ? 2
||Ep(an- Z-|lp ’ a <lla < 00,
- J)”Z @ [2(1), T)’?j( ‘t) 5 ” ”2,1

. (M, 1) 2
SIriolE = [P gy 1205 o,

it follows that e Te) is a compact operator on L2(P, 7). 0

2
< |Bllz,. < oo

REMARKS. (1) The previous computations show that if Q C N has
a finite orthonormal basis, then Q C P is also a Haagerup inclusion.

(2) The proof didn’t use the fact that Tp € N'. In fact that condi-
tion is important only to achieve Propos1t10n 3.9.

CoROLLARY 3.12. If N C M is a Haagerup inclusion and the center
of N is finite dimensional, then the relative commutant N' N M has
the Haagerup approximation property.

CoROLLARY 3.13. If Qg is finite dimensional and Qy C Q is a
Haagerup inclusion, then all the von Neumann algebras M*, = N°,
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M§ =M, M}, =vN(M}, eiy), i >2~—1, with M* and N* defined
as in Chapter 1 (not necessarily factors), have the Haagerup approx-
imation property (the trace on each M? is the restriction of the free

1
trace on MS).

Proof. By Lemma 3.10 R°®Qy C R°®Q and R°®Qy C R®Q, are
Haagerup inclusions and by Proposition 3.9 the inclusion R* ® Qg C
M = (R°®Q) * R'®Q, (R® Qp) is also of Haagerup type. Since QO
is finite dimensional and [R°: R ] < oo, i > 0, the same property
is still true for RS, = A2 c M5, . According to Corollary 3.12, the
von Neumann algebra (R® ;)N M, has the Haagerup approximation
property. But [M*, R°] = 0; hence M7 C (R®;) N M3, and M; has
itself the Haagerup property for all i > —1. O

CoROLLARY 3.14. If Q is finite dimensional, then all the von Neu-
mann algebras M}, i > —1, have the Haagerup approximation prop-
erty.

Proof. 1t follows by Corollary 3.13 and by Lemma 3.10(vi). O

COROLLARY 3.15. If Qo C Z(Q) and Qy C Q is a Haagerup inclu-
sion, then the von Neumann algebras M7, i > —1, have the Haagerup

property.

Proof. Since Q commutes with Q, it follows that [M*, R°®Qg] =
0 and consequently [M], R®,;® Qp] = 0. Since R’ ;® Qy C R°*® Qo
is a Haagerup inclusion it follows that A7 has the Haagerup proper-
ty. O

CorOLLARY 3.16. If Qg = C, then the corresponding algebras M,
i > —1, have the Haagerup property if and only if Q has this property.

COROLLARY 3.17. If Qg and Q are as in Corollary 3.13 or Corollary
3.15, then none of the von Neumann algebras M}, i > —1, contains
a rigid subfactor.

Proof. 1t follows by Corollaries 3.13 and 3.15 and by the arguments
from [CJ, Theorem 3] or [P1, Theorem 4.3.1]. O

At the end of this chapter we show that the Haagerup property for
an inclusion of group von Neumann algebras is related to the existence
of certain positive definite functions on the group, with some special
properties.
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Let G be a discrete countable group with unit e. The group von
Neumann algebra .#(G) associated with G is defined as follows: let
G actingon [2(G) by g-f=0d,*f, f€l*(G), g € G (Jg is the
evaluation function in g) and denote by u; the unitary operator on
I>(G) givenby ugf =30+ f, f€l*G), g€GC.

Then Z(G) is the bicommutant of {ug}.cq in Z(I*(G)). Note
that this action of G on /?(G) extends to a *-representation A: C[G]
— Z(I*(G)) of the group algebra C[G] on [?(G) defined by:

A (Z/agdg) =Y aguy,,  ageC.

geG geG

The use of the notation 3’ signifies that only a finite number of
ag’s are nonzero.

The linear functional 7: A(C[G]) — C defined by r(zg,eG agig) =
a., ag € C, extends to a nff trace on .£’(G) and this will be the trace
considered on .Z(G) from now on.

For Gy subgroup of G, .Z(Gy) is isomorphic to the weak closure
of A(C[Gy]) in .Z(G) and the map E: A(C[G]) — Z(Gy), defined by
E(Ygeqastts) = Ygeg, dgUss ag € C, extends to the t-preserving
conditional expectation E = Ey g ): Z(G) — Z(Go).

ProrosiTiON 3.18. If £ (Gy) C Z(G) is a Haagerup inclusion,
then there exists a net (¢,),c; of Go-bivariant positive defined functions
on G such that

() piley=1, 1€1;
(i) limes du(x) = li}nzel $.(y) =1, forall x € G/Gy, y € Go\G,
where ¢, (respectively ¢,) denotes the map induced by the Gy-invariant
map ¢, on the lefi cosets G/Gy (respectively on the right cosets Go\G) .
(iii) Each &, (respectively ¢,) vanishes at infinity on G/Gy (re-
spectively on Go\G) i.e. for any 1 € I, ¢ > 0, there exists a finite
set F', C G/Gy (respectively F?, C Go\G) such that |¢,(x)| < ¢, for
x € (G/Go)\F}!, (respectively |§,(v)] < e, for x € (GO\G)\FZ,).

Proof. Let ®,: Z(G) — Z(G), 1 € I, be a net of .Z(Gy)-linear
unital completely positive maps and define the functions ¢,: G — C,

¢i(g) = T(uzq)z(ug)) , 2€G.
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The £ (Gy)-linearity of ®, yields forany g€ G, gy € Gy:

$:(880) = T(ug ug®,(ug)ug) = T(ug®i(ug))
= ¢i(g) = T((ug ug) Pi(ug,ug)) = $:(808) -

Since ¢, are Gp-invariant, (ii) is equivalent to lim,c; ¢,(g) = 1,
for all g € G, and this follows by

|4:(8) = 1] = [{@i(ug) — ug , ug)e| < ||P:(ug) — tgll2

and by lim,e/ [|[®i(ug) —uell2=0, g €G.
Fix 1 € I and denote ® = ®,, ¢ = ¢,. Clearly ¢(e) =1 and the
complete positivity of @ yields

n
Z Aidid(g; gi) = Y T(Ajug)P(y ug)Aitt,-1)
i,j=1 i,j=1
n p— -—
= Z (Q(uzjug’)liugi-x s Ajugj—lh >0,
i,j=1

forall gy,...,8,.€G, A1,..., A, €C; hence ¢ is positive defined
on G.

Finally, let us check that ¢ vanishes at infinity on G/Gy. Let S be
a complete system of representations in G for G/Gy. Since {ug}.ci
is a left orthonormal basis of .Z(G) over .Z(Gy), we get

b= ugEgq,)usb), beZ(G) and

ges
IBll2 =" ||ugE_<Z(Go)(u2b)||% =y ||E.?(Go)(u§b)”§-
geSs ges

Let & > 0. Then there exists a finite set F; , C S such that

Y. IEz@yupd)l3 <.
geS\F,

Since Tp € Zz(g,)(L(G)), there exist a;, b; € £ (G),1<i<n,
such that ||Tp — 3", aiez(G,)bill < &. In particular
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n
D(ug) - a4Ez G )(biug)

i=1

<e, geq
2

l

|¢(8)] = 17(P(ug)us)l

T ((d)(ug) — E aiEg(Go)(biug)> uz)

i=1

and

<

n
+° [T(aiEg(G,)(biug)uy)|

i=1

n
<e+ ) llailllEg g, (bing)l:

i=1

n
=e+ Y lail2llExc,)uyb)l2, foralgeG.

i=1

Denote M = max;<;<y ||a;]|2 and let g = Hs——ﬁ , Fe=UL, Fy . -
The previous inequality yields |¢(g)| < 2e, Vg € G\F:Gy. O

Remark that in order to prove the previous statement we used only
that Ty € spanl ”{ae_g(Go)bla, be Z(G)}.

Consider the action 4 - gGy = hgGy, h € Gy, g € G of Gy on
the left cosets G/Gy. The orbit of an element gGy € G/Gy under
this action is {wgGy|lw € Gp}. If Gy is normal in G, then Gy acts
trivially on G/Gjy, the orbit of each element gG, being {gGy}.

ProrosITION 3.19. Let Gy be a subgroup of the countable discrete
group G. Assume that the orbit of each element gGy € G/Gy under
the action of Gy is finite and there exists a net of Gy-bivariant positive
defined functions ¢,: G — C such that

(i) gi(e) =15
(i) imer i(g) =1, g€G;
(iii) each ¢, vanishes at infinity on G/Gy.

Then the inclusion & (Gy) C £ (G) has the Haagerup property.
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Proof. Define ®,: A(C[G]) — A(C[G]) by

geaG geG

@, (Z/ agug> = ZI ¢.(8)agug,  ag€C.

In order to check that each ®, is completely positive on A(C[G]),
let & € 12(G) and

xi=Y agiug € MCIGl), 1<i<n.
geCG

Denote n, = Y1, ag,iugé; € I*(G), g € G. We obtain

n

Z (@ z(x "Xi)Ci &) = Z Z (ag . jae,iP uhug)éz, )

i,J=1 i,j=1 g,heG
n
/
= Z Z @y jag, it (h™ ' g)(upugés, &)
i,j=1 g,heG
/
=) (g h)(ng. m) 20,
g,heG

since the (finite) matrix [¢,(g7 ') - (ng, M4)] heG is Dositive, as the
pointwise product of the positive matrices [¢,(g“1h)]g,h€(; and
[{ng, Mn)]g, nec and the sum of the entries of a positive matrix is
positive.

Since ¢:(g) =1, g € Gy, it follows that Ex )P = Eg(G, and
each @, extends to a E g(Go)-preserving unital completely positive
map D,: Z(G) — Z(G) (cf. [H, Proposition 1]). The Gy-bivariance
of ¢, implies the .#(Gy)-linearity of ®,.

In order to check lim,¢ ||®,(x) — x|l» = 0, x € Z(G), note that,
since ||Tp | < 1, it is enough to consider only the case x = u,,
g € G, and the equality follows by lim,c; ¢(g) =1, g € G, and by

1P (ug) - “g”% = ll¢z(ug)II% + “ug“% — 2Re(D,(ug), ug):
<2-2Ret(uz®(ug)) =2—2Re¢i(g).

We prove now that Ty € %3((;0)(3(6)), 1e€l. Fix 1€ and
denote ¢ = ¢,, ® = D,. Let S be a complete system of representants
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for G/Gy in G and let X;Gy, i > 1 be the orbits of G/G( under the
action of Gy, with X; finite subsets of S, i > 1, and U;»; X; =S.
Note that X;Gy = goXiGo, g € Go, i > 1. -

For each orbit XGy of G/Gy under the action of Gy, we check
that 3°.cy Ugez(c,)Uz € 2 (Go)' .

Indeed, for any gy € Gy, x =Y.' cq Qwlhw , Gw € C, we have

*
D_ U (GHyhe, X

geX
=5 S awugEg)(u,- o) = D P Byt guph

gEX welG gEX wegG,

Za nug— Z d lug—}:agugo

8EXG, g€ XG, 8EXG,

= Z Z/ agwugogw = Z Z/ awugogE_g(Go)(ug_nw)

gEX weG, geEX weCG

— *
=g, Y g€ (G Uy
geX

Since

' /
*
ugeg(Go)ug (Z awuw) = z agwugw,
T

weG weG,
we get

x _ plG)
Z Uglr(G)Ug = PI’(XGO) :
geXx

Let S, = UL, X; C S and define 7, = 2865,. P(gluger G )y =
> e s, q&(g)Pllz ((G();) Note that, since ¢ is Gy-bivariant, it is constant
on each orbit X;, and hence T, € £ (Gy)’. Since ¢ is positive defined
and ¢(e) = 1, one easily checks that |¢(g)| < 1, g € G, and hence
ITnll < 1.

Since ¢ vanishes at infinity on G/Gy, there exists a subsequence
{kn}n>1 such that supges\s, 16(2)I < 7

Let x € Z(G). Since {ug}ees is a left orthonormal basis for
Z(G) over Z(Gy), it follows that for any & > 0, there exists k(g) >
1 such that ||lx — Y ocs ugEz(G)(uyx)ll2 < &llxlz, for all k > k(e).
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Then, pick an n > 1 and assume that k(e) > k,. We obtain
I Tox: — Ty Xcll2 = [[®(x)r — T Xzll2

<e+| > D(ugEg () Uy - > d(QuEx (U X)
8E€S,,) 8€S,, ’
mer 316G 030l
k(e)\S
1/2

=&+ Z lé(8)ugEx ) (u 213
gESk(e)\Skn

12
<e+| Y 18 PIEg @, usx)l3
8ES\S,
12

1 1
<ori| O IEreoli| < (o4 ) I

geS\S, e
Consequently [|Tp — Ty || < 5 and Top € Ty () (Z(G))- O

CoROLLARY 3.20. If Gy is a normal subgroup of the discrete count-
able group G, then & (Gy) C £ (G) has the Haagerup property if and
only if there exists a net (¢,),c; of unital positive defined functions on
the quotient group G/Gy that vanish at infinity on G/Gy and such
that lim,c; ¢,(g) =1, forall g € G/Gy.

The Propositions 3.18 and 3.19 were proved in [Ch] for Gy = {e}.
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