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^-CANONICAL COMMUTATION RELATIONS
AND STABILITY OF THE CUNTZ ALGEBRA

P. E. T. J0RGENSEN, L. M. SCHMITT AND R. F. WERNER

We consider the ^-deformed canonical commutation relations ata*
- qajdi = δijί, /, j — 1, ... , d, where d is an integer, and
— 1 < q < 1. We show the existence of a universal solution of these
relations, realized in a C* -algebra %>q with the property that every
other realization of the relations by bounded operators is a homomor-
phic image of the universal one. For q = 0 this algebra is the Cuntz
algebra extended by an ideal isomorphic to the compact operators,
also known as the Cuntz-Toeplitz algebra. We show that for a general
class of commutation relations of the form a id* = Tij(a\, ... , aj)
with Γ an invertible matrix the algebra of the universal solution ex-
ists and is equal to the Cuntz-Toeplitz algebra. For the particular
case of the ^-canonical commutation relations this result applies for
\q\<y/2-l. Hence for these values Wq is isomorphic to ^ . The
example did* - qa*aj = S^ί is also treated in detail.

1. Introduction. In this paper we study the relations

(1) did) - qa)ai = δijί, /, j = 1, . . . , d9

for bounded operators ax?, / = 1, . . . , d, d < oc on a Hubert space,
and a deformation parameter q satisfying - 1 < q < 1. For q = 0
these relations are known as the Cuntz relations, and it is well known
that in this case the C*-algebra generated by the αz is essentially
unique: it is either the so-called Cuntz-Toeplitz algebra, or the quo-
tient of this algebra by its only closed two-sided ideal (generated by
1 - Σj a*di), which is known as the Cuntz algebra #4. Our main
result in this paper is that the same statement holds for the relations
(1) for small q. The technique we use also applies to more general
relations of the form

( 2 ) α , έ i} = Γ y ( έ i i , . . . , a d ) ,

where Γ is an invertible matrix of functions in the functional calculus
of d variables, which satisfy a continuity and a growth condition
specified below. We then show that one can decompose the generators
as di = Vip, where the Vι satisfy the Cuntz relations, and p satisfies
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an equation which can be solved by iteration. This iteration can be
performed within the algebra generated by the v, implying that p
and at are in the C*-algebra generated by the v\, and hence generate
a Cuntz-Toeplitz or a Cuntz algebra.

In the recent physics literature there has been much interest in de-
formed versions of the canonical commutation relations for Bosons,
partly as a tool for studying representations of the quantum groups
[Bie, Mcf], but also as a possible generalization of the standard quan-
tum description of indistinguishable particles [Gre]. The * ^-relations"
(1), or "quon ^-mutation relations" [Gre], are of special interest be-
cause they interpolate between the canonical commutation relations
for Bosons for q = 1 (which do not have any bounded realizations),
and the canonical anti-commutation relations for Fermions for q =
- 1 . In these cases the relations are usually supplemented by the rela-
tions diaj—qajdi — O. However, for \q\ < 1 such additional relations
led to an overdetermined system.

In the case of the Bose or Fermi relations, uniqueness questions
have a long history. In the Bose case, where one usually writes the
relations in terms of the exponentials of the at ± a* (Weyl operators),
a theorem of von Neumann [vNe] asserts uniqueness up to unitary
equivalence for d < oc. For infinitely many generators, which is the
case of interest in quantum field theory, unitary equivalence breaks
down. However, in every representation the C*-algebra generated by
the exponentials is C*-isomorρhic to the so-called CCR algebra, and
is thus independent of the representation. Analogous results hold for
the Fermionic case.

We are looking for a similar characterization of the representations
of the ^-relations up to C* -isomorphism, where two representations
are called C*-isomorphic, if they generate isomorphic C*-algebras,
and the C*-isomorphism between the two algebras can be chosen to
map corresponding generators into each other. The result is expressed
concisely in terms of a C*-algebra &q{d) with the universal prop-
erty that any realization of the ^-relations by bounded operators gen-
erates a homomorphic image of &q{d) (Proposition 3). Then the
C*-isomorphism classes of representations of the ^-relations are in
one-to-one correspondence to the closed two-sided ideals of %q{d).

There is a special representation of the relations characterized by
the property that it contains a cyclic vector Ω with α, Ω = 0 for
all i. Since each polynomial in the generators can be brought into a
normal ("Wick ordered") form with all starred operators to the left
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of all unstarred ones by applying the ^-relations, it is easy to see
that the equation <z/Ω = 0 determines this representation uniquely.
In analogy with ordinary Bose or Fermi commutation rules it will be
called the Fock representation of the ^-relations. In order to show that
this is indeed a representation in a Hubert space with positive definite
scalar product, one has to show that α Ω = 0 implies the positivity of
(Ω, X*XΩ) for all polynomials X in the variables a\ and αj . This
rather non-trivial result has been obtained in [BS, Fiv].

Two cases of the ^-relations can be studied in complete detail. The
first is the case of a single relation (d = 1). Most of the physics
literature treats either this case, or else commuting operators, each
of which satisfies the ^-relations separately. It is easy to see that,
for d = 1, the Fock representation is faithful, and contains only one
proper two-sided ideal, which is generated by the one-dimensional
projection onto the vacuum vector Ω, and is isomorphic to the com-
pact operators. The algebras %?q(\) are isomorphic, for all #, to
the universal C*-algebra l? 0(l) generated by an isometry. J?°(l) is
the Toeplitz algebra [Dou, Col, Co2]. It is an extension [BDF] of
W(Sι) by the algebra 3£ of compact operators, i.e. there is an exact
sequence 0 -• 3£ -* Jf°(l) -> &(Sι) -• 0. Under the isomorphisms
J?O(1) = J?*(1) the generators for different q are related by multipli-
cation with a suitable function of the number operator in Fock space,
i.e. they are "weighted shifts" [Con]. It has been noted by several au-
thors [Das, OKK] that such results are not specific to the ^-relations,
but also hold for more general relations like aa* = Γ(a*a) for suitable
functions Γ.

The second case which has been fully analyzed is the case q =
0, d < oo. Each a* is then isometric, and the relations are essen-
tially those stuided by [Cun]. Again we have that the Fock represen-
tation is faithful, and contains a single closed two-sided ideal, which
is generated by 1 - £ \ α*αz, and is isomorphic to the compact opera-
tors 3?. The quotient of &°(d) by this ideal is a simple C*-algebra
known as the Cuntz algebra, and is usually denoted by &&. Again
0 -»3? -• &°(d) -> &d -> 0 is exact. By analogy with the case d = 1,
we will call &°(d) the Cuntz-Toeplitz algebra.

Combining these two well-known cases one is led for general q €
( - 1 , 1) to the questions (1) whether Wq[d) is an extension of a simple
C*-algebra by the compact operators; (2) whether the Fock representa-
tion of &q(d) is faithful; (3) whether gq{d) and g\d) are isomor-
phic for all q and (4) whether such an isomorphism can be obtained
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by multiplying the generators of <£°(d) with a fixed ^-dependent el-
ement of %\d).

Questions (3) and (4) make sense also for the more general "Γ-
relations" of the form given in equation (2). For a universal C*-
algebra analogous to &q(d) to exist, the matrix of functions Γy has
to satisfy an upper bound guaranteeing a uniform upper bound on any
solution of equation (2). Assuming, in addition, a Lipschitz continu-
ity estimate for Γ ί 7 , and, most importantly, a lower bound making
the matrix T{a\,..., a^) invertible for all admissible arguments, we
show in Theorem 9 that the universal solution of the Γ-relations (2) is
of the form a\ = Vfp, where the Vj are the generators in J?°(rf), and
p G &°(d) is a positive element computed from Γ. Hence (3) and
(4) hold true, and the Cuntz-Toeplitz algebra 8?°(d) is the universal
C*-algebra for all relations covered by our theorem.

We emphasize that our stability result does not fall within the range
of analytic deformation theory (see [Ger], and Gerstenhaber's article
in [HG], and references cited there), since the Γy need not be analytic
functions. It is also not a case of isomorphisms of "close C*-algebras"
in the sense of [Chr], since we make explicit use of the fact that the
"peturbed" algebra is given in terms of generators and relations of a
specific type.

For the special case of the ^-relations, the bounds needed in The-
orem 9 are satisfied for \q\ < \fl - 1. Thus the above conjectures
(1) to (4) are valid for these values of q. Moreover, all information
that has been accumulated about the Cuntz algebra [Eva, DR] becomes
imediately relevant to the representations of the ^-relations.

Our paper is organized as follows: In §1 we construct the universal
algebra Wq{d) for the ^-relations, and state some of its elementary
properties. In §2 we prove the stability result for the Cuntz-Toeplitz
algebra. In §3 we give some applciations of this result. Apart from the
^-relations, we study in some detail the relations aicC^ - qa*cij = ί y l
which differ form the ̂ -relations in the position of the indices in the
term containing q. For these modified relations we also compute
the spectrum of £),. a* at in all possible bounded representations, and
show that representations fail to exist for some negative values of q.

2. The C*-algebra Wq{β?). In this section, we use a slightly dif-
ferent version of the ^-relations, which makes the basic symmetries
of these relations more transparent. Let ^ be a vector space with
sesquilinear form ( , •), and let q be a number with - 1 < q < 1.
We then study C-linear maps a: βf —* sf into a C*-algebra si with
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identity such that

(3) a(f)a(g)* - qa(g)*a(f) = (g

Any map a with these properties will be called a representation, or
a realization of the ^-relations. The connection with the relations
described in the introduction is then, that for some basis {e;} c βf
which is orthonormal with respect to ( , •), we can write α, = a(βj)

and a(Σifiei) = ΣiMi
First, we need a result about the case of a single generator a = a\

where %? is one-dimensional. Further details about this case will be
given below in Example 2.

PROPOSITION 1. Let si be a C*-algebra with unit, q e ( - 1 , 1),
C G R , and a esf a non-zero element satisfying

aa* - qa*a = cί.

Then c > 0, and either aa* = a*a — c/{\ - q)l, or the spectra of aa*
and a*a are equal to the closure of the sequence

\-qn

where n e N, andn > 0 for a* a and n>\ for aa*.

Proof. We may assume q Φ 0. Let σ(x) denote the spectrum of
an element x esf . Then σ(aa*) = c + qσ(a*a), and σ(αα*)\{0} =
σ(a*a)\{0}. Hence with f(x) = c + qx we have for x Φ 0 that x e
σ(aa*) if and only if f(x) e σ(aa*). The sequence f~n(x), n > 0,
is unbounded unless x = Xoo = c{\ -q)~ι. Thus if Xoo Φ x e σ{aa*),
the backwards iteration from x must terminate in 0. It follows that
x = fn(0) for some n > 1. From the explicit solution of the forward
iteration given in the proposition, one sees that the forward iterates
are all non-zero; hence the entire sequence must be in σ(aa*). The
exceptional vlaue x ^ is in the closure of the sequence. Since aa* > 0
we get c = (1 - q)Xoo > 0.

It remains to exclude the possibility c = 0. Since a was assumed
to be non-zero there must be some non-zero x G σ(aa*). Hence with
c = 0 the whole sequence q~nx would be in σ(aa*). This contradicts
the boundedness of a. D

COROLLARY 2. Suppose a: %? -> si satisfies the q-relations. Then
the sesquilinear form ( , •) on %? is positive semidefinite, and
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\\a(f)\\=c{q)(f9f)
1'2, where

f - τ f = for 0 < q < 1,

( 1 for - 1 < q < 0.

It follows that the map a is continuous for the topology on β^
given by the seminorm | |/ | | = (/, Z) 1/2 and the norm topology on
j / . Therefore it extends by continuity to the completion of %?, and
this extension again satisfies the ^-relations. Hence there is no loss of
generality in assuming that %? is a Hubert space, and we will make
this assumption from now on.

An important consequence of Corollary 2 is that the norm bound on
a(f) is given by a constant independent of the particular realization
of a. Only this fact is needed to construct the universal C*-algebra
associated with the ^-relations, which is given in the following propo-
sition.

PROPOSITION 3. (1) For a given Hubert space %f', and any q e
( - 1 , 1), there exists a C*-algebra, denoted by ^q{β^) with a map
a: βf -> Wq{β?) satisfying the q-relations with the following universal
property: for any map &:&->$/ satisfying the q-relations there is a
unique *-homomorphism π : Wq(β^) -» J / such that π(a(f)) = ά(f)
for all fe<r.

(2) Wq(β?) is determined up to C*-isomorphism. For any isometry
V: %\ —• %2 between Hubert spaces, there is a unique *-homomor-
phism &q(V): %q{%{) -> g«(#ζ) such that ^q(V)(a(f)) = a(Vf).
Thus £?q is a covariant functor from the category of Hubert spaces with
isometries into the category of C*-algebras with *-homomorphisms.

(3) V H-> %?q{V) is continuous on the unitary group of %f in
the sense that strong convergence Va -> V implies &q(Va)(X) —>
%q{V){X) in norm for all X e %q{%f).

(4) %>q(βf) carries a natural TL-grading, given by the family of closed
subspaces

= {Xe £q(β?)\gq(ηl)(X) = ηmXfor ηeC,\η\ = l}

formeZ.IfXme %q{β?)m and Xn e %q{β?)n, we have XmXn e
^q (^)m+n > and the linear span of these subspaces is a dense subalgebra
of %q(^). Explicitly, the projection onto %q{%f)m is given by
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where dη denotes the normalized Haar measure on the circle.

Proof. (1), (2) Let Eq(β?) denote the quotient of the *-algebra of
non-commuting polynomials in the generators a(f) by the ideal gen-
erated by the ^-relations and the relations arising from the linearity of
a. It is straightforward to check that Eq{&) satisfies the analogues of
(1) and (2) in the category of *-algebras: if a satisfies the relations,
the homomorphism π is defined simply by substituting the given
ά(f) into any polynomial in Eq(β?). In order to get a universal C*-
algebra with the analogous property we have to define a C*-seminorm
|| || on Έfl(βF) with the property that for any bounded representation
of the relations the substitution homomorphism is continuous, and
hence extends to the completion %q(<%") of W(%?) with repect to
that seminorm. This is to say that for any polynomial X e W(βf),
and any bounded realization a we must have | |π(X)|| < | |X||. Hence
we want to define

= sup| |π(X)| |,

where the sup is over all bounded realizations a of the relations, and
π denotes the associated substitution homomorphism. There are three
problems with this definition. The first is the technical point that the
bounded realizations of the relations do not form a set, but a proper
class. However, since ||π(X)|| may be computed in the C*-algebra
generated by the ά(f), we may restrict the supremum to realizations
in C*-algebras with at most a certain cardinal number of elements
depending on the number of generators via the dimension of %?. We
now pick a Hubert space of sufficiently high dimension such that all
the universal representations of all these algebras can be realized in
it. It is then clear that the supremum can be restricted to the set of
realizations of the ^-relations in bounded operators on this big Hubert
space.

The second problem is whether the supremum is possibly over the
empty set, i.e. whether any bounded realizations of the relations exist
at all. For the case at hand this question has been settled by [BS],
who explicitly construct the so-called Fock representation for all q e
( - 1 , 1). (See Example 1 below.)

The third problem is that the supremum might turn out to be infinite
for some X. Since the X e Eq(β?) are polynomials in ά(f) this can
be ruled out by proving an upper bound on | |3(/) | | , which is uniform
with respect to all realizations a of the ^-relations. For the case
at hand a bound of this kind was established in Corollary 2. Hence
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Wq exists and has the universal property (1). The uniqueness and
the further properties stated in (2) follow as usual from the universal
property.

(3) It is clear from Corollary 2 that Va-±V strongly, implies

for all / G %?. Hence we also have convergence for all polynomials X
in the variables a(f), a(g)*, and by a straightforward estimate also
the convergence for X in the norm closure &q(βf) of the polynomi-
als.

(4) The integral for P m is well-defined and in Wq{β^) because
by (3) the integrand is continuous in norm. On monomials in a(f)
and a(g)* we can compute the degree m by counting the number
of factors a(f) and a(f)*. Hence on monomials the additivity of
the degree and the formula for P m are obvious, and carry over to the
completions %q(%7)m by continuity. D

By (2), %q{%f) depends only on the dimension of %?. Since we
will later be mostly interested in the case d i m ^ < oo, we will write
&«{d) for g*(Cd).

EXAMPLE 1 (The Fock representation). Consider a representation of
the ^-relations by bounded operators in a Hubert space 3t. Let

(4) ^ = {ξe<%r\\/feJra(f)ξ = 0}.

We call JV the set of Fock vectors in this representation. Note that
by applying the ^-relations we can arrange any polynomial X in the
generators "in standard form", i.e. such that all a(f) are to the right
of all a{fY . In this form we have for all ξ, η e oV

(5) (ξ9Xη) = ω(X)(ξ9η),

where ω(X) dentoes the constant term in the standard form. For
each ξ e «/̂ "\{0} we obtain a cyclic representation of &q(^), which
is the GNS representation associated with the Fock state ω. This
is called the Fock representation. Since the cyclic subspaces gener-
ated from orthogonal Fock vectors are orthogonal, we can choose
an orthonormal basis in JV, and thus obtain a direct sum of iso-
morphic copies of the Fock representation. The subspace on which
this direct sum lives can be represented naturally as 3?ω <g> JV, where
J£ω denotes the GNS-Hilbert space of the Fock representation, and
#(/) f ^ω ®JV = aω(f) <g> 1. The orthogonal complement of this
invariant subspace is characterized by the property that it contains
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no non-zero Fock vectors. Note that the argument so far does not
imply that there is any representation with Jf φ {0}. This will be
the case if and only if the constant term in the standard form is in-
deed a positive functional on Έβ(βf). Equivalently, one has to check
that the unique sesquilinear form on the vector space spanned by vec-
tors of the form a(f\)* - - a(fn)*Ω which is computed by using the
^-relations together with the equation a(f)Ω = 0, and the normal-
ization condition ||Ω|| = 1, is positive definite. Bozejko and Speicher
[BS] have shown this by reducing it to the positive definiteness of the
function π H+ # Z M on the permutation group of n elements, where
i(π) = |{(/, j)\ί < j and π(i) > π(j)}\ denotes the number of inver-
sions in π.

EXAMPLE 2 (The case of a single relation). This case has been stud-
ied by many authors. Possibly the first occurrence is in the paper
of Woronowicz [Wor], who considers the relations αα* + v2γγ* = 1,
a*a + γ*γ = l , ay — vya, ay* = vy*a, and γ*γ = γγ*. Thus by elim-
inating γ, one obtains αα* = (l-v2)l + v2a*a, and a = (\-v2)~χl2a
satisfies the ^-relations with q = v2 in the normalization used in this
paper. Proposition 2 for this special case appears in Appendix 2 of
[Wor]. We remark that multiplying the generators in the ^-relations
by a factor (\-v2)χl2 as suggested by [Wor] has the additional virtues
of making the case q — 1 less singular, and making the relations for

equivalent to those for \q\ < 1 with aι and α* interchanged. The
algebras Jf^(l) for a single relation then form a continuous field of
C*-algebras over the one-point compactification of the real line [Nic].

For later reference we include here a self-contained discussion of
this simple case. By Proposition 1 a representation of the relation
αα* - qa*a = 1 containing no Fock vectors has the property that a =
(1 — q)~ι/2u, with a unitary u. Equivalently, in such representations
we have the equation aa* = a*a. By Example 1 every representation
is a direct sum of such an abelian representation and a multiple of
the Fock representation. We can obtain an explicit picture of the
Fock representation by taking the polar decomposition a = υ(a*a)1/2 .
Since, by Proposition 1, αα* is boundedly invertible it follows that
v* = a*(aa*)~χ/2 is an isometry, which lies in the C*-algebra 8?q(C).
Similarly, the projection l — v*υ — ker(α*α) onto the set JV of Fock
vectors lies in ^q . For studying the Fock representation we may thus
take this projection to be one-dimensional in the representation space.
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Denoting by |0) the Fock vector, and \ή) = (t>*)w|0) we get υρ2v* =
1 + QP1> where p2 = a*a. Thus v* is a one-sided shift implementing
the iteration on the spectrum used in the proof of Proposition 1, and
we get (n\p2\m) = δnm(l-qn)/(l-q). In particular, p2 is a compact
perturbation of (1 -q)~ιl. The algebra generated by v thus contains
p2, and hence kq{C) is generated by the single isometry v*. The
ideal generated by l—v*v is isomorphic to the compact operators, and
the quotient by this ideal gives back the abelian representations. Thus
all irreducible representations of <gq(C) are quotients of the Fock
representation, which therefore is faithful. Moreover, the algebras
8?q(C) are isomorphic for all q e (-1,1) to the well-known C*-
algebra J?°(C) [Col, Co2] generated by a single isometry.

The following proposition shows that in a representation with sev-
eral generators each single generator occurs in the Fock representation.

PROPOSITION 4. For d imJ^ > 2, any bounded representation of the
q-relations, and every 0 Φ f e %?, 0 is in the spectrum of a(f)*a(f).

Proof. Since a(f) generates a homomorphic image of B?q(C) we
only have to show that this homomorphism is faithful, i.e. that u =
H/II'Vl - qa(f) is not unitary. Suppose it were. Then from the
commutation relations we would get for g ± f: ua(g)*u = qa(g)*.
Hence ||α(g)|| = |tf|||<z(£)||; because \q\ < 1 this implies a(g) = 0,
which implies g = 0. This implies that βf is one-dimensional. D

The following is a typical feature of infinite C*-algebras [Cun], i.e.
algebras containing elements with x*x = 1, but xx* Φ 1, of which
the Cuntz algebra is a prototype.

COROLLARY 5. For - 1 < q < 1 and d i m X > 2, %q(%f) has no
tracial state.

Proof. Suppose τ is a tracial state. Then its restriction to the sub-
algebra generated by a(f) is also tracial. Since there is no finite trace
on the compact operators, τ thus annihilates the corresponding ideal
J" c g^(C). Hence τ{x*zy) = τ(yx*z) = 0 for all JC, y e &q{^)
and z € <y, which means that πτ(z) = 0 for the cyclic representation
associated with τ . This contradicts Proposition 4. D

Our main result regarding the ^-relations is the stability of the al-
gebra W° under small ^-deformations stated in the following propo-
sition. It wil be proven in subsection 4.1 as a corollary of our stability
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result for the Cuntz relations (Theorem 9) with respect to a much
larger class of perturbations.

PROPOSITION 6. For \q\ < >/2 - 1 and all d < oo, each ^q(Cd)
is C*-isomorphic to &°(Cd). The isomorphism identifies Vjp(q) e
^°(Cd) with aιe^q{Cd)y where the vt are the generators in &°(Cd),
and the function q \-+ p(q) e ^°(Cd) is uniquely determined by p(q) >
0, and {t-ΣiV*Vi)p(q) = 0, and the condition that the Vip(q) satisfy
the q-relations.

3. Stability of the Cuntz-Toeplitz algebra. In this section we will
demonstrate a remarkable stability of the algebra ^° under practically
all sufficiently small perturbations. The " Γ-relations" we consider will
be of the form

(6) fl/fl} = Γy(αi, . . . ,ad)9 ij= 1, . . . ,</,

where Γ/7 are now functions (generally non-linear) of a = (a\,..., a^)
in the noncommutative C*-functional calculus. Before elaborating on
the definition of this functional calculus let us mention a few examples.
The Cuntz relations are given by Γ z ; = δjjl. For the ^-relations
we set Γjj(a) = δijl -I- qa^ai. In some detail we will later consider
the relations ΓZ7(α) = δjjl + qa\aj . Further examples are quadratic
polynomials whose constant term is an invertible matrix, and whose
linear and second order terms are sufficiently small. We emphasize
that the functions Γ/7 need not be polynomials, and may contain
fairly arbitrary continuous functions of their arguments. The exact
conditions will be specified below. A fundamental common feature
of all relations which we can treat is that the matrix αzα] is invertible
in the algebra ^d{stf) of d x ^/-matrices over the algebra si 3 α,.
This property may seem surprising since α/<zj looks like the expression
for a rank one matrix. In fact, a^a^ cannot be invertible for Λ, in
any algebra with finite faithful trace, which underlines the infinite
character of the Γ-relations.

By a function / in the C*-functional calculus [RW, SW] we mean
a collection of functions f^\ sfd —• sf, one for each C*-algebra
sf , such that for any *-homomorρhism π: sf —• 3§ and any tuple
a i, . . . , ad of arguments in sf we have

(7) nftf(ax, . . . ,ad) = f^(πau . . . , πad).

Taking for π the canonical injection from the C*(a\, . . . , ad) into
sf , we find that / can always be evaluated in the algebra generated by
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its arguments. Since / is also natural with respect to isomorphisms it
suffices to define /&(&) for some Hubert space 3? in which any alge-
bra generated by d arguments has a faithful representation. Equation
(7) only has to be postulated for all subalgebras of 38(3?}, and then
follows for arbitrary algebras. All polynomials in d non-commuting
variables and their adjoints are functions of the functional calculus.
Conversely, if one restricts each argument by a uniform norm bound,
any function of the calculus can be approximated uniformly by poly-
nomials [RW].

In the sequel we will drop the subscript sf for such functions.
Tuples of operators satisfying the Cuntz relations ViVj = dyl will
usually be denoted by Vj, i = 1, . . . , d. We show first how such
operators emerge from representions of the Γ-relations with invertible
Γ.FOT a,bes/d we define e(α, b)eJtd{sf) by

(8) e(a,b)ij = aib].

LEMMA 7. Let a\, . . . , ad e srf . Suppose that e(a, a) is boundedly
invertible. Then there are elements V\, . . . , vd G J / such that with

di = Vip, />>0, and p =

Proof. Let stf be faithfully represented on a Hubert space 3?, and
let α: 3£ -» 3£d denote the operator {aζ)\ = aiζ, where the index i
refers to the z'th component in 3fd. Then e(a, a) = act. On the
other hand, a*a = J2i aίai = P2 Consider the polar decomposition
of a, i.e.

a= V(ά*ά)ι'2 = (άά*)ι/2V,

where V: 3f —• Jfd is a partial isometry, which we can write as
(Vξ)i = Viξ. In components the first equation becomes αz = Vfp.
Since (αα*)"1 e JfdW) w e h a v e v = {aά*)~χl2ά, so that v/ e srf .
Furthermore, KF* = l ^ r ^ ) , which means that v/v| = J/ 7 1. On the
other hand, V*V = Y^tv*Vi is the support projection of p2, which
proves the last equation. α

Suppose now that some Γ-relations guarantee the invertibility of
e(α, a). Then we know that the C*-algebra generated by the αz is
the same as the C*-algebra generated by the vt and one additional
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element p. If we can show that p is also in the algebra generated by
the Vj, the algebras generated by the Vj and by the α, , respectively,
are the same. Our strategy therefore is to fix the operators Vi and to
turn the Γ-relations into an equation for p. Substituting α; = v\p (in
short a — vp) in the Γ-relations we obtain the condition Vtp2Vj =
Tij(vp). We multiply this with υ* from the left and with Vj from the
right, sum over /, j , and use the support condition for p to obtain

(10) p 2 =

This equation is equivalent to the Γ-relations for a = vp, since we
can restore the original form by multiplying this with Vj and Vj , and
using the Cuntz relations for the v, . We will later solve equation (10)
by contractive iteration. Since this involves taking the square root of
p we need the following Lipschitz estimate for square roots.

L E M M A 8. L e t stf be a C*-algebra with identity, ε > 0 , and x , y >
el. Then

Proof. By multiplying x and y with the same factor we may assume
that Λ: = 1 + jc, y = ί+y with ||jc||, ||j?|| < έ = 1 - ε. Then

n=0

n=\

7-1

O

For stating our main theorem it is convenient to introduce the norm

(Π) Hall2 =
ϊ = l

on ώ?-tuples a = (a\,..., a^) e srfd. Note that by the proof of
Proposition 7 we have ||e(α, a)\\ = ||αά*|| = ||α*α|| = | | α | | 2 .
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THEOREM 9. Let Γy, /, j = 1, . . . , d, be in the C*-functional
calculus of d variables such that T(a) G Jt^(si) is hermitian for all
C*-algebras si and all a G sid. Suppose there are constants μ, ε >
0, λ < 2y/ε such t h a t (with t h e norm given b y (II))

( 1 ) the Y-relations ataj = Yij(a) imply \\a\\2 < μ.

(2) For arbitrary a, b e s/d with \\a\\2, \\b\\1 < μ we have the
estimates

(a) W(a)\\<μ,

(b) Γ(α)>βl,

(c) ||Γ(fl)-Γ(ft)||<A||α-*||.

Then there is a unique p e &°(d) such that p > 0, p Σt vjvi = p, and
that at = Vip satisfies the T-relationsy where the vt are the generators
in g\d).

Moreover, this solution has the following universal property: if ά\,
. . . , άd G si satisfies the T-relations in any C*-algebra s/, there is
a unique *-homomorphism π: ̂ °(d) —• sf such that n(Vip) = αz for
all i.

Proof, Let sf be any C*-algebra containing elements ϋ(9 i =
1, . . . , d, satisfying the Cuntz relations. We will iterate

on the set
X = {x G si |0 < x, x2 < μp},

where (Όx)/ = #;X, and p = $w#*0/. Then by equation (10) the
fixed points of / are precisely those X G J / with x > 0 and xp = x
such that vx satisfies the Γ-relations. The set X is invariant, because
||«x||2 < ||x||2, so x 2 < μp implies | |/(x)2 | | < \\Y(ϋx)\\ < μ by (a),
and f(x)2 = ρf(x)2p < μp by the Cuntz relations. By assumption
(b) Y(ϋx) > el for x G X; hence f(x)2 > ep. The square root is
thus well defined, and by Lemma 8 (applied in the algebra psfp with
unit p) we get from (c) the estimate

λΛ\vx-ϋy\\<
2y/ε
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Thus / is contractive, and has a unique fixed point p by the Banach
Contraction Theorem. We apply this firstly in the case si = 8?°(d)
with v = v to obtain p e &°(d) as claimed in the theorem.

Now let a e sid satisfy the Γ-relations. Then by assumption (1)
of the theorem, | |α | | 2 < μ, which implies that e(3, a) — Γ(ά) > εί
is invertible. Hence, by Lemma 7, a = vp, and p must be the
unique fixed point of the iteration in J / . On the other hand, by
the universal property of 8*°(d) for the Cuntz relations there is a
unique homomorphism π: &°(d) —> si such that π(Vi) = ϋj. By the
homomorphism property (7) of the functional calculus we have

) 9 . . . 9 π{υdp))

j , . . . , υdp))

= π(Vip2v*) = ϋiit(p)2ϋ].

Hence π(p) is also a fixed point of the iteration in sf , and we must
have π(p) = p, and π(^z) = vip — ax . D

4. Applications.

4.1. The q-relations. In equation (8) we have introduced the dyads
e(α, b) for a, b € sid . Here we need a second kind of dyad, which
is equal to e( , •) when Λ, and b\ commute. We set

(12) f(α, b)ij = />>, e(α, fc)l7 = α/6).

Using these dyads we can write the ^-relations in the compact form

(13) e(α,α) = l + ίf(α,α).

The norm bounds needed for the application of Theorem 9 are given
in the next lemma.

LEMMA 10. Let a,bestfd. Then ||e(α, a)\\ = | | Σ 4 ^ I I = H 2 >
and

||f(fl, b)\\ <\\a\\ 11*11, | |e(α,Z>)| |<H||Z>| |.

Moreover, | |α* | | 2 <rf | |α | | 2 .

Proo/. The equation for ||e(α, a)\\ was already noted before Theo-
rem 9.

(e(fl, ft) e(fl, ft))v = (e(ft, α)e(α, ft))y
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The last expression can be written as b(Σkakak)b* w ^ a d x 1-

matrix b. Estimating the bracket by its norm we get e(a, b)*e(a, b) <
| |α | | 2 e(έ,6) ,and ||e(α, b)\\2 < | |α||2 | |e(6

Similarly, we get

k

with the completely positive map Φ(JC) = Σk a^xa^ . Hence

t(a, b)*t(a9 b) < ||e(Z>, Z>)||Φ(1), a n d \\t(a9 b)\\2 < \\b\\2\\a\\2.

Finally we get ||α*|| = | | Σ ^ 4 U < Σ t i ll^ll2 < ̂ IIΣ^^IU as
claimed. D

Proof of Proposition 6. With Γ(a) = 1 + qf(a, a) we get

Hence the ^-relations imply \\a\\2 < 1 + | ^ | | | α | | 2

? and | |α | | 2 <
(1 - I*?!)"1 = //. For | |α | | 2 < μ we get | |Γ(Λ)| | < μ as required in
condition (2a) of Theorem 9. Furthermore,

r(a)>l(l-\q\\\f(a,a)\\)>l(l-\q\μ) = εl

with ε = (1 - 2|#|)/(1 - |g |). Hence for Γ(α) to be bounded away
from zero as required in condition (2b) we need \q\ < 1/2. Using the
bilinearity of i{a, b) we get the Lipschitz bound

= \q\\\f(a,a)-f(b,b)\\

<\q\\\a-b\\(\\a\\ + \\b\\)<2\q\Jμ\\a-b\\.

With λ = 2\q\yfμ the contractivity condition then becomes \q\ <

Λ / 1 - 2 M , O Γ \q\<Vl-\, D

For a possible extension of Proposition 6 to a larger interval, per-
haps even to the whole range q G (—1, 1), it is crucial to improve the
bounds

( 1 4 ) TH^'S'C ^STHΪi1

for a satisfying the ^-relations, which were obtained in the above
proof. The upper bound is fairly good. In fact, for q > 0 the up-
per bound is an equality since by Proposition 1 each diagonal ele-
ment in e(a, a) has norm (1 - q)~x. As a corollary of this observa-
tion we find that in every representation with d + 1 generators there



STABILITY OF THE CUNTZ ALGEBRA 147

are many vectors on which Σ f a* at is small (namely those on which
a*d+\ad+\ nearly attains its maximum). The existence of such "almost
Fock" vectors for a subset of generators can be seen as a general-
ization of Proposition 4, and can be extended also to some negative
values of q. For q < 0 the upper bound in (14) is the best possi-
ble ^-independent bound. (The vectors in Fock space arising from
(anti-) symmetrization of Λ* α*|0) are eigenvectors of ]Cf=iΛ/*Λi
with eigenvalue (I-(±q)n)/(l^q).) However, for given finite d the
bound can be improved. For example, for d = 2 we get

v (axa\ 0 \ / 0 a\ax

^ ' V 0 ayaX) V tila-i 0

0 a\ax \
2 (alaxa\a2 0 \ (a*a2 0 \

^ o V o ^ * V o ^ - '0 " V 0 a \ a 2 a \ a x ) ~ \ 0

where we have used the bound aa* < 1 from Corollary 2. Hence

(15) | |α | | 2 = ||e(α, a)\\ <l + \g\ for d = 2.

We can insert this into the bound e(a, a) > (1 - \q\ ||f(#, α)||)l >
( l - | # | | | α | | 2 ) l to get an improvement of the lower bound in (14):

(16) e(a,ά)>\-\q\-\q\2 for d = 2.

Hence e(α, α) is boundedly invertible for q > —φ~ι = — j(>/5 — 1).
It is not clear what the best lower bounds on e(a, a) are. Numerical
evidence from Fock space suggests that e(α, a) might be bounded
away from zero for all - 1 < q < 1 with bounds going to zero at the
endpoints of the interval.

4.2. The relations ata* - qa*aj = δijl. These relations are maybe
the most natural choice of a quadratic polynomial Γ apart from the
^-relations. The only difference between these is the position of the
indices in the term containing the parameter q. In terms of the dyads
introduced in §4.1 we can write these relations as

(11) e(α, αj = I -|- qe(a , a j .

The two sets of relations are identical if either d — 1, or q — 0. Thus
we can directly take over Proposition 1 and Corollary 2. The existence
of any bounded realizations for general q is not immediately clear.
But if for any values of (q, d) there is any bounded realization, then
there is a universal algebra 3ίq{d) satisfying Proposition 3 with one
modification: The relations are now not invariant under the unitary
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group Ud, but only under the orthogonal subgroup Od, and corre-
spondingly we should take a real Hubert space β? as the analogue
of the complex space %f in Proposition 3. Even though multiplica-
tion of test functions with a phase thus makes no more sense, the
automorphism "3fq{rι\)n taking each a(f) into ηa(f) is still well
defined by the univeral property of Sfq(d), and Proposition 3(4) also
carries over.

Applying Theorem 9 to these relations yields

PROPOSITION 11. For d e N, and \q\ < l/(dφ) = (\β - l)/(2d)
the functions Tij(a) = δijl + a*aj satisfy the conditions of Theorem 9.
Consequently, !2?q(d) exists for these values of q and is isomorphic to

Proof. Since e(a, a) > 0 it pays in this case to distinguish q > 0
and q < 0. For q > 0 we apply Lemma 10 to get ||Γ(α)|| < 1 +
q\\e(a*9 a*)\\ < 1 + qd\\a\\2, and set μ = (1 - qd)~ι in Theorem 9.
Clearly, we can set ε = 1. With λ = Iqdyfμ the contractivity estimate
is qd < \/l - qd, or qd < φ~ι.

For q < 0 we can take μ = 1. Then

with ε = (l-\q\d). The Lipschitz bound is λ = 2\q\d, so contractivity
holds once more for \q\d < y/l - \q\d. D

The fact that the interval for q for which our technique works
now depends on d came in through the estimate ||<2*)|2 < d\\a\\2 in
Lemma 10, which may appear to be exceedingly crude. However, this
^-dependence is typical for the relations (17). We will show this now
by using the idea of Proposition 1 to obtain rather detailed necessary
conditions for such representations. The core of the idea is contained
in the following proposition:

PROPOSITION 12. Let ai9 i= I, ... , d, be bounded operators satis-
fying the rleations (17). Let T — Yfi=x a*at, and consider the function
f(x) = \+qd + q2χ. Then

provided that both f(x) φ 1 and f(x) φ 0.

Proof. We consider two d x 1-matrices with entries in si , namely
Ai — aι, and At = a]. This somewhat redundant notation is necessary
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to keep apart the different meaning of adjoints. We can then write

e(a,a) = AA*, e(a*, a*) = AA*, AA* = l + qAA\

Now suppose that x satisfies the two conditions in the proposition.
Then x G σ(T) o d + qx G σ(f). Since we have assumed d + qx =
(l/g)(f(x) - 1 ) ^ 0 this is in turn equivalent to d + qx G σ(A*A) ,
a n d d + qx e σ(AA*). T h i s is equiva lent to (l+q(d + qx)) = f(x) G
σ(AA*). Since we have assumed that f(x) φ 0 this is equivalent to
f(x)eσ(T). π

PROPOSITION 13. Let a\9 . . . , ad with d > 1 be bounded oper-
ators satisfying the relations (17). Let T = Σ^itfβi' an<^ x°° =

(1 + qd)/(l -q2). For n G N, n > 0 let λn = x^λ - q2n) and
μn — x^ + (1 - xOQ)qln . ΓΛ^n ίΛβ spectrum of T is contained in

Moreover, one has
(1) For g > -rf"1, α// //« are m ί/ze spectrum, and either all or no

λ n . Moreover, for q Φ 0 , λ n φ μm for all n , m > 0 .
(2) For ^ < — d~ι, the spectrum of T is of the form

{μ0, μl9 . . . , μN_ι}

with //JV — 0 for some finite N. Thus representations can exist only
for the discrete set of values q for which the equation μ^ = 0, or
equivalently

2N = l+qd
q Q(d + q)

has a solution.

Proof. If x G σ(T), x φ Xoo, the iteration of f~ι , with / as in
Proposition 12, yields an unbounded sequence. Thus, by Proposition
12 the iterates must either hit 0 or 1, which means that either x =
Xn or x — μn for some n G N. Next observe that Proposition 1
and the argument in Proposition 4 show that 0 G σ(a*a\). Thus by
Proposition 1 we can choose a non-zero ξ G ktr(a*{aι) = ker(αi). Now
the vector (ξ, 0, . . . , 0) is in ker(Xί*). This implies 1 G σ(AA*),
and μo G σ(Γ).

If # > - 1 /d then Xoo is positive, and the sequence λn is strictly
increasing towards x^. If in addition q < 0, then 0 < Xoo < 1,
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and the sequence μn is decreasing towards Xoo, implying that the
sequences are disjoint. If q > 0, both sequences are increasing. They
do not intersect, because μπ > μo = 1 > 0 = λo, and λn > λ\ =
1 + qd > 1 = μo for n > 0, and the inverse iteration exists.

If q < - 1 jd 9 then x^ and all λn, n > 0, are strictly negative.
Hence 0 ^ σ(T). μn is strictly decreasing. Thus we can only have
that μN = 0 for some JV € N. D
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