ON TOTALLY DIFFERENTIABLE AND SMOOTH FUNCTIONS

HassLErR WHITNEY

1. Introduction. H. Rademacher has proved that a function of n variables satis-
fying a Lipschitz condition is totally differentiable a.e. (almost everywhere) (see,
for instance, Saks, [6, pp. 310-311]). It was discovered by H. Federer (though not
stated as a theorem; see [2, pe 4421) that if f is totally differentiable a.e, in the
bounded set P, then there is a closed set ) © P with the measure IP - Q, as
small as desired, such that f is smooth (continuously differentiable) in Q; that is,
the values of f in Q may be extended through space so that the resulting function
g is smooth there.

Theorem 1 of the present paper strengthens the latter theorem by showing that
f is approximately totally differentiable a.e. in P if and only if Q exists with the
above property. The rest of the paper gives further theorems in the direction of
Federer’s Theorem, as follows.

Suppose the domain of definition of f were a bounded open set P. Then in ap-
plying the part (a) — (c) of Theorem 1, we might alter f in a set P — Q which in-
cluded a neighborhood of the boundary of P. In applications, it might be important
to keep the values of f in most of a subset close to the boundary of P, or in most
of some other subset. That such can be done follows from Theorem 2.

If f satisfies a Lipschitz condition, Theorem 3 shows that g may be made to
satisfy a Lipschitz condition also, with a constant which equals a number p,
(depending on the number n of variables only) times the constant for f;in the case
of one variable, we may take p; = 1.

If we weaken the assumption on f, assuming only that it is measurable, then
Lusin’s Theorem shows that we can alter { on a set of arbitrarily small measure,
giving a continuous function g. In the other direction, suppose we assume that f
(defined in an open set) has continuous mth partial derivatives, and that these
derivatives are totally differentiable a.e. Then Theorem 4 shows that we may alter
f on a set of arbitrarily small measure, giving a function g which has continuous
partial derivatives of order m + 1. For the case of one variable, this is essen-
tially a theorem of Marcinkiewicz, [5, Theorem 3].

Examples show that the hypotheses in the theorems cannot be materially
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weakened without altering the conclusions. For instance, define a function ¢ of
one variable as follows. Let ¢, (¢) be the distance from ¢ to the nearest integer.
Using any sufficiently large integer a, set

$i(t) = 2t po(at t)/al, #(t) = § #ut) .

1=0

Then ¢ satisfies a Lipschitz condition of order 1 — &, for any o > 0; but Prop
erty (c) of Theorem 1 is not true for it. If ®(¢) = J;td)(s) ds, then @ is smooth, and
its first derivative satisfies a Lipschitz condition of order 1 — o; but the conclu-
sion of Theorem 4 (with m = 1) fails.

2. The theorem for bounded sets. Let x = (x,, ***, x,) denote points of
n-space E". With the unit vectors e;, * * *, e, of a coordinate system, any vector
v can be written in the form Zv; e;. The length of vis |v| =(Zv?)¥?; |y —x |

is the distance from x to y. Given n numbers f;(x), * * *, fp(x), set

(2.1) F(x) +v =Y fulx)u;

this is linear in v. If f(x), f(y), and the fz(x) are defined, set

_ fly) = f(x) — F(x) * (y — x)

ly = x|
for y # x, and e(x,x) = 0. Let S, [a(z)] denote the set of elements z with the
property &. Given f, and so on, as above, set

(2.3) H(x,€) = Sy[e(x,y) < €] .

The measurable function f defined in the set P is a.t.d. (approximately totally
differentiable) at x € P in terms of the f;(x) (see [6,p. 300])if for each € > 0
the set H(x, €) has x as a point of density. (Any standard definition of density

(2.2) elx,y)

points may be used for the purposes of this paper.) If this holds, then x is a point
of density of P, and the fi(x) are uniquely determined; if x is a point of density in
the direction of each axis, then the fi(x) are the approximate partial derivatives of
f at x. The f, are measurable (see (6, p. 299]).

THEOREM 1. Let f be measurable in the bounded set P. Then the four follow-
ing conditions are equivalent:
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(a) The function {is a.t.d.a.e. in P.

(b) The function f is approximately derivable with respect to each variable a. .
in P.

(c) For each € > O there is a closed set Q < P such that |P — Q| < €and
[ is smooth in Q.

(d) There is a sequence of disjoint closed sets Qy, @y , * ** in P such that
|P—=0, UQ, U*-+|=0and fis smooth in each Q;.

REMARK. If f is assumed totally differentiable a.e. in P, the proof that (c)
holds is simplified; see (2, pe 442].

Proof of Theorem 1. For the equivalence of (a) and (b), see [6, pp. 300-303] .
Note that (b) is an obvious consequence of (d). We shall prove the equivalence of
(a), (c) and (d).

Suppose (c) holds. We choose the disjoint closed sets @, ¢, * ** in suc-
cession so that f is smooth in each and P | < | P| /2%, where

Pi=P-Q,U---UQ,

as follows. Having found Q,, * * *, Q;-; , choose a closed set Q;/ so that fis
smooth in @/ and [P — Q! | < |P|/2*!. Let Us (4) denote the -neighborhood

of the set 4. For small enough &, we may use

Q; = Q;—UsQ U---UQi-y) .

Thus (d) holds.
Suppose (d) holds. Let (F be the set of points of density of Q;, and set

Q* = Q{UQs U+, Then | P —Q*| = 0. Take any x € Q*; say x € QF.
Since f is smooth in (; and x is a point of density of Q;, f (considered now in P)
is a.t.d. at 2. Thus f is a.t.d. at all points of 0¥, and (a) holds.

Now given (a), we must prove (c). There is a number ¢ > 0 with the following

property. For any points x,y, and number r with |y — x| < r, we have

IUr(x)n Ur(}’)! 2> 2a IUr(x)l .
Forx € P,setV, = lUl/i(x)l, and

(2.4) Yilx, m)= Uy, &)= H&, n)] ,

(2.5) ¢i(x) = glb. Sy[y;(x, n)<aV;].
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Since e(x,y) is measurable in the pair of variables x,y, it follows that y;(x, 1)
is measurable for fixed 7. Also, as a function of 7, ;(x, 7)) is monotone and con-
tinuous on the left; hence

(2.6) ¢;(x) < if andonly if Y;(x, {) < aV;.

Therefore ¢; is measurable.
Let Q; be the set of points where f is a.t.d.; then f;, * * ¢, f,, are defined in
Q;. Givenx € Q, and €' > 0, we may choose & > 0 so that

Ui(x,€') < aVy if  1/i < § ;
using (2.6) shows that
2.7 Lim ¢i(x) =0, x€ Q1 .
1—0

By Lusin’s and Egeroff’s theorems, there is a closed set  — Q, such that

|0; =0l < e, the f; are continuous in Q, and ¢;(x)—>0 uniformly in Q. We now
prove that for each €' > 0 there is a § > 0 such that

(2.8) e(x,y) < € if xy€Q, |y—=z[< 3.
Setting €; = €'/6, we may choose § so that
29 |F(y) +v—F(x) +v| <eilv| if xy€Q |y—=x| <28,

(2.10) $i(x) < e if x€Q (i +1) <38,

Now take any x, y € Qwith |y — x| < 8. Let j be the largest integer such
that 1/j > |y — x|, and set

R ="Uyyj (x) NUL;(y) ; then |R| > 2a¥; .
Since 1/(j+1) < |y—=x| < 8, (2.10) and (2.6) give
i (x, e),  Yily, €) <alj .
Hence there is a point z in R in neither corresponding set; that is,
lz==x|, lz—yl<Vj; e(xz), elyz)<er.
Since F(x)*v is linear invand |z—x|, |z—y]| < 2|y — x|, we have
e(ny)ly —x| = [f(y) = f(x) =F(x)-(y — x)]
< f(2) = Flx) —F(x)-(z — %) |
+1f(z) = f&) —FO)-z—y)| + [[F(y) —F(x)]-(z = y)|

<ellz—x|+]z—yl+ 2=yl <€y —«|
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if y # x, proving (2.8).

This fact, together with the continuity of the fi(x) in Q, shows that f is “of
class C! in terms of the fj in Q”, as defined in [7] (the definition is given after
(6.3), below). Hence, by [7, Lemma 2], we may extend f to be smooth in E7,
completing the proof. (The extension is described in Section 4, below; by use of

the results of that section, it is not hard to show that f has the required proper-
ties.)

3. The theorem for unbounded sets. We remove the restriction of boundedness

in Theorem 1, and give more information about the set in which f may be left
unaltered.

THEOREM 2. Let Ay, Ay, * * + be open sets in E™ such that each has points
in common with, at most, a finite number of the others, and let €, €,, * * * be
positive numbers. Let K be the set of points x such that there is a sequence of
distinct sets Ai‘x’ Auz, *++ and a sequence of points x1, X3, * ** with
x; € Ay and x;—> x. Let P be a measurable subset of E" — K, and let f be
a.t.d.a.e. in P in terms of the fy. Then there is a set J C P such that Q is
closed in E" = K and |(P — Q) N 4;| < ¢, and there is a smooth function g in
E™ = K such that g(x) = f(x) and 3g(x)/dxj, = fy(x) in Q.

REMARKS. Clearly K is closed and KN 4; = 0 for all ;. f Q* < P, Q% is
closed in £ — K, and for some positive continuous functions Si(x), 8,(x), * ** in
0*9

elny) <120 itz €Q, |y —x] <8(),
the proof shows that we may make Q O Q. For instance, we may make Q) contain
any given set of points of P in which f is totally differentiable and which has no
accumulation points in E® — K. On the other hand, we must expect to drop out a
neighborhood of the set of points where f is not totally differentiable. Further, we
cannot in general keep in Q any given closed set where f is approximately totally

differentiable, as is shown by the following example (in one variable):

f(t) = t*sin (i/t)(t #0), f(0) =0 .

Proof of Theorem 2. For each pair (k, I) of positive integers, let U, ; be the

set of points x satisfying the conditions (with a fixed x, in £")

k—1<|x—xo|<k+1, 1/(1—1)> dist (x,K) > /(1 +1) ;

for k=1 or [ = 1, we drop out the first inequalities. If K is void, the index [ is
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not needed, and the situation is simpler. The Uy ; are bounded open sets covering
E"™ — K, and each one touches at most eight others. Arrange them in a sequence
Ul US, oen.

For each i, let \; {, A, ,* ** be the (finite or infinite) set of numbers such
that U"), t.'kﬂ A; # 0. Since the Dj' are compact and in E" — K, each touches at
most a finite number of the 4;; hence for given j, there is at most a finite number
of values of i such that A; j = j for some k. Let E} be the smallest of the num-
bers €, /2%, using these values of i and corresponding .

Considering f and the f; in P N U alone, apply the proof of Theorem 1 to find
a closed set Qj © P N U/ suchthat [PNU} — Q| < €}, and such that fis
of class C! in terms of the f} in Qj« Set

Vi=Uj —Q, V=UjV;, Q=E"—-K-V.
Then V is open, Q is closed in E" — K, and Q N U} € @;. Now
(P=-Q)N 4;,=PNVNn4;=U;(PNVNA4),
[Pav|=1Pnuy—0;] <ef.
Since ¥} © U, P N VN 4; is void unless j = A; j for some k. Hence

[(P-Qn4; | < T IPnyna;| <T e, s T e/b=¢ .
j k k
Since each Uj is open and Q N U/ < Q;, f is clearly of class C! in terms
of the f; in Q. Hence, as before, we may extend the values of f in Q through
E™ — K, as required. (We are applying [7, Lemma 2] in an open set; the change

required in the proof is very simple. Or we could use [7, Theorem III ].)

4. The theorem for Lipschitz functions. The following theorem has two parts,

corresponding to the two theorems above.

THEOREM 3. For each positive integer n there is a number p, (we may take
p1 = 1) with the following properties.

(a) Let f be defined and satisfy a Lipschitz condition in the bounded closed
setP < E™:

(4.1) lf&) — f(x)| < Ny — =], %y €P.
Then for each € > O there is a closed set Q € P such that |P - QI < €, and

there is a smooth function g in E™ satisfying a Lipschitz condition (see (4.15))
with the constant ppN, such that g = f in Q.
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(b) Let the 4;, €;, and K be as in Theorem 2. Let P be closed in E™ — K (it
may have accumulation points in K). Let f be defined in P and satisfy (4.1). Then
there is a set Q © P which is closed in P (and hence in E" — K) such that
(P = Q)N 4; | < € ; and there is a function g satisfying (4.15) in E® which is
smooth in E* — (¥, where Q* = Q — Q, such that g = f in Q.

(c) We may take Q [in either (a) or (b)) so that f is totally differentiable in Q
in terms of functions fi, * **, fn; we may then take g so that Og/Oxy = fi in
Qk=1,+++,n)

(d) Given a positive continuous function 1 (x) in E" — K [in E", for case

(a)], we may make

(4.2) le(x) = f(x)| < n(x), x P

REMARKS. It is no restriction to take P closed (or closed in £ — K).For if P
is not closed, it is easily seen that we may extend f (uniquely) over Pso that it is
continuous there; then (4.1) now holds in P.(We can in fact extend f to satisfy
(4.1)inE™; see [3] or [4].) Note that, in (b), Q* © P — P; if K is void, then
Q* is void, and g is smooth in £” As an immediate consequence of (4.15), we

have
@3) 2o 3(x)/3x| < pulN if x€E"-Q', p|=1.
The hypothesis of total differentiability a.e. in P, together with

| Zop fele)| < Nv]

where the f; are defined, is not enough to give the theorem (unless, for instance,
P = E™),as simple examples show. (Compare the examples in H. Whitney [8].)
If we wish to prove (4.3) rather than (4.15), the proof may be slightly simplified;
of course (4.15) follows from (4.3) if Q¥ = 0 (hence if K = 0). See also the remarks
following Theorem 2.

Proof of Theorem 3. To prove the theorem, we first note that (a) is contained
in (b); use 4, = E™ €, = €. Next, (d) will follow at once from (4.1) and (4.15)
if we make sure that each point of P is sufficiently close to some point of Q; this
will clearly be the case if, in applying the proof of Theorem 2, we take the €’;
small enough. Also, just as in Theorem 2, (c) will hold. It remains to show that we
can obtain the properties in (b), using the proof of Theorem 2. We do this here,
except for showing that we can make p,=1.

We must examine the proof of [7, Lemma 2]. First, since f is totally differ-
entiable a.e. in P [6, p. 311], we may choose Q as in the proof of Theorem 2;
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recall that the f; are continuous in Q. We shall use a cubical subdivision of
E™ — (, essentially as in [7]. For each integer s (in [7], onlys > 0 was
used), let KJ be the set of all cubes of edge length 1/2°, the coordinates of
whose corners are integral multiples of 1/25. Let K§ consist of the cubes of K
whose distances from Q are at least 6nY%2° . Let Ks consist of the cubes of K/
which are not in cubes of K} -,. Take any cube C € K ; suppose C C C',
C' € Ki-,.Thendist(C', Q) < 6nY%¥2571, Therefore, clearly

(4.4) 6nYY2° < dist(C, Q) < 13nY%2° CE€Ks.
Take C € K5, C' € Kgs+;. Then each point of C’ is within
nY%/25%2 + 13,1/2/95 ¥2

from Q; hence

(4.5) dist(C, C') > (5/2)n%%/2%, CEKs, C € Ks+a

Let y', y2 «++ be the set of all corners of all cubes of all K. Choose
x? € Q with |x¥ — y¥| = dist(y?, Q). Let b, be the largest length of edge of
any cube of any K with y” as a corner, and let [, be the cube defined by

le_yfl < bv(l = 19...”7') .

Let ¢ be a smooth function which is positive within a fixed unit cube and is
zero outside; by a translation and similarity transformation, define ¢}, positive
within I, and zero outside. Set ¢, = ¢ /Zb ' ; then ¢, is positive within /,, and
zero outside, and 2, = 1 in E® — Q. Since there is at most some fixed number
of shapes of cubes (of some K, and K ;4 perhaps) forming any I,, there is
clearly a number M, > 1 with the following property (compare [7, Section 10]):
taking |v| = 1,

(4.6) |3v, 3¢,/ 0x;| <25M, if ¢y (y)# 0 forsome y € C € K; .

Extend f to be continuous in P Gf P 7£ P); (4.1) still holds. For any € a
and any x € E”, set

(4.7) Ylna*) =) + 2 fi () — =)

this is the value at x of the linear function approximating to f at x*. Then set

(4.8) g(x) =2 bulx) Y(x "), x € E"—-Q.
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It is not hard to show that if g = f in @, then g is smooth in £ — Q* and
9g/dx; = f; in Q; see the proof of [7, Lemma 2]. We must still prove (4.15).

Take first any x and x' in E" — Q; say for definiteness that
(4.9) x € C € Ks, XICCICKS’; SZSI-
Let x* be a point of @ nearest to x. Since Z@k(_x) = 1, we may write
gx) =f(") + X @) =GN+ T du(x)fi () (xi —x¥) .
v v, 1
Hence

(4100  g(x') —glx) =3 [P (x') = ()1 f(x*) — F(x*)]

+ 2 [Bux") — @) Ifi (M)l =) + T bue)fi () (i =)

v, 1
We shall find a bound for each non-zero term. First we show that

(4.11) o (x') —du(x)]| |Ff(x*) = f(=*)| < 64NMnY? |x' — x| .
Consider first any v such that ¢,(x) # 0. Then by (4.6),
(4.12) [bu(x’) = o (x)| <2Ma|z" —x].
Also, since

|x* — x| < diam(C) + dist(C,Q) < 14n¥%2°,

ly” = x| < 2diam(C) < 2n"%2°,

ly = 2| < 2" —y¥| < 16072/2°,

we have

|x ¥ — x*| <32nV2/25,
and hence

[f(x”) = f(x*)| < 32nnY2/25 .
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These relations give (4.11). Next consider any v such that ¢, (x") # 0. Then

(using inequalities like those above) we obtain
[x¥ —x*| < & — 2" | + 2" — x| + |x — "]
< 18n2/25" + |x' — x| + 14nY%/25 < 32nV%/25" + |1’ —x]|.
In the present case, (4.12) holds with s’ . Suppose first that
[x' — x| < 32nV2/28".
Then
[ (") = )] < N - 64nV2/28"

and (4.11) follows. If |x' — x| > 32aY2/2%, then |x” —x*| <2 |x' —x/|,and

since | P (x")— ¢, (%) [ <2 and 4N < 64NM ,n¥? , (4.11) follows again.
Next we show that

(4.13) lpu(x') = o (x)| |fi(x”)] |t — 2%| < 40NM,nYV2|x' —x|.

We may suppose that ¢, (x') # 0, in which case |x' — x”| < 182V2%/2%, or
&, (x) # 0, in which case |x' — x”| < 182?25 + |x' — x| ; in either case,

lxi —2%| < |x' —«”] <18nY2/2%" + |x' —x]|.

First suppose that |x' — x| < 2nY2/25" . Then, by (4.5), s < s’ + 1. Hence,
using (4.6) with s or s’ we get

|¢V(xl) _va(x)' §28I+1Mn|xl —xl )

since |f;(x”)| < N, (4.13) follows. Next suppose that |x' — x| > 2a¥2/2%".
Then Iq{)v(x' ) — ¢>y(x)| < 2, and 1x',~ - xlfl <10 lx' —-x | , giving (4.13) again.
Finally, we have

(4.14) |po(x) fi (&%) (xf —x:)| <N|x' —x].

There is clearly a number ¢, such that for any x, there are at most ¢, values
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of v such that ¢, (x) # 0. In the three groups of terms in (4.10), there are at most

2¢p, 2cpn, and c,n non-zero terms respectively. Hence, by (4.11), (4.13) and
(4.14), we have

lg(x') —glx)| < cnNM,nV?(128 +80n +n)|x' — x|,

which gives
(4.15) lg(x') —g(x)| <puN|x' —x|,  pn =209 caMn®?.

If % and x' are in @ , (4.15) follows from (4.1), since g = f(or the extended f)
in Q. Suppose finally that x € Q, x' € E™ — Q (or vice versa). Let x” be the
last point of the segment xx' in Q). Then (4.1) holds for x and x”, and (4.15) holds

'’ 4 ’

for x” and x', with x” in x”x’ and arbitrarily close to x”; hence (4.15) holds in

all cases, and the proof is complete.

5. Lipschitz functions of one variable. We must prove Theorem 3, with n = 1,
01 = 1. The proof is elementary in nature; we do not need [7]. Find a closed
subset Q; of E! —K (orof £, in case (a)) as in the proof of Theorem 2 (or
Theorem 1, if we are only using (a)). Now (4.1) holds in Q,, f, is continuous in
Q,, and f is smooth in terms of f, in Q,(see Section 3, above), that is, for each
x € Q1 and each €' > 0 there is a § > 0 such that

(5.1) lfx") = fx') = (" =" ) fi (x")| <€ |x" —x']

if |x" — x|, lx' —x| <8, xx" € Q.

Let primes on functions denote differentiation. We shall find a set ¢ which is
closed in E' — K, with |Q; — Q| < €* in case (a) or [, —0)n4d;| < &
in case (b), and a function g which satisfies (4.1) in E ! and is smooth in £' — K,
and such that g = fand g’ =f, in Q; for € or the €} small enough, Q and g have
the required properties.

LetI;, I,, * * * be the closed intervals whose interiors fill out £' — Q, UK.
Extend f through E! so that (4.1) holds there; see [3] or [4]. Set go =fin
QL UK, and let g, be linear in the /;, so that g, is continuous in the closed
intervals. Then g, is continuous in E£', and satisfies (4.1) there.

We shall need the following lemma.

LEMMA 1. Let ¢ be defined and satisfy (4.1) in the closed interval [a*, b],
and let ¢ be linear in the subinterval [a, b]. Then there is an arbitrarily small
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interval [a', a”] about a such that ¢'(a’) exists, and there is a function \J in
la*, b] which equals ¢ in [a*, '] U [a”, b] and is smooth in [a’, b, and
is such that Y'(a') = ¢'(a'), and for x in [a’', a"], Y'(x) lies between ¢'(a’)
and @' (a").

We use the notation Ag(x, y) = [p(y) — dx)] Ay — x). If ¢ is linear in some
interval [x,, b] with x4 < @, we may set Y = ¢. If not, we may choose ¢ < a
arbitrarily close to a so that Aglc, a) # Ad(a, b). Suppose for definiteness that
Aglec, a) < A¢la, b). Take a” > a arbitrarily close to a. Because of (4.1), ¢ is
absolutely continuous, and @(a") — ¢(c) = fca”d)'(x)dx. Hence there is a point
a' in [c, a] such that ¢’ (a') exists and

?'(a') <Ap(a', a") <OP(a", b) =¢'(a") ;

that is, the tangents at a' and a” intersect at a point x' between a' and a”.
Using these tangents except near x ', and smoothing near x’, gives the required y.

We return to the theorem. Let x;, x,, * ** be the set of end points of the
intervals /. Let I'] be an interval about x;, of length <€} for some €; (see
below), with one end point interior to an interval /; with x; as end point. Apply
the lemma (or the lemma with x replaced by —=x) to find an interior interval [/
= [a{, a{] about x,, and using ¢ = g, in I, define Yy = g in I{ . We may re-
quire that neither a; nor af is any x; . In general, having found disjoint intervals
L'y« ++, Ii-1 , let x;, be the first point of the sequence which is in none of these,
and let [ be an interval about xj, of length < ¢, disjoint from the preceding
Ii' . Apply the lemma as before to find [’ , and define g in I/ . Set g = g, elsewhere
in E'. Let Q be the set of points of Q, interior to no ['. For small enough €,
the inequalities with €* or € hold. We shall show that g is smooth in E! —K
and g’ = f; in Q; the other properties of g are clear.

Clearly g’ is continuous in a neighborhood of any point interior to an ;' or an
I, that is, in E! — KUQ. Now take any x € Q; we shall show that g’ (x)
= f1(x) and g’ is continuous at x, considering only points x' > «x for which
g'(x') is defined. The same fact holds for x' < x, and this will complete the
proof. By definition of g, this is true if x is the left hand end point of some J’;
suppose this is not the case.

Given €' > 0, choose & so that(5.1) holds, and so that If; (') —fy () <€’
for x' € @y, |x' —x| < §.Choose y > «x in Q within 8 of x. Now any dif-
ference quotient of f, with points in [x, y] N Q,, is within 2¢’ of f,(x); hence
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clearly any difference quotient of gy in [x, y] is within 2 €’ of f,(x). Hence, for
any ' in [x, y] such that gh(x') exists, |go(x') — fi(x)| < 2€'. Because of
the last property in the lemma, |g'(x') — fi(x)| < 2€’ if g’ (x') exists. Since
glx') — glx) foxlg' (¢) d¢, this shows that g’ (x) exists (as arighthand derivative)

and equals f(x), and proves the required continuity.

6. Functions with totally differentiable mth partial derivatives. We shall prove
a theorem corresponding to (a) — (c) in Theorem 1; the extension to the case

corresponding to Theorem 2 is clear.

THEOREM 4. Let f and its partial derivatives of order < mbe defined in a
bounded open set P C E", and let each mth partial derivative be totally differ-
entiable a.e. in P. Then for each € > 0 there is a closed set ) C P such that
|P = Q| < €, and there is a function g with continuous (m + 1) th partial deriva-
tives in E" such that all partial derivatives of f of order < m + 1 exist in Q and
equal those of g there. In particular, g = f in Q.

Because of Theorem 1, we may suppose m > 1. We use the notation of [7];
thus
ook (1,0 7 %0)
R Ryl wee k!

(ef = 21 JF1eee (en = %)

[do not confuse with the earlier f;(x)], o} =k, +***+ ky, and so on. Also

fkl"'kn = aakf/ax{zl -o.axkn

where defined.

Take any k£ with o = m —1, and any integers i and j. Since afk/axi and
of /ax]' are defined in Pand are totally differentiable a.e. in P, it follows that
their partial derivatives 92 /axiaxj and 92 fk/axj dx; exist a.e. in P; bya
theorem of Currier [1], these are equal a.e. in P. Where this is so for all j, j, it
is clear that we may define f; with o, = m + 1 uniquely. Let P’ be the subset
of P in which the fj exist for o < m + 1, and each f; (0, = m) is totally differ-
entiable in terms of the f; (I; > k;,0; =m + 1); then |P —P' | =0. As seen
in Section 2, the fj are measurable.

As in [7], let Yx(x'; x), for o) < m, be the value at x’ of the polynomial of
degree at most m — o, which has the same value and partial derivatives of order
< m—o0ok atx as fr. Then

Yp(xsx) = X

o1€m-ok

fe+ (x)

A Y/
I (x x) .
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Let Ry (x'; x) be the corresponding remainder in Taylor’s expansion:

(6.2) Re(x; x) = fa (') — i (x'; x) , op <m.

Define Y5 and Ry similarly for x € P', with m replaced by m + 1. We shall say
a remainder R is of order m' at x° if the following is true. For each ¢’ > 0
there is a § > 0 such that

(6.3) IRE(x; 2°) | < €' |x —2° |’ if |x—x° <8§.

Recall from [7] that in a closed set, f is of class C™*! in terms of the f; (o}
< m + 1) if and only if each R; is of order m + 1 —o} uniformly in a neighbor-
hood of each point.

With the help of Lemma 2 below, we prove Theorem 4 as follows. By Lusin’s
Theorem, there is a closed set Q' C P’ with [P’ — Q' | < €/2 such that
each f; (x) with o = m + 1 is continuous in Q'; that is, R}(o; = m + 1) isof
order 0 in Q'. For each integer i and each x° € Q', let §; (x°) be the upper
bound of numbers § < 1 such that (6.3) holds with m' = m —o;,+ 1, €' = 1/2¢,
for all £ with oy < m + 1. Then by the lemma, §;(x) > 0 in Q'. As in Section 2,
we see that the 3;(x) are measurable. Find sets Q; as in Section 2, and set
Q=0,NQ, N++-. Then clearly f is of class C™*! in Q in terms of the f;, and
hence [7, Lemma 2] f may be extended from Q over E™ so that

Bdkf/ax’fl < dzkn = fi
in Q. This extension is the required g. There remains to prove
LEmmMA 2. Let P be open, let
ackf/axkll .es axﬁn = fi

in P for o < m, let f(x°) be defined for o, = m + 1, and let the fr(o = m) be
totally differentiable in terms of the fi(l; > k;, oy = m + 1) at x°. Define
Ry (x; x°) as above. Then R}, is of orderm — o+ latx° ifop < m— 1.

Note that the hypothesis shows that R} for oy = m is of order 1 at x°.
Suppose we have proved Lemma 2 for the case that f;(x°) = 0 for all &,
o} < m + 1. Then it holds for the general case. For set

Frlx) = fe(x) = Yh(x2°) =Ri(x ) (Or <m +1);

then f,(x°) = 0. Also, since ¥ (x; x°) = 0 (using the f;), Ry (x; x°) = Rj(x; x°).
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Since the R/ are of order m — o + 1 at x° for oy = m, the lemma shows that
this is true also for oy < m. Thus R}, = R}/ is of order m— o} + 1 atx°, as
required.

We shall need Taylor’s Theorem with exact remainder:

LEmMMA 3. Let ¢ be a function of one variable such that ¢(h) = dh¢/dxh

exists for h < m' in an interval and is bounded. Then

m (h)
b(t1) = z¢ (&)

h=0

(t1 — to)h

’ Til—l)‘ fl (tr = )" [p™(s) = # ™ (20)]ds .

0

Since qb(ml)is bounded, Cb(’"'_l)satisfies a Lipschitz condition; hence for

N ' _ . .
any smooth o, 8 = C(qﬁ(m Dis absolutely continuous, and

[ s = p6) - 5@ .

Therefore the usual proof applies.
We return to Lemma 2, assuming fz(x°) = 0 (0 <m + 1). Set

xi:(xl,.."xisx?*’l’.. ’x(r)l 5
then x" = x. Take any i > 0, and any k with oy < m—1.Setm' = m—oy,
k@)=, oy byt m', 2+, ky), and

xi(s) = (xl, s Xj-1s S, x?"'l, ct xn)
Then x%(x?) = 7!, ' (x;) = #. For some 8 > 0, the fi(x) (o}, < m) are
bounded for |x —=x°| < §,. Lemma 3 gives
Fr(xt) =dulxh «*71)
1 *i n'-1 i i-1
t——— |, (=i = )" Hfeawyxt ()] = fap (x* 7)Y ds
(m'" = 1) J&d

Since f;(x* (s)) = R} (x*(s); x°),and so on, the definition of R, gives

. . ]. xq m'=1
. 11 —_— - = S
Re(xb; x ) = (n 1)! ﬁol (xi )

X {Rby[xF(s); 0] — Rhti) (x* 7% 2°) b ds
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For a certain €* chosen below, choose § < 8, so that
lRi(x';xo)lse*Ix'~x°| if oy=m, |x'—x°|<5.

Then if [x — x°| < §, using |2*(s) = 2°| < |x —x°] fora? < s< x;, and

so on, gives

9¢e* lx — xO |m’+l

l| ¢

: L 2e* |x — x° i "
|Re (x*; 271 | S’(;‘,I_—l)“lﬁz (xi —s)" " lds <

Now in [7, (6.3)], subtract fi(x") from both sides, and change %, x', x" to
x*™!, x*, x respectively; this gives
> Rpei(x%; 271)

B 27) = Ry(xix') = :

(x —x*)t.
o1<m-o}

Hence,

1

IRe (x; x*°Y) — Ry (x; 2%) | < 2€* |x — 2°Fok*t ¥
(mn—op —o)! U!

O’lﬁm—o'k

Let Ay denote the sum, and let 4 be the largest 4;. Since R}, (x; x°) = R(x; x%)
for the case at hand, adding the inequalities for ; = 1, + * +, n gives

[RE(x;x°) | < 2nAex|x — 20Ok |

Given €' > 0, set €* = €'/(2r4), and choose § accordingly; this inequality then
completes the proof.
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