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ON DIVISORS OF SUMS OF INTEGERS V
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Dedicated to Professor P. Erd6s on the occasion of his eightieth
birthday.

Let N be a positive integer and let A and B be subsets
of {1,...,N}. In this article we shall estimate both the
maximum and the average of w(a + b), the number of dis-
tinct prime factors of a + b, where ¢ and b are from A and
B respectively.

1. Introduction. For any set X let |X| denote its cardinality
and for any integer n larger than one let w(n) denote the number
of distinct prime factors of n. Let I be an integer larger than one
and let ¢ be a positive real number. Let 2 = p;,ps,... be the
sequence of prime numbers in increasing order and let m be that
positive integer for which p; - pr, < N < p1 - Py1- In [3], Erdds,
Pomerance, Sarkozy and Stewart proved that there exist positive
numbers Cy and C; which are effectively computable in terms of e,
such that if N exceeds Cp and A and B are subsets of {1,..., N}
with (JA||B|)!/2 > €N then there exist integers a from A and b from
B for which

They also showed that there is a positive real number €, with € < 1,
and an effectively computable positive number C; such that for each
positive integer N there is a subset A of {1,..., N} with |4| > eN

for which
Coy/m
logm

max w(a+a') <m—
a,0’€A
Notice by the prime number theorem that

m = (1+o(1))(log N)/(log log N).
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In this article we shall study both the maximum of w(a + b) and
the average of w(a + b) as a and b run over A and B respectively
where A and B are subsets of {1,..., N} for which (|A||B|)Y/? is
much smaller than e/N. Our principal tool will be the large sieve
inequality.

THEOREM 1. Let 6 be a real number with 1/2 < 8 < 1 and let
N be a positive integer. There exists a positive number Cz, which
is effectively computable in terms of 0, such thet if A and B are
subsets of {1,..., N} with N greater than C3 and

(1) (14]1B)Y? > N°,

then there exists an integer a from A and an integer b from B for
which

) w(a+b) > % (o- %)2 (log N)/ log log N.

In [6] Pomerance, Sarkozy and Stewart showed that if A and B
are sufficiently dense sets then there is a sum a+ b which is divisible
by a small prime factor. In particular they proved the following
result. Let 3 be a positive real number. There is a positive number
C4, which is effectively computable in terms of 3, such that if A and
B are subsets of {1,..., N} with (|A||B|)}/? > C4N'/? then there
is a prime number p with 3 < p < C4(N/(|A||B|)*/?), an integer a
from A and an integer b from B such that p divides a +b. As a
byproduct of our proof of Theorem 1 we are able to improve upon
this result.

THEOREM 2. Let N be a positive integer and let 6 and (8 be real
numbers with 1/2 < 6 < 1. There is a positive number Cs, which
is effectively computable in terms of @ and (3, such that if A and B
are subsets of {1,..., N} with

(3) (14|B|)'* > N,
and N exceeds Cs then there is a prime number p with

log N) 1/(26-1)

ﬁ<p§<
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such that every residue class modulo p contains a member of A+ B.

It follows from the work of Elliott and Sarkozy [1], see also Erdds,
Maier and Sarkozy [2] and Tenenbaum [7], that if A and B are
subsets of {1,..., N} with

4)  (lAl|B)"? = N/ exp(o((loglog N)'/*logloglog N))

and N is sufficiently large then a theorem of Erdés-Kac type holds
for w(a + b). In particular for A and B satisfying (4) we have

(5) |AHB|£I)EZBw(a+b loglog N.

Let 0 be a positive real number. If A and B are subsets of {1,..., N}
with |A| ~ |B| ~ N exp(—dlogloglog N), then (5) need not hold.
For instance we may take A and B to be the subset of {1,..., N}
consisting of the multiples of [],<s10g10g Nlogloglog v P- Then for N
sufficiently large the average of w(a+b) is at least (1+6/2) loglog N.
On the other hand we conjecture that if A and B are subsets of
{1,..., N} with

(6) min(|Al, |B) > exp((log N)'**(),

€ is a positive real number and N is sufficiently large in terms of €
then

(7) |AHB|ZZ w(a+b) > (1 —¢€)loglog N.

a€AbEB

On taking A and B to be positive integers up to exp((log N)*~¢) we
see that condition (6) cannot be weakened substantially. Further-
more, we conjecture that if we let N tend to infinity and A and B
run over subsets of {1,..., N} with

log(min(|4], |Bl)) _,
loglog N

— o0

then

B S e+ -

a€EA beEB
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While we have not been able to establish (7) for all subsets A
and B satisfying (6), we have been able to determine the average
order for the number of large prime divisors of the sums a + b for
sufficiently dense sets A and B. As a consequence we are able to
establish (7) for such sets.

THEOREM 3. There ezists an effectively computable positive con-
stant Cg such that if T and N are positive integers with T < /2N
and A and B are non-empty subsets of {1,..., N} then

1

AlB] > > 1 — (loglog N — loglog(3T))

T<p a€A,bEB,p|(a+b)
3N

< Gt By AT

We now take T = N/(|A||B|)*/? in Theorem 3 to obtain the
following result.

COROLLARY 1. There exists an effectively computable positive
constant C; such that if N is a positive integer and A and B are
subsets of {1,..., N} with |A||B| > N then

1
B > > 1 — (loglog N
I H | p>N(|A)|B])~1/2 a€A,beB,p|(a-+b)

— loglog N(|A||B|)"/?)| < Cr.

Therefore (7) holds for N sufficiently large provided that A and
B are subsets of {1,..., N} with

(JA||B|)"/? = N exp((log N)°).

2. Preliminary Lemmas. For any real number z let e(z) =
e2™ and let ||z|| denote the distance from z to the nearest integer.
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Let M and N be integers with IV positive and let apry1,. .., apm4n
be complex numbers. Define S(z) by

M+N
(8) S(x) = D aze(nz).

M+1

Let X be a set of real numbers which are distinct modulo 1 and
define § by

— 3 _ /
(9) 0= min =2

The analytical form of the large sieve inequality, (see Theorem 1 of
[5]), is required for the proof of Theorem 3 and it is given below.

LEMMA 1. Let S(z) and § be as in (8) and (9), respectively. Then

M+N
Y IS@P <N+ Y laal
zeX n=M+1

We shall also make use of the following result, see Theorem 1 of
[6], which was deduced with the aid of the arithmetical form of the
large sieve inequality.

LEMMA 2. Let N be a positive integer and let A and B be non-
empty subsets of {1,...,N}. Let S be a set of prime numbers, let
Q@ be a positive integer and let J denote the number of square-free
positive integers up to Q all of whose prime factors are from S. If

(10) J(A||B)* > N + @2,

then there is a prime p in S such that each residue class modulo p
contains a member of the sum set A + B.

Finally, to prove Theorems 1 and 2 we shall require the next
result.

LEMMA 3. Let o and 8 be real numbers with o > 1 and let N be
a positive integer. Let T be the set of prime numbers p which satisfy
B < p < (logN)* and let S be a subset of T consisting of all but
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at most 2log N elements of T. Let R denote the set of square-free
positive integers less than or equal to N all of whose prime factors
are from S. There ezists a real number Cs, which is effectively
computable in terms of o and B, such that

|R| > 20N~V
whenever N 1s greater then Cs.

Proof. Cy,C1o and C}; will denote positive numbers which are
effectively computable in terms of a and 5. By the prime number
theorem with error term,

(log N)*

(11) |S| > m((log N)*) — m(8) — 2log N > aloglog N’

provided that N is greater than Cy. For any real number z let [z]
denote the greatest integer less than or equal to . We now count
the number of distinct ways of choosing [log N/(aloglog N)| primes
from S. Each choice gives rise to a distinct square-free integer,
given by the product of the primes, which does not exceed NV and
is composed only of primes from S. Then |R| > w where

5]
w= log N )
aloglog N
N

log N SToglog 1
S ('Sl_ [aloglogN})
= [ log N ]' ’
aloglogN |

Thus

w

and so, by (11) and Stirling’s formula,

log N

(logN)* (,_ 1 FTogTog N
S aloglog N (log N)e—1

log N )
log N aloglog N
1 a+l
(log ) (ea log log N)
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for N > Cp. Since log(1 — ) > —2z for 0 < z < 1/2, we find that,
for N > Cu,

log N ___ 2(log N)2~¢
w 2 Nl—l/ae(aloglogN aloglog N )(log N)—a—l’
hence
w > 20N!Ve,
as required. O

3. Proof of Theorem 1. Let 8, = (6 + 1/2)/2 and define G
and v by
G = (log N)/@-1),

and

1 1\2 logN
12 =[={0—-=) ————| +1
(12) v [6( 2) loglogN]+ ’
respectively.

Put Ay = A, By = B and W, = (). We shall construct inductively
sets Ay, ..., Ay, By,...,Byand Wy,..., W, with the following prop-
erties. First, W; is a set of 7 primes ¢ satisfying 10 < ¢ < G, A; C
A;_1and B; C B;_; fori=1,...,v. Secondly every element of the
sum set A; + B; is divisible by each prime in W; for i = 1,...,v.
Finally,

|4l B
(13) Ad> B ana 1my> 2
fori =1,...,v. Note that this suffices to prove our result since 4,

and B, are both non-empty and on taking a from A, and b from B,
we find that a + b is divisible by the v primes from W, and so (2)
follows from (12).

Suppose that 7 is an integer with 0 < ¢ < v and that A4;, B; and
W; have been constructed with the above properties. We shall now
show how to construct A;1, B;y; and W;,,. First, for each prime p
with 10 < p < G let a4, . . ., a;;p) be representatives for those residue
classes modulo p which are occupied by fewer than |A;|/p® terms of
A;. For each prime p with 10 < p < G we remove from A; those
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terms of A; which are congruent to one of a,...,a;;) modulo p.
We are left with a subset A} of A; with

' 1 A;

gz jal(1- £ ) s py(i- 2 L) > A
10<p<G 10<p P 10

and such that for each prime p with 10 < p < G and each o' in A,
the number of terms of A; which are congruent to a’ modulo p is at

least |A;|/p®. Similarly, we produce a subset B} of B; with

1B

(15) By > L

and such that for each prime p with 10 < p < G and each residue
class modulo p which contains an element of B] the number of terms
of B; in the residue class is at least |B;|/p>.

The number of terms in W; is ¢ which is less than v and, by (12),
is at most log N. Thus we may apply Lemma 3 with # = 10 and
a =1/(26, — 1) to conclude that there is a real number C3, which
is effectively computable in terms of 8, such that if N exceeds Cj,
then the number of square-free positive integers less than or equal
to N'/2 all of whose prime factors p satisfy 10 < p < G and p € W;
is greater than

(16) 20 N3(1-@-1) = 90 N1,

By our inductive assumption (13) and by (1) and (12), we obtain
(17) (|4:llB:)Y2 > (|Al|B)2G% > N™.

Thus, by (14), (15) and (17),

6,
(18) (4B > T
10

We now apply Lemma 2 with A = A, B = B!, Q = N*/2 and
S the set of primes p with 10 < p < G and p € W;. Then J, the
number of square-free integers up to ) divisible only by primes from
S, is greater than 20N'~% by (16), for N > Cj, and so, by (18),
inequality (10) holds. Thus there is a prime ¢;;; in S, an element
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a' in A] and an element &' in B such that ¢;,; divides o’ + b'. We
put
Ay ={a€ A : a=d (mod giy1)},

’L+1 {b S B = (mOd Qi+1)},

and

Wi = Wil {gis1}.
By our construction every element of A;,; + B;,; is divisible by each
prime in W,,;. Further, we have, by (13),

Al 1AL, 1A

IA2+1| 2 2+1 = G3 — G (i+1)?
and Bl
|Bir1l 2 Fary

as required. Our result now follows.

4. Proof of Theorem 2. Let S be the set of primes p which
satisfy 8 < p < (log(N*/?))1/2-1) Put o = 1/(20 — 1) and observe
that « is a real number greater than one since 1/2 < § < 1. Next
let J denote the number of square-free positive integer less than or
equal to N'/2 all of whose prime factors are from S. By Lemma 3
there exists a positive number C;3, which is effectively computable
in terms of 6, such that if N exceeds C;3, then

(19) J > 20(N1/2)1-(6-1) = 9o N1-¢,

We now apply Lemma 2 with Q = N'/? and with J and S as above.
From (3) and (19) we obtain (10) and so our result follows from
Lemma 2.

5. Proof of Theorem 3. Put R = [v2N]. We have

220> 1= X

a€A bEB T<p,platb a€A bEB T<p<Rpla+b

=22 X

a€A bEB R<p<2N,pla+b

= |A[|B.

IESDIDI!

a€AbEB
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We define, for each real number «,

F(o) =) e(aa) and G(a)=)_ e(ba).

a€A beB
Then
1223 h
@ Ty v 1= 3 ¥r(e(l)
a€A bEB T<p<R,pla+b T<p<R P h=o p

- 5,5 (e Er () )

Further there is an effectively computable positive constant C}4 such
that

1
> = —(loglog R — loglog(3T))| < Ci4,

T<p<R

(22)

see Theorem 427 of [4]. Put

=133 3 1-|A||B|(loglog N — loglog(3T))|.

a€A beB T<p,pla+b

By (20), (21) and (22),

153 (b h
H < CislAllBl+ Y Z G-I
T<p<RP h= P p

For all real numbers u and v, |u||v] < (|ul? + |[v|?)/2 and thus

(3)

(23) H<CulABl+= ¥

1< |B|>
2T<p<RpZ=: <|A|

Put

-x5r

p<n h=1

Gl
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Then by Lemma 1, for n < R,

S(n) < (N +n?)|A| < 3N|A|.

Thus we obtain

(24)

18-t 2

2 S|

T<p<RP h=1

()

R S(n)—S(n-1)

-

and similarly

(25)

n=T+1 n
_ S(T) , S(R)
—n_;ﬂsn)(n n+1) T+1 Rel
R 1 1 3N|A| 3NJA4|
— 3 3NjAl (= - ) -
n=;+1 | l( n+1 R+1 T+1°
12 ( ) < 3N|B|
T<§<Rphz1 - T+1

Our result follows from (23), (24) and (25).

[7]
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