
ON TOTALLY DIFFERENTIABLE AND SMOOTH FUNCTIONS

HASSLER WHITNEY

l Introduction. H. Rademacher has proved that a function of n variables satis-

fying a Lipschitz condition is totally differentiate a e. (almost everywhere) (see,

for instance, Saks, [6, pp. 310-311]). It was discovered by H. Federer (though not

stated as a theorem; see [2, p. 442]) that if / i s totally differentiable a.e. in the

bounded set P, then there is a closed set Q (Z P with the measure \P — Q\ as

small as desired, such that / i s smooth (continuously differentiable) in Q; that is,

the values of / in Q may be extended through space so that the resulting function

g is smooth there.

Theorem 1 of the present paper strengthens the latter theorem by showing that

/ i s approximately totally differentiable a.e. in P if and only if Q exists with the

above property. The rest of the paper gives further theorems in the direction of

Federer's Theorem, as follows.

Suppose the domain of definition of / were a bounded open set P. Then in ap-

plying the part (a) —> (c) of Theorem 1, we might alter / in a set P ~~ Q which in-

cluded a neighborhood of the boundary of P. In applications, it might be important

to keep the values of / in most of a subset close to the boundary of P, or in most

of some other subset. That such can be done follows from Theorem 2.

If / satisfies a Lipschitz condition, Theorem 3 shows that g may be made to

satisfy a Lipschitz condition also, with a constant which equals a number pn

(depending on the number n of variables only) times the constant for / ; in the case

of one variable, we may take pi — 1.

If we weaken the assumption on /, assuming only that it is measurable, then

Lusin's Theorem shows that we can alter / on a set of arbitrarily small measure,

giving a continuous function g. In the other direction, suppose we assume that /

(defined in an open set) has continuous rath partial derivatives, and that these

derivatives are totally differentiable a.e. Then Theorem 4 shows that we may alter

/ on a set of arbitrarily small measure, giving a function g which has continuous

partial derivatives of order m + 1. For the case of one variable, this is essen-

tially a theorem of Marcinkiewicz, [5, Theorem 3 ] .

Examples show that the hypotheses in the theorems cannot be materially
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weakened without altering the conclusions. For instance, define a function φ of

one variable as follows. Let φ0 (t) be the distance from t to the nearest integer.

Using any sufficiently large integer α, set

Φi(t) = 2iΦo(ait)/ai, Φ(t)= Σ ΦM
ϊ = 0

Then φ satisfies a Lipschitz condition of order 1 — α, for any OL > 0; but Prop-

erty (c) of Theorem 1 is not true for it. If Φ(ί) = f*φ(s)ds, then $ is smooth, and

its first derivative satisfies a Lipschitz condition of order 1 — CX but the conclu-

sion of Theorem 4 (with m — \) fails.

2. The theorem for bounded sets. Let x — (xί9 , xn) denote points of

n-space En. With the unit vectors ei9 , en of a coordinate system, any vector

v can be written in the form Σi$ e/ The length of υ is | v \ ~ (Σvf ) ι/2 \y ~ x j

is the distance from x to y. Given n numbers fι{x)9 * , fn(χ\ s e ^

(2.D F(x) - υ = Σ fk(*)"k:

this is linear in υ If /Gc), /(y), and the / (̂Λ;) are defined, set

U 2 ; e U y ) =

for y^1 x, and e(%,%) = 0. Let S2 [a(z)] denote the set of elements z with the

property Cί. Given /, and so on, as above, set

( 2 3> H(x,e) = Sy[e(x,y) < e] .

The measurable function /defined in the set P is a.t.d. (approximately totally

differentiable) at x C P in terms of the fy{x) (see [6, p. 300]) if for each e > 0

the set H{x9 β) has x as a point of density. (Any standard definition of density

points may be used for the purposes of this paper.) If this holds, then x is a point

of density of P, and the ffcix) are uniquely determined; if x is a point of density in

the direction of each axis, then the f^ix) are the approximate partial derivatives of

/at x. The fa are measurable (see [6, p. 299] ).

THEOREM 1. Let f be measurable in the bounded set P. Then the four follow-

ing conditions are equivalent:
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(a) The function f is α. ί. d. α. e. in P.

(b) The function f is approximately derivable with respect to each variable a. e.

in P.

(c) For each β > 0 there is a closed set Q C P such that | P — Q | < £ α/ιc?

/ J\S smooth in Q.

(d) There is a sequence of disjoint closed sets Q\, Q2 , # * * m P such that

I P — Qi U @2 U I = 0 αrcc? / is smooth in each Q(.

REMARK. If f is assumed totally differentiable a.e in P, the proof that (c)

holds is simplified; see [2, p. 442] .

Proof of Theorem 1. For the equivalence of (a) and (b), see [6, pp. 300-303] .

Note that (b) is an obvious consequence of (d). We shall prove the equivalence of

(a), (c) and (d).

Suppose (c) holds. We choose the disjoint closed sets Qι, Q2 > * * * in suc-

cession so that / is smooth in each and P{ \ < \ P \/2ι

 9 where

Pi = P - Q i U - UQi ,

as follows. Having found Q^, , Qι-ι 9 choose a closed set Q[ so that / is

smooth in Qi and | P - Q \ < \ P | / 2 ι + 1 . Let ί/δ (A) denote the S-neighborhood

of the set A. For small enough δ, we may use

Qi = Q'i'

Thus (d) holds.

Suppose (d) holds. Let Qi be the set of points of density of Qι9 and set

Q* - Qϊ U Qt U . Then \P -Q* \ = 0. Take any x C Q*; say x C Q*.

Since / is smooth in Qi and x is a point of density of Qi, /(considered now in P)

is a. t .d. at x. Thus / i s a.t . d. at all points of Q*9 and (a) holds.

Now given (a), we must prove (c). There is a number a > 0 with the following

property. For any points x9y9 and number r with | y ~~ x j < r, we have

| ί / r ( * ) n £ / Γ ( y ) | > 2a \ϋr(x)\ .

For x ζl P, set Fj = I LΊ/jU) I , and

( 2 5> </.,•(*) = g.l.b. S71[φι(x,r,)<aVi] .
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Since e(x,γ) is measurable in the pair of variables x, y, it follows that ψ((x, Tj)

is measurable for fixed ηη Also, as a function of τ)9 ψiix, rj) is monotone and con-

tinuous on the left; hence

(2.6) φ.(*) < ζ if and only if ψib, ζ) < aV( .

Therefore φι is measurable.

Let Qx be the set of points where / is a.t.d. then flf , fn are defined in

Qγ. Given x ζ- Qx and e' > 0, we may choose 8 > 0 so that

Ψi(x,e') < aVi if 1/i < S

using (2.6) shows that

(2-7) Urn φi (x) = 0 , x C Qi

By Lusin's and Egeroff's theorems, there is a closed set Q C Qι such that

I (?i "" Q I ^ e> t n e fk a r e continuous in (̂> a n d Φi(x)—^0 uniformly in Q We now

prove that for each e' > 0 there is a 8 > 0 such that

(2.8) e(x>y) < e' if χ,yCQ, \y - χ\ < § .

Setting βι — € / 6 , we may choose 8 so that

(2.9) \F(y) .V-F(x) v | <ex\v\ i f x f y G Q, | y - χ | . < 2 S f

(2.10) φ.( z j < € i i f Λ e ρ f x / ( + i) < s .

Now take any %, y £ () with | y ~ Λ; | < δ. Let / be the largest integer such

that l/y > I y ~ Λ; | , and set

R = Uι/j (x) Π ί/1/; (y) then |fl | > 2aVj .

Since l/( ; + 1) < | y - % | < δ , (2.10) and (2.6) give

Ψjfaf e ι ) » ^/(y^ 6 ι ) <aVj .

Hence there is a point z in R in neither corresponding set; that is,

\z ~ x\, \z ~ y\ < l/j e(x,z) , e(y,z) < e1 .

S i n c e F(x) v i s l i n e a r i n i ; a n d | z — a; | , | z ~ y | < 2 | y — % | , w e h a v e

+ 1/(2) -fiy) -F(yHz -y)\ + \[F(y) - f ( x ) ] (z - y ) |

< e i [ | z - * | + \z ~y\ + \z - y\] < e' \y - x\
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if y φ x, proving (2.8).

This fact, together with the continuity of the /&(#) in Q9 shows that / is "of

class C ι in terms of the fa in Q", as defined in [7j (the definition is given after

(6.3), below). Hence, by [7, Lemma 2] , we may extend / to be smooth in En

f

completing the proof. (The extension is described in Section 4, below; by use of

the results of that section, it is not hard to show that f has the required proper-

ties.)

3. The theorem for unbounded sets. We remove the restriction of boundedness

in Theorem 1, and give more information about the set in which / may be left

unaltered.

THEOREM 2. Let Ai9 A29 be open sets in En such that each has points

in common with, at most, a finite number of the others, and let €χ, € 2 , * * * be

positive numbers. Let K be the set of points x such that there is a sequence of

distinct sets Aμ^9 Aμ2, and a sequence of points X\9 x29 ' ' ' with
xi C Aμi and xι —* x. Let P be a measurable subset of En — K, and let f be

a, t, d. α. e. in P in terms of the f^. Then there is a set Q d P such that Q is

closed in En — K and \ (P ~ Q) Π A{ \ < £;, and there is a smooth function g in

En — K such that g(x) = f(x) and 'dg(x)/'dxjc = fj^x) in Q.

REMARKS. Clearly K is closed and K Π Ai = 0 for all i. If Q* C P, (?* is

closed in En ~ K, and for some positive continuous functions §i(%), δ2(%), * * * in

Q*,

e(χ,y)<l/2ι iίxCQ*. | y - * | < S i ( * ) ,

the proof shows that we may make Q ZD Q . For instance, we may make Q contain

any given set of points of P in which / is totally differentiable and which has no

accumulation points in En — K. On the other hand, we must expect to drop out a

neighborhood of the set of points where / is not totally differentiable. Further, we

cannot in general keep in Q any given closed set where f is approximately totally

differentiable, as is shown by the following example (in one variable):

fit) - t2 sin ( i / t ) ( ί 7^0), /(0) = 0 .

Proof of Theorem 2. For each pair {k, I) of positive integers, let U^j be the

set of points x satisfying the conditions (with a fixed x0 in En)

k - 1 < \χ ~ χ0 I < k + 1, 1/(1 ~ 1) > d i s t (*, K) > 1/(1 + l )

for k — 1 or I = 1, we drop out the first inequalities. If K is void, the index I is
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not needed, and the situation is simpler. The U/^/ are bounded open s e t s covering

En — K, and each one touches at most eight others . Arrange them in a sequence

uι, ί/2', .
For each ί, let Xj? 1 , λ ι > 2 > * * * be the (finite or infinite) set of numbers such

that U'\ i kΠ A{ ψ 0. Since the Uj are compact and in En — K9 each touches at

most a finite number of the A{ hence for given /, there is at most a finite number

of values of i such that λ j ^ = j for some k Let €y be the smallest of the num-

bers €(/2 , using these values of i and corresponding k

Considering /and the /& in P Π Uj alone, apply the proof of Theorem 1 to find

a closed set Qj C P Γ\ Uf such that | P Π Uj - Qj \ < β), and such that / is

of class Cι in terms of the fy in Qj. Set

Vj = U j - Q j , V = \ l j V j , Q = E n ~ K - V .

Then V is open, Q is closed in E" ~ K, and Q Π {// C Qj. Now

(p - ρ ) n At = P n F n Λ, = u ; ( P n F ; n ^ t j ,

|p nF, I = |p n υ j-Qj \ < e).

Since Vj CZ Uj', P Π Vj{\ Aι is void unless / = λ t ^ for some k. Hence

\(p-Q)nAi\ < Σ \pnVjt\Ai\ <Σ ^'λiΛ< Σ ^ / 2 k = et .
j k ' k

Since each Uj is open and Q Π Uj CZ Q- , f is clearly of class C1 in terms

of the fit in Q. Hence, as before, we may extend the values of / in Q through

En — Ky as required. (We are applying [7, Lemma 2] in an open set; the change

required in the proof is very simple. Or we could use [7, Theorem III ]•)

4. The theorem for Lipschitz functions. The following theorem has two parts,

corresponding to the two theorems above.

THEOREM3. For each positive integer n there is a number pn (we may take

pi = 1) with the following properties.

(a) Let f be defined and satisfy a Lipschitz condition in the bounded closed

setP C En:

(4.1) \f(y) -f(x)\ < N\y-χ\, x,y C P .

Then for each 6 > 0 there is a closed set Q C P such that \P — Q\ < € , and

there is a smooth function g in En satisfying a Lipschitz condition (see (4.15))

with the constant pnN> such that g — f in Q.
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(b) Let the Aι , €;, and K be as in Theorem 2. Let P be closed in En — K (it

may have accumulation points in K) Let f be defined in P and satisfy (4 1). Then

there is a set Q C P which is closed in P (and hence in En — K) such that

I (P ~~ Q) Π Ai I < 6j and there is a function g satisfying (4.15) in En which is

smooth in En — Q , where Q = Q — Q, such that g — fin Q.

(c) We may take Q [in either (a) or (b)] so that f is totally differentiable in Q

in terms of functions fl9 ' ' , fn we may then take g so that 'dg/'dx^ — f^ in

(ά) Given a positive continuous function T](x) in En ~" K [in En, for case

(a)J, we may make

< 4 2> \g(x) ~ f(χ) I < r,(x) , x CP .

REMARKS. It is no restriction to take P closed (or closed in En ~ X).For if P

is not closed, it is easily seen that we may extend /(uniquely) over P so that it is

continuous there; then (4.1) now holds in P . (We can in fact extend / t o satisfy

(4 .1) in£ Λ ; see [3] or [4].) Note that, in (b), Q* C P - P; if K is void, then

Q is void, and g is smooth in E n As an immediate consequence of (4.15), we

have

v | =(4.3) |Σtfc3g(*)/3*J < pnN if xCEn-Q*

The hypothesis of total differentiability a.e. in P, together with

\Σvkfk(x)\ <N\v\

where the /^ are defined, is not enough to give the theorem (unless, for instance,

P = En),as simple examples show. (Compare the examples in H. Whitney [β].)

If we wish to prove (4.3) rather than (4.15), the proof may be slightly simplified;

of course (4.15) follows from (4.3) if Q* — 0 (hence if K = 0). See also the remarks

following Theorem 2.

Proof of Theorem 3. To prove the theorem, we first note that (a) is contained

in (b); use Ax - En, eί = € . Next, (d) will follow at once from (4.1) and (4.15)

if we make sure that each point of P is sufficiently close to some point of Q this

will clearly be the case if, in applying the proof of Theorem 2, we take the e'j

small enough. Also, just as in Theorem 2, (c) will hold. It remains to show that we

can obtain the properties in (b), using the proof of Theorem 2. We do this here,

except for showing that we can make p γ— 1.

We must examine the proof of [7, Lemma 2] First, since / is totally differ-

entiable a .e . in P [6, p. 311 ] , we may choose Q as in the proof of Theorem 2;
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recall that the fa are continuous in Q. We shall use a cubical subdivision of

En — Q, essentially as in [ 7 ] , For each integer s (in [ 7 ] , only 5 > 0 was

used), let Ks' be the set of all cubes of edge length 1/2S, the coordinates of

whose corners are integral multiples of 1/2S. Let Kς consist of the cubes of Kg

whose distances from Q are at least 6τr/2s . Let Ks consist of the cubes of Kς

which are not in cubes of X's-i Take any cube C £ Ks suppose C C C 9

C £ Ks-i Then dis t(C , Q) < 6nι/2/2s~ι. Therefore, clearly

(4.4) 6nV2/2s < dist(C, Q) < Un1/2/2s , C £ Ks .

Take C £ &s 9 C £ Ks +2 Then each point of C' is within

from Q; hence

(4.5) dist(C, C ) > (5/2)n 1 / 2 /2 s , C £ Ks, C' £ Ks+2 .

Let y 1 , y 2 be the set of all corners of all cubes of all Ks . Choose
χV £ Q with U ^ ~~ y1"! = dist(yv, ^ ) . Let ί>v be the largest length of edge of

any cube of any Ks with yv as a corner, and let lv be the cube defined by

\χi ~~yVi\ < bv{i = 1, , Λ) .

Let φΌ be a smooth function which is positive within a fixed unit cube and is

zero outside; by a translation and similarity transformation, define φ'v, positive

within l v and zero outside. Set φv — φ^/Σφ' χ; then φv is positive within lv and

zero outside, and Σφv = 1 in £ n — Q . Since there is at most some fixed number

of shapes of cubes (of some Ks , and Ks+ι perhaps) forming any l v, there is

clearly a number Mn > 1 with the following property (compare [7, Section lOJ):

taking \v\ — 1,

(4.6) \Σvi'dφJ'dxi\ <2sMn if φv{y) φ 0 for some γ £ C £ Ks .

Extend / to be continuous in P (if P / P); (4.1) still holds. For any x* £ Q

and any x £ En, set

(4.7) ,/,(*;**) = / ( x ) + Σ /f (χ*)(*i - * f )

this is the value at x of the linear function approximating to / at x . Then set

(4-8) g(χ)=ΣΦΛχ) Ψ(*;χv), * € En-Q.
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It is not hard to show that if g = / in Q, then g is smooth in E n — Q* and

xi — fi in Q; see the proof of [7, Lemma 2 ] . We must still prove (4.15).

Take first any x and x' in En — Q; say for definiteness that

(4.9) x e c e Ks, x1 c c e κ8*, s >s*.

Let Λ* be a point of Q nearest to x. Since ΣφjXx) = 1, we may write

Hence

g(x') -g(x) =

+ Σ IΦΛx') -ΦΛχ)]fi(χv)(χi -xΐ) + Σ ΦMfi (*v)(*ί ~χi)
v% ί v,i

We shall find a bound for each non-zero term. First we show that

(4.11) \φv(x') -φv(χ)\ \f{xv)-f{x*)\ <64NMnn
1/2 \x' - x\ .

Consider first any v such that φv(x) ψ- 0. Then by (4.6),

(4.12) \Φv(x') ~Φv(x)\ <2sMn\x' -χ\ .

Also, since

\x* -χ\ < diam(C) + dist(C,Q) < 14n1/2/2s ,

\yv -x\ <2diam(C) < 2n1/2/2s ,

we have

and hence

\yv~χv\ < \χ* <16n1/2/2s ,

\xv -χ*\ < 3 2 n 1 / 2 / 2 s ,

\f(x") -f(x*)\ < 32/Vn1/2/2s .
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These relations give (4.11). Next consider any v such that φv(x') φ 0. Then

(using inequalities like those above) we obtain

\xv - ** I < \xv - x'\ + I*' ~ x I + \x - x* I

< 1 8 n 1 / 2 / 2 s ' + I * ' -χ\ + 1 4 n 1 / 2 / 2 s < 3 2 n 1 / 2 / 2 s ' + | * ' - χ | .

In the present c a s e , (4.12) holds with s ' . Suppose first that

\x' - χ \ <

Then

and (4.11) follows. If \x' - χ\ > S2nι/2/2s> , then | * v - * * | < 2 | « ' - x \ , and

since I < £ „ ( * ' ) " Φ v W I < 2 and 4Λ^ < 64>NMnn
V2 , (4.11) follows again.

Next we show that

(4.13) \ΦV(X')-ΦM\ \fi{xv)\ Wi-xvi\ <WMnn
ι/2\x' - * | .

We may suppose that φv(x') ψ 0, in which case \χ' — xv \ < 1 8 / ι ι / 2 / 2 s / , or

φv(x) 7̂  0, in which case | # ' - % v | < ISn^2^ + | Λ ' — Λ | in either case,

|*ί - * ? | < k' - * v | < 18n 1 / 2 /2 s ' + k' - % | .

First suppose that \x' - χ\ < 2nί/2/2s' . Then, by (4.5), 5 < s' + 1. Hence,

using (4.6) with s or s ' we get

\Φv(x')-ΦΛ*)\ <2 s '+ 1Mn |*' - * |

s ince l / f U 1 ' ) ! < Λ̂ , (4.13) follows. Next suppose that | * ' - * | > 2nV2/2s' .

Then | ς 6 v U ' ) - Φ v U ) | < 2, and U # f - « i | < 1 0 | % ; - x \ , giving (4.13) again.

Final ly, we have

(4.14) | Φ v W / i ( * " ) ( x ί " * i ) | < i V | * ' ~ * |

There is clearly a number cn such that for any x, there are at most cn values
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of v such that φv(x) ψ 0. In the three groups of terms in (4.10), there are at most

2cn9 2cnn, and cnn non-zero terms respectively. Hence, by (4.11), (4.13) and

(4.14), we have

cn
NMnn

1/2(m + 8 0 n + n ) | * ' - x\ ,

which gives

(4.15) | g ( χ ' ) - g ( * ) | <pnN\x' - χ \ , p n = 2 0 9 cnMnn
3/2.

If x and x' are in Q , (4.15) follows from (4.1), since g = /(or the extended /)

in Q . Suppose finally that x C (? , x' ζl En — Q (or vice versa)* Let %" be the

last point of the segment Λ Λ;' in () . Then (4.1) holds for x and x" , and (4.15) holds

for x'" and x', with %'" in x"x' and arbitrarily close to x"\ hence (4.15) holds in

all cases, and the proof is complete.

5. Lipschitz functions of one variable. We must prove Theorem 3, with n — 1,

Pi — 1. The proof is elementary in nature; we do not need L7J Find a closed

subset Qγ of Eι —K (or of E ι , in case (a)) as in the proof of Theorem 2 (or

Theorem 1, if we are only using (a)). Now (4.1) holds in Qί9 fι is continuous in

Qι , and f is smooth in terms of /\ in Q ι(see Section 3, above), that is, for each
χ C Qi a n d each e ' > 0 there is a δ > 0 such that

( 5 D \ f ( χ " ) - f { χ ' ) - ( * " - χ ' ) f i ( χ ' ) \ < e ' \ χ H - χ ' \

i f \x" ~ χ \ , \ x ' - χ \ < 8 , χ ' , χ " C Q l .

Let primes on functions denote differentiation. We shall find a set Q which is

closed in El - X, with | Qι - Q \ < e* in case (a) or | (Q t - Q) Π A t \ < 6*

in case (b), and a function g which satisfies (4.1) in E ! and is smooth in Eι — K,

and such that g — f and g' = fγ in Q; for e or the e t small enough, Q and g have

the required properties.

Let / t , / 2 , * # be the closed intervals whose interiors fill out Eι — Qγ UK.

Extend /through Eι so that (4.1) holds there; see [3] or [ 4 ] . Set g0 —fin

Qι U K, and let g 0 be linear in the I\, so that g0 is continuous in the closed

intervals. Then g0 is continuous in Eι , and satisfies (4.1) there.

We shall need the following lemma.

LEMMA 1. Let φ be defined and satisfy (4.1) in the closed interval [α*, £>],

and let φ be linear in the subinterval [α, b]. Then there is an arbitrarily small
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interval [a', a"] about a such that φ' (a1) exists, and there is a {unction φ in

[α*, b] which equals φ in [α*, a' ] U [ α " , b] and is smooth in [a' 9 b] 9 and

is suck that ι//' ( α ' ) = φ'(a1), am/ for x in [a ', a" ] , ιp' (x) lies between φ1 (a1)

andφ'{a").

We use the notation ΔφGc, y) = [φ(y) — φGc)]/(y ~~ * ) . If φ is linear in some

interval [xθ9 b] with %0 < α, we may set \p = φ. If not, we may choose c < a

arbitrarily close to a so that Δ φ ( c , a) ψ Δφ(α, ύ). Suppose for definiteness that

Δ φ ( c , α) < Δφ(o, 6). Take a" > a arbitrarily close to α. Because of (4.1), φ is

absolutely continuous, and φ(a") - φ{c) — J c

α φ' (x)dx. Hence there is a point

α' in [c,a] such that φ ' (α' ) exists and

φ'(a') <Δφ(α', a") < Δφ (α", 6) = φ'(α")

that is, the tangents at a' and α" intersect at a point Λ; ' between a1 and α" .

Using these tangents except near x' ,and smoothing near x1, gives the required ι//.

We return to the theorem. Let xl9 x 2 , * * be the set of end points of the

intervals /^. Let /'{ be an interval about x± , of length < e'[ for some β'{ (see

below), with one end point interior to an interval I^ with Xγ as end point. Apply

the lemma (or the lemma with x replaced by —#) to find an interior interval //
= ίa( 9 a'l ] about xί, and using φ = g0 in //', define ψ = g in // . We may re-

quire that neither α/ nor αj7 is any X( In general, having found disjoint intervals

//, * , Ij-i , let xfr be the first point of the sequence which is in none of these,

and let lj' be an interval about x^9 of length < €y', disjoint from the preceding

U Apply the lemma as before to find lj , and define g in lj . Set g = g0 elsewhere

in £ ι . Let (J be the set of points of (? t interior to no lj'. For small enough ej1,

the inequalities with €* or 6* hold. We shall show that g is smooth in Eι — K

and g ' = fx in Q\ the other properties of g are clear.

Clearly g' is continuous in a neighborhood of any point interior to an lj' or an

/^ , that is, in E1 — KΌQ Now take any x ζl Q; we shall show thatg 'Ot)

= fι (x) and g' is continuous at #, considering only points x' > Λ; for which

g ' (Λ; ' ) is defined. The same fact holds for x' < x9 and this will complete the

proof. By definition of g9 this is true if x is the left hand end point of some lj'

suppose this is not the case.

Given e ' > 0, choose S so that (5.1) holds, and so that \fχ(x') ~ / i U ) | < e'

for x ' G Qι 9 |Λ;' — # I < δ . Choose y > x in Qγ within δ of x. Now any dif-

ference quotient of /, with points in [x9 y] Π Qχ9 is within 2e' of f ι(x); hence
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clearly any difference quotient of g0 in [x9 y] i s within 2 e ' of fι{x) Hence, for

any Λ;' in [x9 y] such that g '0(x') ex i s t s , | g'o {x') — fι(x) \ < 2 e' . Because of

the last property in the lemma, \g'{x') — f\{x)\ < 2 e ' if g'(x') e x i s t s . Since

g(x' ) — g(x) — Jx

x g' (t) dt9 this shows that g' {x) ex is ts (as a right hand derivative)

and equals f\(x)y and proves the required continuity.

6, Functions with totally differentiable mth partial derivatives. We shall prove

a theorem corresponding to (a) —> (c) in Theorem 1; the extension to the case

corresponding to Theorem 2 is clear.

THEOREM 4. Let f and its partial derivatives of order < mbe defined in a

bounded open set P C En, and let each mth partial derivative be totally differ-

entiable α.e. in P. Then for each β > 0 there is a closed set Q C P such that

\P — Q\ < e, and there is a function g with continuous (m + 1) th partial deriva-

tives in En such that all partial derivatives of f of order < m + 1 exist in Q and

equal those of g there. In particular, g — / in Q.

Because of Theorem 1, we may suppose m > 1. We use the notation of [7]

thus

[do not confuse with the earlier /&(*)] , σ^ — kx + + kn9 and so on Also

where defined.

Take any k with cr^ = m "~ 1, and any integers i and /• Since *dfjς/^Xi and

j are defined in Pand are totally differentiable a.e in P9 it follows that

their partial derivatives 3 2 / ^ /dxidxj and 3 2 fk/^Xj ^xi exist a.e. in P; by a

theorem of Currier [ l ] , these are equal a.e. in P. Where this is so for all i9 j9 it

is clear that we may define fa with or^ — m + 1 uniquely. Let P ' be the subset

of P in which the f^ exist for σ^ < m + 1, and each f^ (σ^ = m) is totally differ-

entiable in terms of the // (/; > k( , σ[ — m + 1); then \P — P' \ = 0. As seen

in Section 2, the f^ are measurable.

As in [7] , let ψk(χ' Λ;), for cr̂ . < m9 be the value at x' of the polynomial of

degree at most m ~~ cr^ which has the same value and partial derivatives of order

< m~~ &k at x as f^. Then
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Let Rfc (x' x) be the corresponding remainder in Taylor's expansion:

(6.2) Rk(χ' χ) =fk(χ')-Ψk(χ';χ), σk<m.

Define \fj£ and /?/J similarly for x £ P ' , with m replaced by m + 1. We shall say

a remainder Rfc is of order m' at x° if the following is true. For each e ' > 0

there is a 8 > 0 such that

(6.3) |Λί(*;*°)| < e Ί * - * Ί " ' if | * - * ° | < δ .

Recall from [7] that in a closed set, / is of class Cm+ί in terms of the f^icr^

< m + 1) if and only if each ft/J is of order m + 1 "~ σfc uniformly in a neighbor-

hood of each point.

With the help of Lemma 2 below, we prove Theorem 4 as follows. By Lusin's

Theorem, there is a closed set Q' CZ P ' with | P' - Q' \ < e/2 such that

each fa (x) with σ^— m + 1 is continuous in Q' that is, R'kiσjς — m + 1) is of

order 0 in Q' . For each integer i and each x° £ () ' , let δ/ (%0) be the upper

bound of numbers S < 1 such that (6.3) holds with m' ~ m ^cr^^r 1, e' — 1/2*,

for all A with σ^ < m + 1. Then by the lemma, $i(x) > 0 in (?' . As in Section 2,

we see that the δ Oc) are measurable. Find sets Qι as in Section 2, and set

Q = QιΠQ2 Π . Then clearly / is of class C m + 1 in Q in terms of the fk, and

hence [7, Lemma 2] /may be extended from (̂  over En so that

in Q. This extension is the required g. There remains to prove

LEMMA 2. Let P be open, let

irc P /or cτ£ < m, Zeί /A U 0 ) fee defined for σ& = m + 1, am/ Zeί ίAe fkio-^ = m) 6e

totally differentiable in terms of the //(/j > &j, cr/ = m + 1) aί Λ;0. Define

Rfl (x; x°) as above. Then R^ is of order m ~~ cr^ 4- 1 aί x° if' σ^ < m — 1.

Note that the hypothesis shows that /?/£ for σ^ — m is of order 1 at %°.

Suppose we have proved Lemma 2 for the case that fk(x°) — 0 for all k,

^k — m ~^~ l Then it holds for the general case. For set

) = 0. Also, since ψί (x; x°) = 0 (using the / / ) , Rf, (x; x°) = ΛA'U; Λ:0
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Since the R k are of order m ~~ σk + 1 at Λ;0 for σk — m, the lemma shows that

this is true also for ak < m. Thus /?/. = R£ is of order m ~" σk + 1 at x° , as

required.

We shall need Taylor's Theorem with exact remainder:

LEMMA 3. Let φ be a function of one variable such that φ ' — d φ/dχh

exists for h < m' in an interval and is bounded. Then

Since 0 ^is bounded, ςέ^m "^satisf ies a Lipschitz condition; hence for

any smooth CC, β = Cίφ^m " 1 ' i s absolutely continuous, and

Therefore the usual proof applies.

We return to Lemma 2, assuming faix0) — 0 (σjς < m + 1). Set

^ \# 1 * 9 Xl9 Xl+l9 9 XΠ ) 9

then Λ;71 — Λ;. Take any i > 0, and any & with σ ^ < m ~ 1. Set m' — m~-

k(i) = (&!, , A; + m ' , ' , i Λ ) , and

Λ : 1 ( S ) = ( « i , l # f , Xi-ι, s, x°i + l 9 , x°n ) .

Then xHxi) = Λ*" 1 , Λ;' (Λ» ) = * * ' . For some δ t > 0, the fk(x) (σk < m) are

bounded for \χ —χ° \ < δι . Lemma 3 gives

1̂ 1
Since // Gcι (s)) = /?/ U ι (s) x°), and so on, the definition of R^ gives
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For a certain e* chosen below, choose δ < δj so that

Then if \x - x° I < S, using \χ*(s) - x° \ < \x ~ x° | for a? < s< xit and

so on, gives

_ r 0 I /• 9 ^ * I _ 0 iro' + l
x ι x x ' ώ t x Λ:*; s*-1) I S 2 ! ? 1 t, ' ίo"

/̂n — \)\ Jxi
m'\

Now in [7, (6.3)] , subtract fk(x") from both sides, and change x9 x', x" to

ly; this givesx , x 9 x respectively; this gives

Hence,

Λ; x f ) I < 26* |Λ - x°

Let /ί& denote the sum, and let A be the largest /l^. Since

for the case at hand, adding the inequalities for i = 1, , re gives

Given e' > 0, set €* = €'/(2Λ/1), and choose δ accordingly; this inequality then

completes the proof.
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