ON A TAUBERIAN THEOREM FOR ABEL SUMMABILITY

O1rTOo SZ4sz

1. Introduction. In 1928 the author proved the following theorem [2, Section
2]:

THEOREMA. Ifp > 1 and

(1.1) > vPla, |P =0(n), n—®

v=1

b

then Abel summability of the series Dn=q an to s implies its convergence to s.
y 0 P 8

The theorem is the more general the smaller p is; it does not hold for p =1
[2, Section 1; 1, pp.119,122]. However, for this case Renyi proved the following

theorem:

THEOREM B. If

n

1
lim — z Vlay| =l <®
exists, then Abel summability of 25=q a, to s implies convergence of the series
to s.

2. Generalization. We give a simpler proof and at the same time a slight

generalization of Theorem B.

THEOREM 1. Assume that

n

(2.1) Vp = Z V|a1,| =O(n) ,
v=1
and that
1 1
(2.2) ~Vy==V,—> 0,
m n
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for every sequence m = mp, such that mp/n—1 as n—> ©. Then Abel summa

bility to s of Zy=o an implies its convergence to s.
Property (2.2) is called slow oscillation of the sequence ¥}, /n.

Proof of Theorem 1. We write

n n
Zay=s,,, Zsy=(n+l)0n.
v=0 v=0

It is easy to verify that, for £k = 0,1,2, * * «, we have

n

1 k
(o'n‘*k _Un—l) - z (k +1 —V) An+y

(23)  spoy —Oper =
n T T k12

It is known [see 2, Section 2] that if for a finite s we have

[o4]
lim Y, apx" =5,
1 p=
then (2.1) implies 0;, — s; thus, if
(2.4) Lu,b. lon-1 = onsk | = €n,
then €, — 0.
We now choose
(2.5) k =k, =[ne¥?], so that k <nel?<k +1;

it follows, in view of (2.4), that

n

k+1

IUn-l - o—n+kl < Er%/z .

In view of (2.3) our theorem will be proved if we show that

1 k
S T k1Y an 0, n—
v=0
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Now
1 k
— | Y (k+1-V)anw
kR+1 | 5
1 & E+1—-v 1
< +v v | — <= (¥ —Vn-1),
R R b B CURL
and
1 Vi+k n+k V-1 n—1
(2.6) = Vpah = Vpoy) = —— - .
n(n+k nl) n +ek n n—1 n

Ve _ Vn—l +_If_ Vn+k +l V-1 ;
n+k n—1 nn+k nn-—1

using (2.2) and (2.5), we see that
1

2.7) = (Va+r — Vpo1) — 0 as — — 0 and n — ©,
n

and thus Theorem 1 is proved.

Renyi observed that the Theorems A and B are overlapping. We now show that
Theorem 1 includes not only Theorem B, but also Theorem A. Clearly (2.1) follows
from (1.1) by Holder’s inequality. Furthermore,

n+k n+k 1/p
Vark = Vo= X via| <keVe | ¥ vPle, [P

v=n+t1 v=n+t1

= KPP0 (n + k)] ;
hence,

1 k [(n\¥F k\(P-D/p k
_(Vn+k vn) :_O(_> = <—> —0 as — —0.
n n k n n

It now follows from (2.6) that (2.2) holds; thus (1.1) implies (2.1) and (2.2), which

proves our assertion.

An example of a sequence V;, > 0, and increasing, for which (2.2) holds,
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while 71V, * ©, is

Vo, =n log n, n>2,
because

v, V,
*’i@"—l=log(l+—)—)0, as — —0, n— ©,
n +k n

3. A more general result. A generalization of Theorem A is the following
[see S, p.56} :

THEOREMA'. If for some p > 1, we have
n
(3.1) Z Vp(‘avl - au)p :O(n) s n— @
v=1

then the Abel summability of 2y =¢ a, implies its convergence to the same value.
An analogue to Theorem 1 is the theorem:

THEOREM 2. Assume that

n
(3.2) Up = Z v( [au\ - av) :O(n) )
v=1
and that
1 1 m
(3.3) ~Up——U,—0 as — —1, n—>©,
m n n

If now 2=y a, is Abel summable to s, then it converges to s.
Proof of Theorem 2. We have

n

=% va €3 v (el —a) =00

v=1

hence [see S, the Lemma on p.52] Abel summability of 23=, a, implies its

summability (C,1). From (2.3) we have
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n
Sn-1 7 9n+k Sk 41 (Un+k _Un—l)
1
+k 1 Z (k +1—V)(]an+1/1 _an+v)}

v=0
from (2.4) ana (2.5) we obtain

n

k+1

(Un+k _Oﬂn‘l) < €nl/2 .

Using the same argument as in the proof of Theorem 1, replacing V, by U, we

find that

(3.4) lim sup s, <s.

n—®©

We next employ the identity, similar to (2.3),

n+1
Sn T On-k-1 =T (On = on-k-1)
1 k
+k+1E0 (k=v)an, k=0,1,2 -,
and the inequality
a2 a, = oy .

The same reasoning as before now yields

3.5) lim inf s, > s.

n—®

Finally (3.4) and (3.5) prove Theorem 2.
It is clear from the proof that condition (3.3) can be replaced by

(Um_Un)—)O, asﬂ—>1, n—» 0,
n

S | =

4. An equivalent result. A glance at the proof of Theorem 1 shows that the

following lemma holds:
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LeEmMA 1. [f V, is positive and monotone increasing, and if
(4.1) V, =0(n), as n—®
and (2.2) holds, then

(4.2)

n—> 0,

S |

(Vo = V,) —0, as — —1

We now prove the inverse:

LemMma 2. If V, > 0, and increasing, and if (4.2) holds, then (4.1) and (2.2)
hold.

Proof. We write

Vn =na),,, a)n _>_0,
and
1 m
(4.3) —(V,,,—V,,) =a),,,-—w,,+(~—'1) Wy o
n n
Let

wy = ;
rgg;c v=Pn;
then p, * p <@, If p <@, then I, = O(n). Suppose now that p = ©; then there
are infinitely many indices m = my , so that w, = pp, form =my, ,v=1,2,3,¢ « +,

For these m and for n < m, from (4.3) we get

(4.4) 1
n

(vm—vn)>(g—1)pm.

We now choose

= Pn 173 <m,
1+ o
so that
mn 1 +,0m1/2
—_ = 17 —>1]1 ;
n Pm "
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then, using (4.4), we have

O = W) >0 — @,

S |+

in contradiction to the assumption (4.2). It follows that (4.1) holds; finally (2.2)
follows from (4.1), (4.2), and (4.3). This proves Lemma 2.

We now prove the following theorem:

THEOREM 3. Let U, = %= v(layl —ay); if
1
(4.5) = (U = Uy) >0, as — —1, n—o®,
n

and if Zy=o an is Abel summable, then Zn=y a, is convergent to the same value.

Proof of Theorem 3. In view of Lemma 2, Theorem 3 includes Theorem 2; it

also includes Theorem 1, because of Lemma 2, and of the inequality
Um—UnSZ(Vm_Vn); m>n.

Conversely, by Lemma 2, (4.5) implies (3.2) and (3.3), so that Theorem 3 is
equivalent to Theorem 2, and is thus valid.

To show that Theorem 1 is actually more general than Theorem B we give an
example of a sequence w;, so that nw, is increasing, w, is slowly oscillating

and w, = 0(1), but lim w, does not exist. Let

n
wp = Z vile, where €, = 11;
v=1

choose €, = +1 as long as w, <3; v=1,2,°***, ny, say. Choose €, =—1 as
long as w, > 25 v=1+ ny, 2 + ny, * **, ny, say; and so on. It is clear that
w, = 0(1), and that lim w, does not exist. Furthermore, for n < ny, wp?, for
ny <n< n, w, ¥, and so on. Now
(n + 1) Wp+1 — Ny = n(wn-ﬂ —_a’n) +wn+1 25— 1 =§' ’
hence nw, 1. Finally
" 1 m—n m

|wn —wn| < > ;< - for ;—’l,

v=n+l1
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hence w, is slowly oscillating.
5. Another equivalent result, We first establish the following lemma.

LEmMMA 3. Suppose that U, > 0 and increasing, with Uy = 0, and let

1
(5.1) bp == Up = Un-1) , n>1, by =0;
n
n
(5.2) B =Y by, n>0,
v=0

Then whenever k = k(n) is so chosen that k/n—>0, as n —>%, the two statements

1

(5.3) = (Upsr — U,)—0
n

and

(5.4) Bn+k _Bn'——)o

are equivalent.

Proof. From (5.1) we have

n n+k
Un = Z vb, , Upn+r — Un = E vby, .
v=0 v=n+l
Now
n+k 1 n+k 1
Bp+r — Bp = Z bv < - Z Vb, =— (Un*k - Un) H
v=n+1 N y=n+1 n

thus (5.3) implies (5.4). Furthermore,

1
Bpk —'Bn > K (Un+k —'Un) )

hence (5.4) implies (5.3). This proves the lemma.

We note that
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1 nl 1
By==Up+ Y ———U,,
"ot Elv(erl) i

and

U, =nB, — z By .

v=0

It is an immediate consequence of Lemma 3 that Theorem 3 is equivalent to

the following theorem (for a direct proof see [4, Theorem IV]).

THEOREM 4. If

n+k k
Z (]a,|—av)—->0, as — —0, n——®,
v=n+1 n

then Abel summability of Z; =y an implies convergence of the series to the same

value.

A generalization of this theorem to Dirichlet series and to Laplace integrals,

on different lines, is given in [3].
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