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UNIT INDICES OF SOME IMAGINARY
COMPOSITE QUADRATIC FIELDS

MlKIHITO HlRABAYASHI

Let K be an imaginary abelian number field of type (2, 2, 2, 2)
not containing the 8th cyclotomic field. Using the fundamental units
of real quadratic subfields of K, we give a necessary and sufficient
condition for the unit index QK of K to be equal to 2.

1. Introduction and results. Let K be an imaginary abelian number
field and KQ the maximal real subfield of K. Let E and EQ be the
groups of units of K and KQ , respectively, and let W be the group
of roots of unity in K. Then we call the group index

QK = [E: WE0]

the unit index of K.
Using the character group of K, H. Hasse [2] gave sufficient con-

ditions for Qκ to be equal to 1 or 2, by which we can determine QK
for some types of fields K. However by his method we cannot always
determine QK for arbitrary K, even if K is an imaginary composite
quadratic field. (We call a field K a composite quadratic field if K
is a composite of quadratic fields.) K. Yoshino and the author [3, 4]
gave criteria to determine QK of K with Galois group Gal(-KyQ) of
type (2,2) and ( 2 , 2 , 2 ) .

In this paper we extend our previous results [3, 4] to the case that K
has Galois group Gal(ϋΓ/Q) of type ( 2 , 2 , 2 , 2 ) and does not contain
the 8th cyclotomic field, and then, we give a necessary and sufficient
condition for the unit index QK to be equal to 2.

NOTATION. N, Z, Q: the sets of natural numbers, rational integers
and rational numbers, respectively,

= : the equality except rational quadratic factors,
2

do, d\, dι, . . . , dη : square-free positive integers such that d$ =

d2d3, d5 = dsdi, d6 = d\d2, dη = dχd2d3 and d0 φ dt (i =

1,2 7)
K = Q ( v - d o , y/d\, v ^ 2 ? yds): an imaginary composite qua-

dratic field of degree 16,
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i^ J β)
E£: the group of totally positive units of KQ ,
EQ : the group of units η of E£ such that Ko(^/η) is a composite

quadratic field,

KΊ -

N(x), Sp(x): the absolute norm and the absolute trace of x, re-
spectively,

f 2d\{ de

2

2dl* if do = 1,
4̂ = ^4(^i , ^2 > ̂ 3J = \ e e e

[ dod{

1 d2

2 d3

3 otherwise,

8i: the fundamental unit of Q(\fdi), β, > 1 (/ = 1, 2, . . . , 7).
When JV(β, ) = + 1 , we denote by Δf , Δ* the square-free parts of

Sp(β/+1), Sp(β| — 1), respectively, and by m z , n\ the natural numbers
such that Sp(βj + 1) = Δ/m?, Sp(ε, - 1) = A*nj. Then we have

(1)

When di dj = d^ with Nfe) = N(8j) = iV(β )̂ = — 1, we denote by

= Δ, | the square-free integer such that

~ &i ~ 8j ~

(We take (ij) = (1 , 2), (1, 3), (1, 4), (2, 3), (2, 5), (3, 6) and
(4,5).)

When d/d/ίfc = dι with JV(β, ) = Λ (̂gy) = N(εk) = ΛΓ(β/) = - 1 and

when Q(^/dj, yfcΓj, y/d^) = KQ, we denote by Δ,-7 ̂  the square-free
integer such that

εaεβ

where a, β run through i, j , k and /.
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For a totally positive unit η of KQ let

(3) θ*(η) = ξ*(η) +ξ*(η)σ>

(4) d*(η) = θ*(η) + θ*(η)σ> + 2(-\)s^θ*{η)θ*{η)σ* (st = 0 or 1)

under the condition that

(5) y/^eKu ^ξ*(η)ξ*(*i)σ>ek3 and y/θ*(η)θ*(η)*>eQ.

We remark that for a totally positive unit η of KQ this condition (5)
is satisfied if and only if η is contained in EQ . This remark can be
proved by Lemmas 4 and 5 (cf. proof of Theorem 4).

Throughout this paper we assume that K does not contain the 8th
cyclotomic field Q(\/—T, λ/2). Our result is the following

MAIN THEOREM. Under the above notation and assumption we have
that QK = 2 if and only if

I K ' ' Π 4 Π Δ& WnoΫ = Λ{e,, e2, ei)
i ij i,j,k

for some at, bij, cijk, / , eι? = 0 ? 1 and ηo e Έo represented in the
form

ΓΊΓ?ΊΓ?- π
Ui ,Vi = 0 or I, The number of Vsfor which Ui = 1 is neither

1 nor 2.

More precisely we have the following Theorems 1-6.

THEOREM 1. In the case that N(eχ) = N(e2) = = N(εΊ) = - 1 ,
we have

2<* Δ ^ 3 Δ ^ 2 3 = A{ex, e2, e3)

for some bi, c, e, = 0 , 1 . Especially, if Λ/KΪJ is contained in

Q(yβi, yfdj) for every (i,j), then Qκ = 1.

THEOREM 2. In the case that N(eχ) = N(e2) = = N(ε6) = - 1
and N(εΊ) = + 1 , we have

Qκ = 2^ Δ ^ Δ ^ = A(e{, ^ 2 , e3)

for some a, /?/, eι? = 0, 1.
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THEOREM 3. In the case that N(ε{) = N(ε2) = = N(ε5) = - 1
and N(ββ) = N(εj) = + 1 , we have

Qκ = 2& Δ j Δ ^ Δ ^ Δ ^ = A(ex, e2, e3)

ybr some a/, ft/, e, = 0, 1.

T H E O R E M 4. (1) 7/z ίΛ^ case ί t o N(e\) = ••• = Λ^(ε4) = - 1 and
N(e$) = iV(e 6) = N(εΊ) = + 1 , w

= 2 <* ΔjΔj

α/, b, / , ?̂ = 0, 1

, = 0 or 1).

(2) 7n ίΛe case that N(εx) = N(ε2) = N(e3) = N(εΊ) = - 1 and
N(ε4) = N(ε5) = N(ε6) = + 1 , we have

Δf f 23

for some ai9 c, ef = O, 1.

THEOREM 5. (1) 7AI the case that N(e\) = N(ε2) = iV(e3) = - 1 and
N(e4) = N(ε5) = N(ε6) = N(εΊ) = + 1 , we have

7

1=4

for some α,, / , e\ = 0, 1 and ηo e EQ such that

y/ε^ε^εη or \fε§ε4εη (Vf = 0 or 1).

(2) 7n ίΛe case ίλaί
N(8i) = + 1 , we have

= JV(ε2) = Λ^(ε6) = - 1 and the others

for some a z, Z?, / , ex• = 0, 1 G ΈQ such that

or yjε4ε$εη (vt = 0 or 1).



UNIT INDICES 91

THEOREM 6. In the case that N(ε3) = N(ε4) = = N(e7) = + 1,
we have

for some at, / , eι• = 0, 1 and ηo e Έo such that

no vt υ2 υχ 1 / p.
= = = = = — 6i ε>y , βi o r l v^/ ? ^/ — ^ ^̂ "

according as N(ε\) = Nfa) — - 1 ^(βi) = - 1 ^«^ Nfe) = +1 or
JV(fii) = iV(e2) = + 1 . 7%^ number of Vs for which Uf = 1 w neither
1 nor 2.

REMARK 1. In Main Theorem τ/0 is n o t represented in the form

*ιι

where iV(ez ) = iV(e; ) = iV(^) = +1 and djdj = dk (cf. proof of Case

(2) of Theorem 4).

REMARK 2. For some ^o £ ^o w e c&n actually calculate the ra-
tional integers d*(ηo) defined by (4). For example, we can obtain
the following: Suppose that N(ε\) = Nfo) = N(e$) = +1 and that

is totally positive. Then η0 € Eo if and only if

(6) Δi =d2d3, A2 = d3 du Δ3 = dx d2.

If this condition (6) is satisfied, we have

where Δ/, Δ*, raz, nz α/iύί 5, are as in the notation.

2. Properties of Eo and lemmas on (2, 2)-extensions. In this sec-
tion we give a proposition and some lemmas which will be used in the
proofs of theorems.

Let (x9y9...) be a group generated by x, y, . . . . Let£Q be the
subgroup of EQ generated by the units of Q(y/dj) for / = 1, 2, . . . , 7.
Let ( £ Q ) + be the subgroup of EQ generated by totally positive units
of £0*,i.e., (E*oy = E*o
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P R O P O S I T I O N 1 . (I) If N ( ε ι ) = ••• = N { ε 7 ) = - 1 , t h e n

(E$)+ = (ε 2ε 3ε 4, ε ^ ε s , εiε 2ε 6, εiε 2ε 3ε 7)££ 2 .

(2) // JV(βi) = = N(ε6) = - 1 and N(εΊ) = + 1 , then

(E%)+ = (ε 2ε 3ε 4, e 3εie 5, εiε 2ε 6, 8Ί)EQ2.

(3) / / N ( ε O = ••• = N(ε5) = - 1 amaf ΛΓ(e6) = N(ε7) = + 1 ,

(Eζ)+ = (ε2ε3ε4, ε 3εiε 5, ε 6 , ε 7)£o 2

(40 // ΛΓ(βi) = = JV(ε4) = - 1 βnrf iV(ε5) = JV(ε6) = iV(ε7) =
+ 1, then

(££)+ = <ε2ε3ε4, ε 5 , ε 6 , eΊ)Eζ2.
(42) // ΛΓ(βl) = iV(ε2) = JV(ε3) = N(ε7) = - 1 αnύ? ΛΓ(β4) =

N{ε5) = N(e6) =+1, then

{E$)+ = (εiε2ε3ε 7, ε 4 , ε 5 , ε6)Ef.

( 5 0 // N ( e t ) = N(ε2) = N ( e 3 ) = - 1 and N ( ε 4 ) = ••• = N(e7) =,
+ 1, then

(E$)+ = (ε4, ε5, ε6, εΊ)Ef.
(52) // N(eι) = N(ε2) = JV(e6) = - 1 and the others Λr(β,) = + 1 ,

, ε 3 , ε 4 , ε 5 ,

(6) // N(eι) = N(ε2) = - 1 and N(ε3) = ••• = N ( ε 7 ) = + 1 , then

(E£)+ = (ε3, ε4, ε5, ε6, εη)Ef.

(7) // JV(βi) = - 1 αnc/ iV(ε2) = = Λ^(ε7) =

(E*o)
+ = (ε2, ε 3 , . . . , ε7>2<0*

2.

(8) // ΛΓ(βi) = = iV(ε7) + 1 ,ίΛe/ι

o*)+ = ( ε 1 , ε 2 , . . . , ε 7 ) £ ' o * 2 .

Proof. We only prove the case (1), because the other cases are proved
in the same way.

For an element a φ 0 of K we define s(a) = 0 or 1 by (-l) ί(α) =
a/\a\.

For η e (EQ)+ , putting η = ε^'ε^2 ε*7 (x, e Z), we have a system
of simultaneous linear equations

+ s(ε2)x2 -\ h 5(ε7)x7 = 0

+ s(εσ

2

ι)x2 H 1- ̂ (ε^ 1 )^ = 0

(mod 2)

I s{ε\η)xι + s{εlη)x2 + h s{εσ

η

Ί)x7 = 0.
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By Gauss-Jordan elimination (see, for example, H. Anton, Elementary
Linear Algebra, John Wiley & Sons (1973), pp. 18-20) we see that this
system has the following four linearly independent solutions:

JC3

x4

x5
χ6

\XlJ

=

/ 0 \
1
1
1
0
0

\ 0 /

/1 \
0
1
0
1
0

\ 0 /

/1 \
1
0
0
0
1

\o/

/1 \
1
1
0
0
0

\ 1 /

To these solutions correspond units £2^4>
respectively. Thus we have

= (828384> α

In general, let K/k be a (2, 2)-extension with Galois group
Gal(K/k) = (σ, τ) . Then, as used by H. Wada [6], we have

Λ+σ ~,\+τ
2

a =
(aσ)ι+στ

C £*for a G K, a Φ 0. By this simple formula we see that

Moreover, we have is 0 C £"* by the following

LEMMA 1. Let η e Έo and put η4 = ε*ιε*2 e*7 (xt e Z). Then,
every Xf is even.

Proof. Since K0(y/η) = K${y/d) for some d e N , we can put f/ =

dctQ (αo G JKO) Taking the norm JV̂  /k oϊε^έ^1 βγ7 = β?4«o > w e

have ε^1 = dl6Nκ /k ( α 0 ) 8 . This implies that xz is even. D

LEMMA 2.

(7)

Then, all xf

η EEQ and put

or / 9s are odd.

forProof. For the simplicity we denote by JV, the norm /
each /.

First, for example, we assume that^i = 1, xz = 0 (mod 2) (/ =
2, 3, . . . , 7). Taking the norm JV3 of the equation (7), we have
N3(η) = e^e^s*6 e K3 . On the other hand, putting η = da\ (deN,
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αo £ KQ) , we have N$(η) = d2N3(ao)2 . Therefore, y/εϊ is contained
in K3 = Q(y/d\, \J~d2) - I n the same way, taking the norm N2 of (7),
we see that y/ε{ is contained in K2 — Q(y/dl, Λ/^0 Thus ^/ε^ is
contained in K2Γ\K3 = Q{y/d[), which is impossible.

Secondly, for example, we assume that Xι = x2 = 1, Xi = 0 (mod 2)
(/ = 3, 4, . . . , 7). Taking the norms N2, Λ/4 of (7), we see that y/ε[
is contained in Q(y/d\), which is also impossible.

Thus there is no case that exactly one or two of Xi are odd. D

LEMMA 3. Let η e ΈQ and put

(8) η2 = εϊex

2>.. εϊ (x/GZ).

(1) If there exists an even xt, then N(BJ) = +1 for each odd Xj.

(2) If there exists "Γ for which xt = 0 (mod 2) or Nfa) = + 1 ,
thenxj is even when N(βj) — - 1 .

(3) If Xι=x2 = "' = x7 = l (mod 2), ίλen N(εχ) = N(ε2) = =

Proof. (1) Suppose that Xi Ξ 1, x2 = 0 (mod 2). Taking the
norm JV3 of (8), we have N$(ή) = sXιεXlεX6. Again, taking the norms
N\, N2 of this equation, we have by η > 0 that

>0,

,)*6 > 0.

Hence N(ε6)
xe = +1 and then ΛΓ(βi) = +1 -

(2) We suppose that X\ = 0 (mod 2) or iV(βi) = +1 and that

Taking the norm Λ^ of (8), we have N-$(η) — ει

ιε2

2ε6

6. Again,
taking the norm Nβ of this equation, we have

^6(^3(*?)) — N(ε\)xιN(ε2)
Xiε^6 > 0,

and so x2 = 0 (mod 2).
(3) Taking the norm N\ of (8), we have N\(η) = ε2

2ε3

3β44. More-
over, taking the norms N2, 7V3 of this equation, we have

N2{Nλ{η)) = iV(ε2)^εf3iV(ε4)^ > 0,

N3(Nι(η)) = ε2

2

X2N(ε3)
xiN(ε4)

x< > 0.

Then N(ε2) = N(ε3) = N(ε4).
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In the same way, taking the norms JV2, N 3 , N^ of (8), we obtain
N(ε3) = N(εx) = N(ε5), N(εx) = N(e2) = N(ε6),N(ε3) = N(ε6) =
N(εΊ). D

For a field k we denote by " = in k" the equality except a square

of a number of k.

_ L E M M A 4 (F. Halter-Koch [1, Satz 1]). Let Kx be a field with
Φ 2. Let KQ be a quadratic extension of Kx and

(ηo € KQ) a biquadratic (quartic) extension of Kx. Then
is bicyclic if and only if NKjKι(η0) = 1 in Kx.

By this Lemma 4 we can easily obtain

LEMMA 5. Let K\ be an algebraic number field and KQ a qua-
dratic extension of K\. Let Ko(^/%) (η0 e Ko, η0 φ K\) be a
biquadratic bicyclic extension of Kx with Gύl(Ko(y/rfo)/Kι) = (σ 9 τ)
and Gal(.S:o(v^o)/^o) = <τ). Let F be the intermediate field of
K0(y/ηό)/Kι fixed by σ. Then we have

3. Proof of theorems. For the proof of Main Theorem, it is enough
to prove Theorems 1-6, because the cases of Proposition 1 cover all
the possible cases of the combination of iV(e/) = ± 1 .

Let K1 be the quadratic extension of K generated by a primitive
2 π + 1 th root of unity, 2n\\#W, and let K'o be the maximal real subfield
of K'.

When didj = dk and Nfa) = N{εj) = N(εk) = - 1 , let

r\ij = e/β/βfc, ζtj = eiejεk - βi - βj - εk.

Then it follows from T. Kubota [5, §5] that

(9) ηijSp(ξij)=ξfj.

For the multi-quadratic field Ko = Q(y/d\, \[<h, yfdϊ), we can prove:

LEMMA 6. Suppose that N(εx) = N(ε2) = N(e$) = N(εΊ) = - 1 . Let

εxεΊ + ε2ε7
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Then we have

(10)

Proof. Since

ξσ* = ε[ε2ε3ε'Ί

MIKIHITO HIRABAYASHI

ηSp(ζ) = ξ2.

7 " £ 2 £ 7 "

it holds that βiε7<^σi = —ξ, where ε' is the conjugate of ε with respect
to Q. In the same way we have

e2e7ξ
σ* = ε3εΊξ

σ> = e2e3ξ
σ* = ε 3eiΓ* = eιe2ξ

σ* = -ξ,

εyε2ε3εΊξ^ =ξ.

Therefore

where i, j run through 1, 2, 3 and 7. Thus we have ηSpκ /Q(£) =

L E M M A 7 . Suppose that N(ε\) = Λ ^ ( ε 2 ) = ••• = N(eΊ) = - 1 a n d

that y/AΪ] £ Q(\/3/, V^/) / o

Proof. Let η EEQ. By Lemma 1 we have

Assume that every xt is odd. Taking the norm N\ of (11), we have
by Lemma 4 that ε^ε^ε^4 = 1 in K\, because K0(y/η)/Kι is a

(2, 2)-extension or y/η is contained in KQ . Therefore ^ 2 e 3 e 4 ^
K\, and then by (9) we have \/^23 ^ K\ = Q(Vdϊ> \f*h) Simi-
larly, taking the norms N2, N-$, N4, N5, N^ and TVγ of (11), we have
Λ/AΪ] e Q(y/dϊ, λ/dj) for every (/, j). This contradicts the assump-
tion. Hence there is an even integer among ,*,• 's, and it follows from
(2) of Lemma 3 that every JC, is even. Therefore, η G (EQ)+EQ . Thus
we have EQ C (EQ)+E% .

The inverse inclusion {E^)+El C Eo is shown by the equations

(12)
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for (η,ξ) = (ηij,ξij) and (ηijk,ζijk), since (E£)+E$/E% is repre-
sented by ηn, τ/23, mi and 1̂23

Proof of Theorem 1. First we assume that y/Kϊj ^ Q(y/dϊ>
for some (/, j).

Suppose that QK = 2 Then there exists a unit η e EQ such
that K0(y/η) = AΓQ (Hasse [2, Satz 15]). By Lemma 7 we have
η = e"le"2 za

Ί

Ίz\ (α, G Z , ε0 £ ^o) s u c h thatβ^ε*2 ^ 7 is totally

positive, and by (1) of Proposition 1 η = 1̂2̂ 23̂ 31 ^ί23ε2 (̂ *'> c

Z, ε € EQ) . Therefore it follows from (12) that

Since AΓQ = ^ ( v ^ ) or ΛΓO(Λ/^O) according as ύ?o = 1 0 Γ not, we have
for some ^ 7 = A(e[, 4 , ^ ) . Therefore

^ ^ A ^ A ^ ) = KQ{yfA<).

Thus we have

(13) Δj^Δ^Δ^

for some -̂ = 0 , 1 . Because, if K0(^/m) = Ko(y/A*) for a rational
integer m and 4̂7 = A(e[, e'2, e'3), then Q(y/m/A') is equal to Q or
Q(^/m/A') is a quadratic subfield of Ko, and so

m = A'd\; df dejr2

for some e" , e'{, ^3 = 0, 1 and some r e Q . Therefore, putting

βi = ^ + ef'
; (mod 2) (/ = 1, 2, 3), we have

m = A(eι,e2, e3).

Conversely, if this equation (13) holds, then the square root of η :=

^12^23^31^123 generates K'o over AΓ0, i.e., K0(^/η) = K'Q. Thus, by
H. Hasse [2, Satz 15] we have Qκ = 2.

Secondly, we assume that y/Δϊ] G Q(y/dϊ, y/dj) f ° r every (/, 7).
Then it does not hold that

Δ 12 Δ 23 Δ 31 Δ 123 Ϋ

for any bx 9 c, e\ = 0, 1.
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In fact, by the assumption and by 77123 = */i2*/36β6~2 w e

K0(^/AΪ]) = Ko for every (/, j) and K0(Λ/A^) = K0(^/A^A^) =
Ko . Consequently, we have

Δ ^ Δ ^ Δ f o = <> d? d? φ A{ex, e2, 6>3),

where α/ = 0 or 1.
In this case we can show that <2# = 1 as follows:
Assume that QK = 2. Then there is a unit η e EQ such that

ΛΓo(v̂ T) = ^ό β y Lemma 1 we have η2 = efβj 2 e*1 (x, G Z). It
follows from (2) of Lemma 3 that all Xj are even or odd.

If all Xi are even, then η e (EQ)+ and we have η — 1̂2̂ 23̂ 31
for some b\, c G Z and ε0 G Eg Since 7/123 = *7i2*/36^2 ? w e obtain
by the assumption that y/η G AΓ0, which contradicts that KQ(^/TJ) is
a quadratic extension over ^ 0 Therefore, all X; are odd. Then η —

• fi7Πj=ie?/ for some y / G Z . Since

^ ^ ^ ε

we have

1=1

By (9) we have v/^πri3V/^ϊT = 1̂3 for some r J 3 G N . And by the
assumption we have Δ 1 3 = da

χ

x d^ for some a\, ^3 = 0, 1. Hence

totally positive. Moreover, from ξχ

ι

3 < 0, ξχ\ > 0,

fx\ < 0 it follows that 1̂̂ 3̂ 13 is totally positive. Therefore

1 0 1 p 3

is totally positive, and then this unit is square in K2 = Q(y/dί9

(M. Hirabayashi and K. Yoshino [4, Proposition 2, IV]). So we can
put

where 613 is a unit of K2 . In the same way we obtain

b % c 3 ε c

6

6 y / η ^ = ε^6 φi, c7- = 0,

where £23 a n d ε^ are units of ίΓi and K^, respectively. Therefore
we have

7
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Since Πj=i V *s t o t a Uy positive, we have, as before,

7

ι=l

for some α, £ Z and βo £ ^o ^y ^ e assumption each Y\IJ is square

in Q(y/di, \/d]) and so is η in AΓ0, which is also contradiction. D

LEMMA 8. If exactly one or two of N(βi) (i = 1, 2, . . . , 7) are + 1 ,
then we have Έo = (E£)+E$.

Proof, It is enough to prove the following two Cases (1) and (2).

Case (l)^V(εi) = = N(e5) = - 1 and N(e6) = N(e7) = + 1 .
Let η e Έo and let η2 = efej 2 ε^7 (xz G Z) . By (2) of Lemma 3

we see that x\9 X2, ... , X5 are even. Then it follows from Lemma 4
that

= 1 in

Now, we assume thatx 7 is odd. Then ε7 = 1 in K4 = Q(y/d\,

and in K5 = Qixίd^, y/dl) Therefore, Δ7 = di1 de/, Δ7 = dej dt5

2 2 Δ °

for some e\, e^, ^4, 5̂ = 0 , 1 . These equations lead that Δ7 =

[d\ didiYi = de

η

λ, which is impossible (Kubota [5, Hilfssatz 9]). Thus

Xη is even. Similarly, by the equations
ηησ3 = β- 1 e 9

2 β , 6 = 1 in K$,

1 z o 2

3 6 7 2

we see that x$ is even. Therefore all JC; are even and so ηeEX.

0 0

The inverse inclusion (EQ)+EQ C £ O is shown by the equations (1)
and (12).

Case (2): JV(εO = N(e2) = = iV(ε6) = - 1 and JV(ε7) = + 1 .
Let A/ G Γ o and let ?/2 = ε*ιε%- eγ (JC/ G Z) . Then, by (2)

of Lemma 3 we see that x\, x2, ... , Xβ are even. In the same way
as in the proof of Case (1) we can show that Xη is even and that
Έ0 = (E*)+Ei. D
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Proof of Theorems 2 and 3. We only prove Theorem 2, because we
prove Theorem 3 in a similar way.

Suppose that QK = 2. Then there exists a unit η £ Eo such that
K0(y/η) = KQ = KQ(VA) where A = A(β\, e2, e$). By Lemma 8 and

(2) of Proposition 1 we can put η = ε*ηι2η2sη3\ε2 (a, b( eZ, ε e
and we have

Consequently,

(14) A«A%A^Ab

3\=

Conversely, if this equation (14) holds, then a square root of η :=
ε7 ^2*723^31 generates K'o over Ko, i.e., AΓQ = ^ ( y ^ ) Therefore we
have Qκ = 2. D

Proof of Theorem 4.
(1): 7V(εO = 7V(ε2) = 7V(ε3) = N(ε4) = - 1 and iV(ε5) =

Suppose that QK = 2. Then there is a unit η e EQ such that
^ό ^y Lemma 1 and (4i) of Proposition 1 we have

where X;, yf G Z . From (2) of Lemma 3 it follows that x2 = 0
(mod 2). Hence by Lemma 2 we see that x5 = x6 = xη (mod 2).

In the case that x5=x6=x7 = 0 (mod 2), we have

Ί — ε 5 ε 6 ε 7

for some a^ b = 0, 1 and βo eEfi. Therefore,

and then

(15) Δ f Δ j ? ^

for some eι• = 0, 1.
In the case that x5 = x6 = xΊ = l (mod 2), let

4

>7o := v / ε 5 ^ β 7 f l V (Vi = 0 or 1)
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as

*/oeand let η0 be totally positive. Then we have η = ea

5

where ai9 b = 0, 1 and 6Q e EQ . Since £5, εβ, εj, η23, η e EQ, we

see ηoeΈo. Then it follows from Lemma 5 that

= K0(y/d*(η0))

where <T0fo)> 0*fao) and rf*(%) is defined by (2), (3) and (4), re-
spectively. Here we take sι• = 0 or 1 (i = 1, 2, 3) in accordance
with

respectively. Therefore

and then we have

(16) ΔjΔjΔf ^ 3 (̂ o)

for some eι• = 0, 1.
Conversely, if the equation (15) or (16) holds, the square root of

η := ^55e66ε77^23 0 Γ ε55ε66ε77^23^o generates AΓQ over Ko, respec-
tively, i.e., K'Q = K0(y/η). Then we have Qκ = 2.

Case (2): N(εx) = N(e2) = N(ε3) = N(ε7) = -1 and N(ε4) =
N(e5) = N(ε6) =+1.

Suppose thatQ/ί: = 2. Then by Lemma 1 and (42) of Proposition
1 we have

(17) *2 = β?β?e?Vί23Πβ?''
1=1

where Λ:, , y/, Z G Z . Then it follows from (2) of Lemma 3 that z = 0
(mod 2), and from Lemma 2 that x4 = x5 = x^ (mod 2).

If x 4 = x5 = x6 = 0 (mod 2), then 1/ e (Eζ)+ . By (42) of Proposi-
tion 1 we have η = fi^e^e^6 1̂23̂ 0 f°Γ s o m e Λ, , c = 0, 1 and εo ^ ^0
Therefore,

(18)

If X4 = x5 = JC6 = 1 (mod 2), taking norms N\ and N4 of the
equation (17), we have by Lemma 4 that

'• = 1 in
2

v< = 1 i n
2
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Then ΛJA4 is contained in KιΓ)K4 = Qiydid?), and then Δ4 = 1

or d?2 d3 , which is impossible (T. Kubota [5, Hilfssatz 9]).
Thus, if Qκ = 2 we have the equation (18) and hence

2

for some ^ = 0, 1.
Conversely, when the equation (19) holds, we can show, as before,

that QK = 2. D

Proof of Theorem 5. (1) Suppose that N(eχ) = N(e2) = N(ε3) = -1
and that N(ε4) = ••• = iV(ε7) = + 1 . By Lemma 1 and (5i) of
Proposition 1 we have

(20) ^ 2 = < 4 < 5 < 6 ^ ^

for any η EΈQ where JQ , y, € Z . Then by Lemma 2 we have the
following three cases:

(i) x4 = x5 = x6 = xη = 0 (mod 2)
(ii) Among x 4 , x5, x 6 and Xη, exactly one X/ is even;

(iii) x4 = x5=x6=x7=l (mod 2).

Case (i). We have η e ( £ Q ) + a n ^ w e m a Y P u t 7̂ = e

4

4e55el6ei7 (ai G

Z). Then we obtain, as before,

Case (ii). We first consider the case that x4 = x5 = x6 = I, xΊ = 0
(mod 2). Taking norms N\ and JV4 of (20), we have

= 1 in ^ =

= l in K4 =

Then, as before, Λ/A^ is contained in Q(V^4), which is impossible.
Next we consider the other cases, for example, x4 = x5 = xη =

1, x6 = 0 (mod 2). Let

I/O := Λ/fi4fi5*7 Π β Γ ^ = ° 0 Γ !)
/=1

and let f/o be totally positive. Then we can prove the assertion in the
same way as in the proof of Case (1) of Theorem 4.
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Case (iii). As before, taking norms N\, N2, N$ and NΊ of (20),
we obtain

Δ4 = d2 or d^ Δ5 = d3 or d\ Δ6 = o?i or tff2

Δ4Δ5Δ6 = d2d3, d3 d\ or d\ d2,

which is impossible.
(2) Suppose that iV(βi) = N(ε2) = N(e6) = - 1 and the others

N(εϊ) = + 1 . We have by (52) of Proposition 1

for any η EEQ where X;, y, € Z . By (2) of Lemma 3 we have X\ = 0
(mod 2). Therefore we obtain, as before, the following cases:

(i) x3 = x4 = x5 = x7 = 0 (mod 2)
(ii) Among X3, x4 , x5 andx7 , exactly one xz is even;

(iii) X3 = X4 = X5 = x7 = 1 (mod 2).

By the same argument in (1) of this proof we can prove the assertion

for each case. D

Proof of Theorem 6. In the following we only consider the first case:
N{β\) = N{ε2) = - 1 , since the other cases are proved in the same
way.

Let

Π *?'" Π <' («/̂ ΐ = 0

and let ηo be totally positive.
For any η e EQ we may put f/ = ε^3 εaj f/̂  where α/, / = 0 or

1. Then we have, as before,

Thus we obtain that QK = 2 if and only if

as desired.
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