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ON GORENSTEIN SURFACE SINGULARITIES WITH
FUNDAMENTAL GENUS pf ^ 2 WHICH SATISFY SOME

MINIMALITY CONDITIONS

TADASHI TOMARU

In this paper we study normal surface singularities whose
fundamental genus (:= the arithmetic genus of the fundamen-
tal cycle) is equal or greater than 2. For those singularities,
we define some minimality conditions, and we study the rela-
tion between them. Further we define some sequence of such
singularities, which is analogous to elliptic sequence for ellip-
tic singularities. In the case of hypersurface singularities of
Brieskorn type, we study some properties of the sequences.

Introduction.

Let π : (X, A) —> (X,x) be a resolution of a normal surface singularity
and, where π~1(x) — A — UΓ=i ̂  ι s the irreducible decomposition of the
exceptional set A. For a cycle D = Σ<Li diAi (di € Z) on A, χ(D) is defined
by χ(D) = dime H°(X, ΌD) - dime H^X^OD), where OD = Oχ/O{-D).
Then

(0.1) χ(D) = ^(D2 + DKjt),

where K^ is the canonical sheaf (or divisor) on X. For any irreducible

component Au we have

(0.2) KχAι = -A] + 2g(Ai) - 2 + 2δ(Ai) (adjunction formula),

where g(Ai) is the genus of the non-singular model of A{ and δ(Ai) is the
degree of the conductor of Ai (cf. [7]). The arithmetic genus of D > 0 is
defined by pa(D) = 1 — χ{D). Let Z be the fundamental cycle on A (cf. [1]).
Then the following three holomorphic invariants of surface singularities are
defined by (cf. [1], [7]),

pg = pg(X,x) = d imcϋ^Oj f (geometric genus),

(0.3) Pa — Pa(X,x) = m&xpa(D) (arithmetic genus),

Pf ~ P/(-^"»x) ~ Pa{Z) (fundamental genus).
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These values are independent of the choice of a resolution of (X, x) and there
is a relation: pf ^pa =Pg

Now assume pf ^ 1. Let E be the cycle on A defined by E = min{D >
0\pa(D) = pf, 0 < D ^ Z} (see Definition 2.1) and let K the canonical cycle
on A (cf. [24]).

In §1, we prove the followings.

Theorem 1.6. Let (X,x) be a numerically Gorenstein surface singularity
with pf(X,x) ^ 1 which is not a minimally elliptic singularity. If π is the
minimal resolution or the minimal good resolution, then —K ^ Z + E.

In §2, we prove the following.

Theorem 2.2. Let (X,x) be a normal surface singularity with —K = Z + E,
thenpg ^pf + 1.

Moreover, for normal surface singularities of pf ^ 2, we consider some min-
imality conditions which are similar to the minimality conditions by Laufer
([7], Theorem 3.4).

In §3, we consider the fundamental cycle for normal surface singularities
with star-shaped dual graphs and describe a formula of pj for them (Theorem
3.1).

In §4, we consider hypersurface singularities of Brieskorn type with degree
(αo,αi,α2) (i.e., (X,x) = {αg° + x^1 + x^2 = 0} C C3). For them we prove
the following two theorems.

Theorem 4.3. If a2 ^ /.c.ra.(αo,αi), then

pf(X,x) = ~ {(a0 - l)(αi - 1) - (ao,«i) + 1}

Theorem 4.4. If l.c.m.(aQ,aι) ^ α2 < 2 ί.c.m.(αo,αi) and pf(X,x) > 1,
then Z — E on the minimal resolution.

In Section 5, for singularities with pf ^ 2, we consider sequences which
are analogous to Yau's elliptic sequences. We study such sequences of hyper-
surface singularities of Brieskorn type and find several properties for them
(Theorem 5.5).

The author would like to thank Prof. Kei-ichi Watanabe and Prof. Masa-
taka Tomari for their helpful advice and encouragements during the prepa-
ration of this paper. In particular, Prof. Tomari kindly communicated The-
orem 3.1 of this paper to the author. Also the author would like to thank
Prof. Oswald Riemenschneider. He sent the author the thesis of J. Stevens
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and pointed out that the minimal cycle (Definition 1.2) had already been
defined in it (p. 33 in [13]).

Notations and Terminologies. For integers (or real numbers) α i 5 α2, . . . ,
αn (n ^ 2), we put

[ α i , α 2 j . . . ,αn] := ax
1

α2

(continued fraction). For real number α, we put [a] := max{n e Z\n ^ a}

(Gauss symbol) and {a} = min{n E Z|n ^ a}. Further, for positive integers

au... , α n , we put (αi , . . . ,α n ) := g.cm. (au... , α n ) .

1. Minimal cycle for normal surface singularities.

Let π : (-X",A) —> (X>>x) be a resolution of a normal surface singularity,
where A — (J£=i M ι s the irreducible decomposition. Let D be a cycle with
0 < D < Z, where Z is the fundamental cycle on A. Then we can construct
a sequence of positive cycles Zo = D, Zx = Zo + Au..., Z{ = Z i = i +A^...,
Z — Zι — Z\-\ + At such that ZiAi+ι > 0 for i = e, e + 1,... , / — 1, where
e = 0 if D > 0 and e = 1 if 1} = 0. We call this sequence a computation
sequence from D to Z. If D = 0, then it is a Laufer's computation sequence
of Z. We can always construct a computation sequence from D to Z as in
[6].

L e m m a 1.1. Let D be a cycle on A such that 0 < D < Z. Then pa(D) ^ pf.

Proof. Let Zo = £), Zχ ? . . . , Z/ = Z be a computation sequence from 1} to Z.

Thenp α (Z i + 1 ) = l - x ί Z O - x ί A i + O + ZiAi+x =pa{Zi) + AiAi+1+g(Ai+1)-

1 ^ pa{Zi) for any i. q.e.d.

Definition 1.2. Let £ b e a cycle on A such that 0 < E ^ Z. If £7 satisfies
that pα(£?) = P/ and pa(D) < Pf for any cycle D such that D < E, we call
£J a minimal cycle on A.

If (X,α;) is an elliptic singularity (i.e., pf(X,x) = 1), E is the minimally
elliptical cycle [7]. In [13], J. Stevens had already defined the minimal cycle
on the minimal resolution and he called it the characteristic cycle of (X,x).
He showed that if (X, x) is a minimal Kulikov singularity (p. 29 in [13]) and
if π is the minimal resolution, then Z = E on A. The existence and the
uniqueness of the minimal cycle E can be shown as in [7], Though they
were also done in [13], we repeat them for the convenience to the reader.
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Proposition 1.3. For all normal surface singularities with pf ^ 1, there
exists a unique minimal cycle E.

Proof. We may assume that pf ^ 2. Let B = Σ7=ι M i and C = Σ?=i
be cycles such that 0 < i?, C < Z and pa(B) = pa(C) = p/. Let m =
min(B, C) : = Σϊ=ι mm(bu Ci)Au t h e n M > 0. S i n c e 0 < £ + C - M < Z ,
by Lemma 1.1 and (0.1),

- χ(M) - (B - M)(C - M)

S2-2pf-χ(M).

Then χ{M) ^ 1 - ^ , s o M > 0 . Further, by Lemma 1.1, χ(M) ^ 1 - p / ,
so pα(M) = p/. After finite steps of this process, we can obtain the minimal
cycle E. q.e.d.

For the definition of the minimally elliptic cycle, we need not the as-
sumption "E ̂  Z" (see [7]). However, in the case of Pf ^ 2, we need the
assumption.

Lemma 1.4. Let Zo = E, Zλ = E + Ah,..., Z = Zt = E + Ah+ - + Aάι be
a computation sequence from E to Z. Then Ajk is a smooth rational curve
and Zk~iAjk = 1 for k = 1,... , /.

Proof. We have pf = pα(#) ^ Pa{Zχ) S ' S Pa{Zι) = p/ as in Lemma 1.1.
Then χ(Z|fe) -χ(Zjb-i) = 0 for & = 1,... , /. By the adjunction formula (0.2),
Zk-ιAjk + g(Ajk) — 1 + δ(Ajk) = 0 for any k. This completes the proof,
q.e.d.

Let us define the Q-coefficient cycle if on A by the relation: A{K — AιKχ
for any irreducible component Aι C A — (J^=1 Ai> We call K the canonical
cycle of A (cf. [24]). If if is a Z-coefficient cycle, we say that (X, x) is
numerically Gorenstein. This condition does not depend on the choice of a
resolution.

Now let σ : (X,A) —> (X,A) be a monoidal transform with center
p € A. For any irreducible component A{ of A and L = σ - 1(p), we put
σ*Ai = Ai + nriiL, where Λ* is the proper transform of Ai and mi is the
multiplicity of A{ at p (but if p ^ A*, we put rrii = 0). Further we put

σ*I} = £ * = 1 diσMi for any cycle D = £ ? = 1 d^^ on A.
Now let Z and K (resp. Z^ and ίί^) be the fundamental cycle and the

canonical cycle on A (resp. A). We put Z = ΣILi ^i^i a n d ^ = ΣΓ=i ^i^f
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Then it is well known that
/ n \

ί ]jΓ J (cf. [18], Proposition 2.9),

L.

Proposition 1.5. Assume the situation above. If p G SuppE (resp. p £
SuppE), then σ*E — L (resp. σ*E = Σ" = 1 βiAi) is the minimal cycle on A.

Proof. Let δ = 1 (resp. <5 = 0) if p € SuppE (resp. if p £ SuppE). Since
(σ*D)L = 0 and (σ*A)(σ*£>2) = A A for cycles D, A and A on A, then

ZΛ = σ*Z = ]Γ ^Λi +

kL) = - \ (D2 -k2 + KAσ'D - k)

(1.2)

for any k G Z. Hence pa{σ*E — &L) = p/. Suppose that σ*J5 — ίL is not the
minimal cycle on A. Let E& = ΣΓ=i eiAi + mL (< σ*E-~δL) be the minimal
cycle on A, so e, ^ e< (t = 1,2,... , n) and m ^ ΣILi m t e * ~" ̂ 5 where m^
is the multiplicity of A{ at p. Assume that there is i0 such that eio < eio.
Let D o = ΣΓ=i ^i^i5

 t h e n A) < E. Prom the definition of E, pa{D0) < pf

However, the fundamental genus is independent of the choice of a resolution.
Thus

pf = 1 - x (Eλ) = 1 - χ(σ*D0 + moL)

= 1 - χ(JD0) - -mo(mo + 1) ^ pα(A>) < P / ,

where m0 = m — Σ)Γ=i ̂ imί This is a contradiction. Hence ê  = e* for any
i. Then -E^ = σ*J5 + m0L. Since p/ = pa (E^) and (1.2), we have m0 = 0 or
—1. Then if p E SuppE, σ*E — L is the minimal cycle on A If p ^ SuppE,
then σ*J5 is the minimal cycle on A because of σ*E — L ^ 0. q.e.d.

Theorem 1.6. Xeί (X,a:) be a numerically Gorenstein singularity withpf ^
1 which is not a minimally elliptic singularity and let A be the exceptional
set of the minimal resolution or the minimal good resolution of (X, x). Then
-K ^ Z + E on A.

Proof Let π : (X, A) —> (X, x) be the minimal resolution. Then K A* ^ 0
for any i, so —K ^ Z. If — K = Z, then (X,a;) is a minimally elliptic
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singularity. Hence -K > Z. Let M = min(-ϋ: - Z,Z). Since 0 < M < Z,
by Lemma 1.1 and (0.1),

= χ((-K-Z) + Z

= χ{-K -Z) + χ(Z) - χ(M) -(-K-Z- M)(Z - M)

Then χ(M) ^ 1 -/>,, so pa(M) = pf. Hence we have -K - Z ^ M ^ E.

The minimal good resolution is obtained from the minimal resolution
(X, A) by iterating monoidal transforms centered at points. Let σx : (X, A) -»
(X, A) be a monoidal transform at p £ A, where p is a singular point of an
irreducible component of A or muHpA ^ 3 . If p G SuppE, then — K^ >
%A + EA fr°m (l l) a n d Proposition 1.5. Suppose that p £ SuppE. If p is
a singular point of an irreducible component of Aj of A, then Aj <£. Supp E.
This contradicts Lemma 1.4. Then we may assume that muHpA ^ 3 and
p is not a singular point of an irreducible component of A. Then there are
irreducible components Aiχ,... Aia (s ^ 2) which contain p. Let Zo = ϋ?,
Zι = Zo + Ajx,..., Z/ = Z be a computation sequence from ϋ? to Z. Since
Aifc ^ S't/ppE for A; = 1,... , 5, {A^,... , Aΐa} is contained in {A^,... , Ajt}.
Then it is obvious that ZjfeAJfc+1 ^ 2 for some A;. This contradicts Lemma 1.4
again. Hence we may only consider a point in Supp E as the center of σx.
Continuing this process, we complete the proof, q.e.d.

2. Minimality conditions for Gorenstein surface singularities.

Let (X, x) be a normal surface singularity. If there is a neighborhood U of
x in X and a holomorphic 2-form ω on U — x such that ω has no zeros on
U — x, (X, x) is called to be Gorenstein. If (X, x) is Gorenstein, then it
is numerically Gorenstein. If (X, x) is a Gorenstein surface singularity, the
following inequality holds (cf. [5, 14, 20] for general case and [24, 25] for
case of pg = 2):

(2.1) pg(X,x)Zpf(X,z) + l.

Prom Definition 1.2, Theorem 3.4 (3) in [7], Theorem 1.6 and (2.1), we can
consider the following four minimality conditions I~IV respectively.

Definition 2.1. Let (X, x) be a normal surface singularity withp^ ^ 2 and
π : (X,A) —ϊ (X,x) the minimal resolution. We consider the following four
conditions:
(I) Z = E on A,
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(II) Any connected proper subvariety of A is the exceptional set for a sin-
gularity whose fundamental genus is less than p/(X,x),

(III) -K = Z + E on A,

(IV) (X,x) is a Gorenstein singularity and pg(X,x) = pf(X,x) + 1.

We can easily see that I-»Π is always true for any normal surface singu-
larity with pf ^ 1. In the following we consider the other relation between
these conditions. Under the condition that (X, x) is Gorenstein, we can show
III-*IV. However, we can find that there are no other good implications even
for the Gorenstein case. We show this through some examples. Prom now
on we will prove Theorem 2.3 and Corollary 2.4. We prepare the following.

Proposition 2.2. (i) Hι{X,O{-Z)) ~ Hι(X,O(-E)),

(n)H\XJOz)~H1{X,OE),

(iii) H'(X,O-κ-z) ~ Hi{X,Ό-K-E) (j = 0,1).

Proof, (i) Let Zo = E, Z1 = Zo + Ah,... , Zt = Zj_i + Ajt = Z be a,
computation sequence from E to Z. By Lemma 1.4, Aj{ is a smooth rational
curve and Z^iAj. = 1 for i = 1,2,...,/. Prom the sheaf exact sequences:

0 _ > o(-Z) —x^ί-Zi-x) —> O A , ( - ^ I - I ) —> 0

o —• o(-Zx) —•o(-s) —> σ ^ ί - s ) —> o,

we have the exact sequences of cohomology groups:

> H°(Ah oAι (-^.i)) —> ̂ ( l , σ(

H°(AuOAl(-E))

Since A m - P 1 ? H ° μ i + 1 , O Λ i + 1 ( Z i + 1 ) ) = H\Ai+uOAi+ι{Zi+ι)) = 0 for
any i. It gives the isomorphism of (i).

(ii) Let us consider the following commutative diagram:

0 y O(-E) > O > OE • 0

1 I I
0 > O(-Z) > O »• Όz > 0 .
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Then, from (i) we have

> H\X,O{-E)) -> Hι(X,O) -> H^X.OE) -* 0

Hι{X,G{-Z)) -> H}{X,O) -> If-iX^Oz) -> 0,

(iii) Prom the sheaf exact sequences:

0 —> OΛl+1(JCι4+1 + ̂ <Λ+i) —>• O - J C - * —> O_*_*<+1 —> 0,

we have the exact sequence of cohomology groups:

o -»^°(Λ+i,θΛ i + 1(KΛ i + 1 + ^

Since

#V i + 1 ,O A i + 1 (K A i + 1 + Z^ ί + 1)) = Hι(Ai+1,OAi+1(KAi+1 + ZiAi+1)) = 0

for any i,

for jf = 0,1. q.e.d.

Theorem 2 3. Lê  (X, a;) be a normal surface singularity with —K — Z+E,
then pg(X, x) ^ pf(X, x) + l.

Proof. We may assume that pf(X,x) ^ 1 and pg(X,x) ^ 2. Let π :
(X, A) —y (X, x) be a resolution and A = UΓ=i ̂ » the irreducible decompo-
sition. Let Zi = Ai, Z2 = Zi + A2,..., Z = Z| = Z|_i + A| be a computation
sequence of the fundamental cycle Z on A, so ZiAiΛ.χ > 0 for ϊ = 1,... , Z — 1.
Prom the sheaf exact sequences:

0 -> <9(ίf + Zy)IO{K) -* O_^ -> O_^_Zl -> 0,

o -> O(UΓ + z)/σ(ϋ: + z,-!) -> o-ic-z.-x -> σ.jΓ.z -^ o,
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we have the exact sequences of cohomology groups

> HX{X, O(K + ZX)/O{K))

> Hι(X,Ό(K + Z)/O(K + ZI-T))

Further,

and

Therefore we have

On the other hand, it is well known that pg(X,x) = dime H1 (X, O) =
dimcfΓ^X^-K) (cf. [7] and [24]) andp/(Jf,α?) = dimcH^X.Oz). By
Proposition 2.2 (ii), pf(X,x) = dimcίί1 (X,(9B) = dime JET1 (-X",O-ic-z).
Hence we have pg(X,x) —pf(X,x) ^ 1. q.e.d.

Prom (2.1) we have the following.

Corollary 2,4. Let (X, x) be a Gorenstein surface singularity withpg(X, x) ^
2. If~K = Z + E, then pg(X, x) = p/(X, a?) + 1.

Let C be a curve of genus 2 and X a line bundle on (7 with 2L = JFQ7,
where Kc is the canonical bundle of C. We assume that H°(C, O(L)) = 0.
For example, if we take L as O(Pι+P2-Ps) with three different Weierstass
points Pi, P2 and P3, then it satisfies the conditions above. Let (X,x) be
the singularity from the contraction of the zero section of the negative line
bundle — L. Then it is a Gorenstein singularity satisfying pg = 3 (see [10])
and ps = 2, but -K = 3C > Z + JS? = 2C Therefore the converse of
corollary 2.4 does not hold.

Example 2.5. Let (X,x) = {xl + x\ + x\° = 0}CC? (a hypersurface sin-
gularity). The w.d. graph (weighed dual graph) associated to (X,x) is
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A, A2

0—Ό-i

A3 A4

Then Z = 2Aλ + A2 + 2A3 +A4 + 3A5 + 2A6 and pf = 2, so E = 2A1 +A2 +
2A3 + A4 + 2A$ + AQ. We can easily check that (X, x) satisfies the condition
II and Z > E. This shows that

Example 2.6. Let (X,x) = {xl + x\+x2

2

ι = 0} C C3. The w.d. graph is

A 7
7, then we have -K = 14A0 + E L i 7Â  + 5A$,

A8

Z = £? = 2A0 + Σ7i=i Ai + As, pf = 3 and pg = 12 (cf. [21]). This shows

Example 2.7. (i) Let (X,x) be the 5-th Veronese quotient [16] of the hy-
persurface singularity {xl + x\ + xλ

2 = 0} C C3. Then the w.d. graph for
A2

o
the minimal resolution of (X,x) is I (cf. Remark in [16]),

, [4]A0 A3

Z = Ao + Aι + A2 + A3 and p/ = 4. Moreover we can see that E = Ao,
and —K = Z + E. This singularity is Gorenstein and pp = 5. This example
shows III-^I.

Example 2.8. Let (-X",n;) be the 9-th Veronese quotient of a hypersurface sin-
A3

A2

gularity {x% + x\ + x™ = 0} C C3. The w.d. graph is given by (

. _ m Λ . o ^ A5

then -K = 2A0+Ei=i ^i^ z = ^o+Σi=i ^i andp/ = 2. Then -AT = Z+E.
Further, (X,x) is Gorenstein and pg = 3. It is obvious that (X, rr) does not
satisfy II. This shows III-^II.

Prom examples above, we can find that even for Gorenstein case, there
are not any implications between four conditions of Definition 2.1 except for
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the two implications: I-»Π and III-^IV.

3. Fundamental genus of normal surface singularities with
star-shaped dual graph.

Let π : (X, A) —> (X, x) be the minimal good resolution of a normal surface
singularity whose w.d. graph is given by

(3.1)

where Aitj ~ P 1 for i = 1,... ,n; j = 1,... , r ί ? and Ao is a curve of
genus g which is called the central curve. Let (Yi^yi) be the singularity

which is obtained by the blowing-down of the i-th branch C ^ y

^fojr,j (i = 1,... , n). It is isomorphic to the cyclic quotient singularity

Cdi,i,ei = C2 / ( I ** e. 1 \, where — = [6^,... ,6ίr.] (continued fraction).

We call (d, e) (resp. d) the cyclic type (resp. the cyclic order) of Cd]i,e We
denote Q-coeίficient divisor D and Z-coefficient divisor [kD] on Ao as follows:

(3.2) D~Do-Σ^Pi and
n (k p Ί

where A; is a non-negative integer and Do is a divisor on Ao such that OA0 (DO)
is the restriction to Ao of the conormal sheaf of Ao in X.

When (X, x) has a good C*-action, H. Pinkham [10] wrote the affine
graded ring Rx of (X,x) in terms of the above numerical data as follows:

Rx = R(Ao,D) = φ i ί ° (A0,0Ao([kD})) • tk.
k=0

We call this representation Pinkham's construction. This was generalized
to higher dimensional case by M. Demazure [3], so the divisor D is called
Demazure's divisor.

Now let us compute the fundamental cycle Z on an exceptional set A
with star-shaped dual graph and the fundamental genus pf. Let m be the
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coefficient of Z on Ao. For k = 1,... , ra, let Z^ be a minimal divisor such
that 0 < Z<*> < Z and the coefficient of Z<*> on Ao is k and Z^A{J <ί 0
for any i,j. Then a unique cycle Z^ exists. It is easy to see that there is
a computation sequence Zo = 0, Zι = Ao, Z2 = Zγ + A±,..., Zkl — Z^\
Zkl+1 = ZΛl +Akl+U..., Zk2 = Z^\ Zk2+ι = Zk2+Ak2+U..., ZW = Z
which satisfies ZjAk+ι = 1 for Ak+λ φ Ao, where Ak.+λ = Ao (i = 1,... , ra —
1) and other Ak is a component Aij of a cyclic branch. We call this a good
computation sequence.

Let τ : (X,A) ^ (X,A0) be the contraction of all cyclic quotient branches
Cdi.i^i (t = 1,... ,n) and Ao — r(A0). In §6 in [15], M. Tomari and K-
i. Watanabe studied the Giraud's inverse image of kΛ0 (it is denoted by Lk),
where k is an integer. Prom the definition of Lk and the considerations in
(6.11) of [15], we can easily see that

(3.3) -L.k = ZW (k = 1,... , m) and - L_m = Z.

Further, from Lemma 6.14 and (6.15) in [15], we can see the followings:

Γ he Λ
-L-kAo = kD0 - Σ {-^1 -Pi (=

m = the coefficient of Z on Ao = min {A; G N| deg[A;D] ^ 0} .

The following result is due to Tomari, and we describe it according to his
suggestion.

Theorem 3.1 (M. Tomari). pf(X,x) = ΣT=o dimcHH^OAo([kD])).

Proof. Let Zo = 0, Ax = Ah, Z2 = Zx + Ai2,... , ZSm = Z^ = Z be a good
computation sequence which contains the subsequence {Z^\ ... , Z^ } such
as ZM = Z β l , . . . , Z ( m ) = ZS m. Then 5m = 5m_! + 1 and A*, is equal to Ao

for tj = s* + 1. Let us consider the following sheaf exact sequences:

o -> oi-zyoi-zj -> O-Zl -+ o,

0 -* Oi-Z^-J/Oi-Z) -±Όz-> ΌZarn_λ -+ 0.

Thenfr°(X,O z . )=Cfori = l, . . . ,5 m (cf. [7, (2.6)]). I f ^ ^ Λ
is a smooth rational curve and Z^^A^ = 1 . Hence if1 (.A^jC^—Zij_1Aij)) =
0 for ij = θΛ + 1,... , sk+ι — 1 and k = 0,1,... , m. Therefore

0 -* i ϊ 1 (Λ,O(-ZS f cΛ0)) ^ i ϊ 1 (x,OZak+1) -> H1 (x,OZak) -+ 0,



GORENSTEIN SURFACE SINGULARITIES WITH FUNDAMENTAL GENUS p/ Ξϊ 2 283

(k = 0,1,... ,m-l),

0 -> H1 (x, OZj+1) -+ H1 (X, OZj) -> 0,

(A; = 0 , 1 , . . . , m - 1; j = sk + 1,... , sk+1 - 1).

Hence

Pf(X,x)=dimcH
1(X,Oz)

m-1

&=0

dimc&iAcOi-L-tAo))

m-1

= ^2 dime H1 (Ao, 0 ([&£)])). q.e.d.
k=0

For normal surface singularities with C*-action, similar formulas for the
geometric genus and the arithmetic genus were already proved in [10] and
[14] respectively.

Prom now on, we prepare two lemmas for the proof of Theorem 4.4 by
using (3.4). Let A — \J^=0Ai be an exceptional set with star-shaped dual
graph with central curve Ao. We consider a cyclic branch UΓ=i A% w ι ^

A o U ^ i Φ 0 Let V_y \fy be the w.d. graph of UΓ=i ̂ > where

A? = — b{. Let - = [61,... ,ίy) (continued fraction), where (d,e) = 1. Let
e

CQ = d, Ci = e and let c 2 , c 3 , . . . , c n be the integers which are inductively

defined by the relation ci+ι = biCi — c^i (1 ̂  i ^ n — 1), so cn = 1 and
c i + i < bi (1 ^ i ^ n — 1). Prom (3.4), we can easily see that if we put

m0 = m, πii = \ ——— > for (i = 1,... , n), then

(3.5) the restriction Z\\ ι« A . = y
*~ i = l

i.e., the coefficient of Z on Ai is equal to 772̂ . Then we obtain the following.

L e m m a 3.2. Suppose that the coefficient for the fundamental cycle Z on Ao

is ds (s is a positive integer). Then the coefficient for Z on Ai is given by
sCi for i = 1,... , n. In particular, ZA{ — 0 for i = 1,... , n.

Let cf, e and 6 1 ? . . . , bn be as above. Let /, μ be integers such that μd—el =

1 and 0 < μ < d. Then we have — = [&i,. •. , 6n-i5 ^n — 1] Therefore if we
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put λ0 = /, λi = μ and define λ 2 , . . . , λn inductively by λi = bi-ιλ^ι — λj_2

(i = 2,. . . , n), then λn_! = bn - 1, λn = 1.

Lemma 3.3. (i) // the coefficient for Z on Ao is /, the coefficient for Z on
Ai is given by λi (i = 1,... , n). In particular, ZAi = 0 for i = 1,... , n — 1
and ZAn = —1.

(ϋ) // I - = 1, then bn ^ 3.

Proof, (i) is easily obtained from (3.5), so only consider (ii). Assume that

bn = 2. Since (d - l)e = 1 mod d, - — 7 = [2,6n_χ,... ,&i]. Then 0 <

d-l
d-l

< 0. This is a contradiction, q.e.d.

4. Hypersurface singularities of Brieskorn type.

Let (X, #) be a 2-dimensional hypersurface singularity of Brieskorn type,

so the defining polynomial is given by XQ° + x\2 + x%2 for integers α0, αi,

α2. We call (αo?^?^) the degree of (X, x). In this section we consider the

fundamental genus and minimalities for such singularities. For the degree

(α0, αi, α 2), we denote positive integers do> ? ^6 &s follows:

d6 = (ao,aua2) {= g.c.m. {ao,aι,a2)), di+z == < t + 1 > j <z

(4.1)
i = 0,1,2),

where for an integer i, (i) is the integer satisfying (i) = i mod 3 and 0 ^

(i) ^ 2. Hence we have {d<i>,d<i+1>) (d ( i ) + 3,d ( i + 1 ) + 3d 3 + i ) = ( ^ , ^ + 3 ) ) = 1

a n d ιi = /.c.m.(ttotαitα2) for i = Q, 1,2. Let e< be an integer which is determined

by βik + 1 = 0 mod d{ (0 ^ e{ < rff) for i = 0,1,2. Then, by the results

in [9], the w.d. graph associated to the minimal good resolution of (X, x)

is a star-shaped graph whose associated cyclic branches have at most three

types as follows:

A(0) A ( 2 )

^ n ,

(4.2)
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where -1 = l&i , . . . ,6^1 (continued fraction) and s* = (α( i +i),α( i + 2)) =

^6^3+t (* = 0,1,2). If di = 1, then e* = 0. In this case we put Πi = 0.
Further, the Demazure's divisor D is given as follows:

2 Si ^

(4.3) D = D0-
i=0 j=l "»

where degZ)0 = , , » + Σ ~J^ ̂  Theorem 3.6.1 in [9]. The next lemma

is easy, so omit the proof.

Lemma 4.2. Let e, I and d he positive integers which satisfy le+1 = 0 mod d
and 0 < e < d. Then

&e\ (/ - l ) ( d + l ) μ
2d [S.

(ii) Lei e and d he relatively prime positive integers with 0 < e < d, and

let a be any positive integer. Then

l([ke\ ke\ a ( d - l )a±J fjke\ _
hλur

Theorem 4 3. Let (X, x) he a hypersurface singularity of Brieskorn type

with degree (ao9

ai?^2)- If &2 = /.c.m.(ao,ai),

^ - 1) - (00,00 + 1}.

Proof. Prom (3.2) and (4.3), we have

where k is a non-negative integer. For an integer t with 0 < t < /2, we have

Since α2 ^ i.c.m.ίαoία!), cf2 > k — t for ί > 0. Then (l2 — t)e2 is not divisible
by d2, because of (d2,e2) = 1. Then deg[(Z2 -t)D] < 0, and deg[Z2£>] =
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d5d6 ({ — } ) - — = 0 since l2e2 + 1 = 1 mod d2. Therefore, from (3.4),

m := the coefficient of Z on AQ = min{A; G N|deg[fcjD] ^ 0} = l2. By
Theorem 3.1,

pf(X,x) = £ dimcff0 (Ao, 0Ao(KAo - [kD])).

Since deg[fc.D] < 0 for 0 < k S k - 1, Ή1 (4b <^0 (*d0 - [*£>])) = 0. Hence,
by Riemann-Roch theorem on curves,

pf(X,x) = Σ {-deg([*0]) + 5 ( Λ ) - 1} + I-

Since 0 < /2 < 2̂ and (/2, ^2) = 15 by Lemma 4.2 we have

" 6 J b = l Z

Combining Proposition 3.5.1 in [9], we obtain

pf(X,x) = 1 + - (d3d4d5rf6

T h e o r e m 4.4. Lei (X, x) be a hypersurface singularity of Brieskorn type
with degree (αo,αi,α2). ///.c.m.(αo?«i) Sa2 < 2 Z.c.rn.(αo,αi) andpf(X,x) ^
1, ίΛen (X, a:) satisfies the minimality condition I of Definition 2.1.

Proo/. Suppose that the minimal good resolution of (X, x) whose w.d. graph
is given by (4.2). It suffices to prove that pa(Z — Ai) < pf for any irreducible
component Ai of the exceptional set A of the minimal resolution. By the
definition of pα,

(4.4) Pa(Z - Ai) =Pf- ZAi + A\- g(Ai) + 1 - δ(Ai).

First we consider the case that the minimal good resolution is equal to the
minimal resolution (i.e., the central curve AQ is not an exceptional set of 1-st
kind). By (3.4), the coefficient of Z on Ao is dodιdb, so by Lemma 3.2,

Zλ$ = 0 and p2 (Z - A$) < p,

(i = 0,1; j = 1,... ,Si] k = 1,...,n<).
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Since Z.e.m.(αo,αi) ^ α2 < 2 Z.c.ra.(αo,αi), Z2 ^ d2 < 2l2 (i.e., -~ = 1 j .

By Lemma 3.3, we have

$ (j , , ; , , )

( 4 6 ) Z < = -1 and « ) ' < -2 0 = 1,..., , 3).

Thus pa (Z — Ajk) < Pf from (4.4). Therefore we may only prove that

pa(Z — Ao) < pf. FVom Lemma 3.2, the coefficient of Z on Af± (resp. A^)
is eodιds (resp. eιdod6) for j = 1,... , s0 = d3d6 (resp. j = 1,... , Si = d4d6).
By Lemma 3.2 (i) the coefficient of Z on A^ (j = 1,... , c^dβ) is μ, where μ
is the positive integer which is determined by d2μ — e2l2 = 1 and 0 < μ < l2.

Farther, by Theorem 3.6.1 in [9], b = ψ φ + ^ +

Then
ZA0 = —l2b +

Therefore pa(Z - AQ) =pf + A2

Q- g(AQ) + 1 < pf by (4.4).
Next we assume that the central curve Ao is an exceptional curve of the

first kind. Let π = τoσ : (X,A) - ^ (X,^4) -^> (X,x) be the minimal good
resolution, where r is the minimal resolution and σ is a birational morphism
obtained by iterating monoidal transforms centered at a point. We may
assume that A contains more than two irreducible components. We have to
prove pa(Z — A{) < pf for any z, where Z = ZA Suppose pa(Z — A{) = pf
for some i. By Lemma 1.4, Ai is a smooth rational curve. Prom (4.4),
ZAi = A] + 1. Let Ai be the proper transform of Ai by σ. Prom (0.2.2)
in [18] and Lemma 3.2, 3.3 (i), we have ZAi = Zλ-A i = 0 or — 1. Since r
is the minimal resolution, we have ZAi = —1 and A? — —2. Hence Ai is
equal to A^n2 for some j 0 by Lemma 3.3 (i). Hence the coefficient of Z&
on Ai is 1. By (1.1), the coefficient on Z on Ai is 1. Since ZAi — —1?
there is only one irreducible component Aj C A such that Ai Π Aj Φ φ. Ai
intersects transversely at a smooth point of Aj. Therefore we may assume
that r doesn't contain any monoidal transform centered at a point of Ai,

so A2i = AI Then (A^j = A2 = -2, this contradicts Lemma 3.3 (ii).

q.e.d.
In [13], J. Stevens proved that if (X,x) is a minimal Kulikov singularity

and if π : (X, A) —> (X,x) is the minimal resolution, then Z = E on A.
Hence if we can prove that all singularities as in Theorem 4.4 are minimal
Kulikov, then it gives a proof of Theorem 4.4. However, the author doesn't
know the proof until now.
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In elliptic case (i.e., (αo,αi) = (2,3) or (2,4) or (3,3)), the result of Theo-
rem 4.4 is already known by the classification of minimally elliptic singular-
ities (cf. H. Laufer [7] and M. Reid [11]). Further, the similar property as
(ii) does not hold in general quasi-homogeneous hypersurface singularities.
For example, let (X,x) = {x* + xox\ + xa

2 = 0} C C 3 . If α2 ^ 15 (resp.
α2 < 15), thenp/(X,x) = 6 (resp. pf(X,x) < 6). However, (X,x) does not
satisfy the minimality condition I of Definition 2.1 for any a2 ^ 15. For

example, if α2 = 15, then the w.d. graph of (X, x) is ^ ^ .

5. Yau sequence of hypersurface singularities of Brieskorn type.

Let (X,α) —> (X)X) be the minimal good resolution of a normal surface
singularity (X, x) with pf(X,x) ^ 1. We give the following definition which
is an analogue to elliptic sequence (cf. S.S.T.-Yau [24], Definition 3.3).

Definition 5.1. If ZE < 0, we say that the Yau sequence is {Z}. Suppose
ZE = 0. Let £?! be the maximal connected sub variety of A such that Bx D
suppE and AtZ — 0 for any A{ C Bι. Since Z2 < 0, Bx is properly contained
in A. Suppose ZBιE = 0. Let B2 be the maximal connected subvariety of
Bγ such that B2 2 suppE and A{ZBl — 0 for any Ai C B2. By the same
argument as above, B2 is properly contained in Bx. We continue this process.
Finally if we obtain J5m with ZBrnE < 0, we call {ZBo = Z, ZBl,... , ZBrn}
the Yau sequence of (X,x) and the length of Yau sequence is ra + 1. We call
a connected component of\JAgsuppEAi an eliminative branch of (X,x).

Let {Z, ZBl,... ,ZBrn} be the Yau sequence of (X,x) and (XBi,Xi) the
normal surface singularity obtained by the contraction of B{ for i — 0 , 1 , . . . ,
m. By Lemma 1.1 we have pf(XBl^Xχ) = = pf(XBrn,xm) = pf.

In this section we study Yau sequence whose member are hypersurface
singularities of Brieskorn type. Yau showed a following fact which is im-
portant in his theory. Namely if (X, x) is a numerically Gorenstein elliptic
singularity, then —KBi — (—KBt+1) = ZBt for any i, where KB. is the canon-
ical cycle on B{ (cf. Proof of Theorem 3.7 in [24]). For the case with pf ^ 2,
we consider a similar property:

(5.1) -KB, - (-KB,+1) = cZ
B{

where c G Q is a suitable positive rational number. However this condition
doesn't hold in general case. For example, let (X, x) be a singularity whose
w.d. graph is
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so -KA = 19Λ + 8A1 + 4A2 and Z = ZA = Ao + Ax + A2 and E = A)
Since Bi = A 0 U 4 we have - K β l = 17A0 + 6AX and ZBl = Ao + A1. Then
(X, a;) does not satisfy (5.2), so we consider a more restrictive situation in
the following.

Proposition 5.2. Suppose that pf(X,x) ^ 1 and the length of the Yau
sequence is t + 1. Let (X,A) -> {X,x) be the minimal good resolution.
Assume ZBrn = E, and assume that A? — —2 and the coefficient for Z on
Ai is 1 for every A{ <£ suppE. Then the w.d. graph of A is given as follows:

Λn,t (n = -Z2).

Further, assume that (X,x) satisfy one of the following (i) or (ii).
(i) Yau sequence of (X,x) has one eliminative branch,

(ii) the w.d. graph for (X,x) is star-shaped and every cyclic branch which
contains an eliminative branch has the same cyclic type (see §3).

Then -KBi - (~KBi+1) = 2 p f ~ 2 + nZBi for i = 0 ,1 , . . . , t - 1.
n

Proof. Let D = Y^AιφsuPPE^i' ^ *s e a s y °̂ s e e ^ a ^ Z — E Λr Ό and the
coefficient for E on any irreducible component of suppE which intersects
to an eliminative branch is always one. Since ZE = 0, — E2 — ED is the
number of eliminative branches. Further any eliminative branch is a chain
whose any component is a rational curve with the self-intersection number
—2. Hence the weighted dual graph of A has the form:

If ri = r2 = ••• = rk < rk+1 ^ ^ rn (0 ^ k < n), then Brχ has

n — k eliminative branches. But — E2 — n > n — k — the number of the

eliminative branches of (xBri, xri). This contradicts to the fact above, so

Π = r 2 = = r n = ί. Further Z 2 = ZD = -n.
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Now we assume that (X, x) satisfies (i) or (ii), so the coefficient of —K

on Aij is independent of i (i = 1,... ,n). We put — K = Σi=i ai^% +

Σ£=i Σ5=i ^i^ϋi w h e r e βupp # = U?=i Λ Then 0 = -ίΓj4M = z t_i - 2xu

0 = —KAij = Xi-γ — 2xi + xi+1 (i = 1,... ,i — 1). Therefore we have

—K = Σi=i α ΐ^ί + cΣΓ=i Σj=i(* ~" J)Aij > where c is a constant. Similarly

we have -KBl = Σ U &i-4i + ^ Σ?=i Σj^U* ~ J ~ l)^<i J t i s e a s y t o

see that (-UΓ - (AΓβJ)^ = cγZAi for any i. Then -K - (if#x) = cλZ.
Comparing the both coefficients on Aiu we have c = cx. Hence —if —
( i ί β l ) = cZ. Continuing this process, we obtain that —KB{ — {Kβi+1) = cZ^.
(ί = 0,1,. . . ,ί —1). Since -K-(-KBl) = cZ and ZKBl == 0, -AΓZ -
Then

2pf-2-Z2 2pf-2 + n
= & = n * q β d

Example 5.3. Under the above condition, let (X,x) be a singularity such
that suppE is a smooth irreducible curve Ao with genus g and A% = —n.
Then we have

For example, let (X,x) = {x$> + x? + χicm.(aΰ,ai)(t+\) _ 0 } ς C3, where ί

is a non-negative integer. Then the w.d. graph is given by the above, where

n = (αcoO and g = K - 1 ) ^ - ^ - K α O + 1

ZBt_x+E).

For fixed integers ao,aι,a2 satisfying 2 ^ α0 = o>i ^nd Lc.m.(aOlaι) ^
α2 < 2 /.c.m.(αo,αi), let / t - xa

0° + arf1 + x^+i.c.m.iao.ax)* a n d ( χ ί 7 ^ ) =
{/t = 0} Q C3, where t is a non-negative integer. We consider a sequence
Σ(α0, ax, α2) as follows:

(5.2) Σ ί α o , ^ , ^ ) - ^ * , ^ ) ! ^ 0,1,2,...}.

From Theorem 4.3, pf(Xt,xt) — - {(α0 — l)(αi — 1) — {ao.ax) + 1} for any

t ^ 0 and (XQ^O) satisfies the minimality condition I of Definition 2.1.
Yau has studied such sequences as examples of the elliptic sequence (cf.
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[23], Example 4, 5, 6 and 7. In our notation, they correspond to Σ(2,3,9),
Σ(2,3,11), Σ(3,3,4) and Σ(3,3,5) respectively). In the following, we gener-
alize his results to Σ(αo,αi,α2).

Lemma 5.4. Let λ, I, and d be integers satisfying IX + 1 = 0 mod d and

0 < I, X < d. For a non-negative integer t, let \ t be an integer satisfying

l\t + 1 = 0 mod It + d and 0 < Xt < It + d. If - = [bu... , bn], then

It + d

Proof. It suffices to prove the only case of t = 1. Since (d — l)λ = 1 mod d,

•j—j = [&n,. . ,&i] and

f\

Further, dλi = 1 mod (/ + d),
l + d

]. q.e.d.

Theorem 5.5. Let αo,αi and a2 &e fixed integers satisfying 2 ̂  a 0 ^ ai

and ί.c.m.(a0 )ai) ^ a2 < 2 ί.c.m.(ao,a1). TΛen we Λai e the following result

about Σ(ao>βi>β2)

(i) If the w.d. graph associated with the minimal good resolution of(X0,x0)
is given by (4.2), the w.d. graph of (Xt,xt) is given as follows:

Hence, the length of the Yau sequence of (Xt,xt) is t + 1.

(ii) Let {Z, ZBl,. . , ZBt,x, ZBt} be the Yau sequence of (X t, xt). Then

{XBi,Xi) = (Xt-ijXe-i) 6 Σ(ao,θi,o2) /or i = 0,1,... ,t,

where (XBi,X{) is the singularity obtained by the contraction of Bι.

(iii) -Kt - (-KM) = a o a i " a ° Γ a i ^ (t = 1,2,...); li Λβre Kt (resp.
(aa)

Zt) is the canonical (resp. fundamental) cycle on the exceptional set of the
minimal good resolution of (Xt,xt).
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(iv) pg{Xuxt) -pgiXt^uXt^) = pg(Y,y) ft = 1,2,.. J , where (Y,y) =

{ S 0 + xl1 + xι

2

e m (αo'αi) = 0} C C? (see Example 5.3). 27ms p^X*,**) -

Pg(Xt-i,Xt-i) is independent oft and a2.

Proof, (i) is obvious from Lemma 5.4 and Theorem 4.4.

For (ii), we describe the outline of the proof. It suffices to compare the
other data of Pinkham's construction except for cyclic branches (i.e., an
analytic type of the central curve, the normal bundle of the central curve,
intersection points of the central curve and branches) between (X0,x0) and
(Xt,Xt) for any t. If it is showed, then for fixed value ί, the data above of
(Xt-i,Xt-i) and (Xo,x0) are equal. Because of (XBo,Xo) = (XΪ,XΪ), the data
of (XB.,Xi) is equal to (Xo,#o) Hence, comparing the cyclic branches, the
all data of Pinkham's constructions of (Xβ. ,#i) and (Xt-i,Xt-i) are equal.

Hence we compare those data for (X0,x0) and (Xuxt) in Σ
(αo,αi,α2). Let Co C P(/ 0 ΛΛ) (resp. Ct C Ψ(L0iLud2l2)) be the central
curve for (X0,x0) (resp. (Xuxt)), where Li = li(d2 + ht) for i = 0,1,2.
Let π 0 : P2 —> ^{lojiih) be a map defined by πo([zQ : z\ : z2]) =
[j2?o° : z[x : zξ2] and let πx : P2 —> Ψ(L0,Lud2l2) be a map defined by

πo([̂ o : x̂ : z2]) = \ZQ° : z^1 : z2

2h]. They are surjective, so we can define

φ : P(ZoΛ,/2) —> P(Lo,ii,d2i2) by φ(ττo{p)) = πt(p) for p € P2. Then
(/? is an isomorphism (cf. [4]) and φ(Co) = Ct. Since φ{{xi = 0} Π Co) =
{l/oJΠCί,^ corresponds the intersection points (of Co and branches) for
(X0,x0) to those for (Xt,xt). Further, let Do (resp. Dt) be a divisor asso-
ciated to the conormal bundle of Co (resp. Ct). Then J90 can be written
as Do = Σ?=irjPj and we have Dt = έ j L i ϊ j v(-Pj) (cf. [9], 3.6), where
{P l 7 . . . ,P;v} Q Ui=o{χi = 0} Γ\C0. Hence, each Pinkham-Demazure's data
for (XQJX0) and (Xt,xt) are equal except for the type of cyclic quotient
singularities of branches. This shows (ii).

(iii) is obvious by Proposition 5.2.

Now we prove (iv). We put p := (αo?«i)? Po : = —> Pi : = — and p :=
P P

l.c.m.(a0,a,ι) = ppoPi Then ft is a quasi-homogeneous polynomial of the

type (PΊPiiPo, —^—r- ). From Ki. Watanabe's results ([20], Theorem 1.13),
V a2+ptj

Pg (Xt,xt) = # U = (io,ii,*2) e N3 I 0 ^
a2 + pt

where a(t) — p — p\ —po zr and N is the set of non-negative integers.
α2 +pt

We put Jo = {to e N | P l t 0 ^ a(t)} = ( i 0 € N ho ^ PPo - 1 - — )
Pi o,2 + pt)
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Since (po,Pi) = 1, \ — H ~ τ > = ε0, where ε0 = 1 (resp. 0) if p 0 φ P\

I Pi a2+pt)
(resp. p 0 = Pi) Then / 0 = {io G N | i 0 = PPo — 1 — ε 0 } . For any element

«o € / 0 , let J( i0) = {*i G N I 0 ^ po*i = <*(*) — Pi<o} Since p ^ α 2 < 2p,
J(*o) = ί*i € N I ii ^ ppi - P l ( t 0 + 1 ) - 1 ~ £ l \ where ελ is 1 (resp. 0) if

I Po J
Po|*o+1 (resp. po t *o+l) Therefore Io and I(io) (Vi0 £ /o) are determined by
α 0 a n d α i . For t 0 € h and ^ G /(«o)? let B(iOy%ι) = p — P i ( ί o + 1)—Po(*i + 1)
T h e n

,,^) = # |ί N3 and

Hencepg(X t+ι, xt+ι)—pg(Xti Xt) is independent of t and α2. If a2 = l.c.m.(ao,

αi), t h e n p p ( X w , x ί + 1 ) -pp(X t,x£) =pp(Y,y) for any t. q.e.d.
From results above we can easily see that if t > 0, then (Xί7 xt) does not

satisfy any minimality condition of Definition 2.1.

Example 5.6. Let (X*,^) = {x2

Q + x\+ #2 2 + 8 ί = 0} C C3 for a non-negative
integer t, where 8 ^ α2 < 16. Then pf(Xuxt) = 3 and -Kt+1 - (-Kt) =
3Z ί + 1 for any < ̂  0.

(i) Let α2 = 9, then w.d. graph of (Xtjxt) is

^ 4 . 1 9

Then Z t = 8A0 + 6AX + 4A2 + 2Ax + Σ U A4 ) i 4-

2Λ2 + A3 + A4,o + Λ>,o, -Ko = 20Λ

and pg(Xt,xt) = 6t + 6 for any t ^ 0.

+
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(ii) Let α2 = 12, then w.d. graph of (Xt,xt) is

A i A 3

Then Zt = 2A0 + Aλ + A2 + ΣUo A*Λ + Σ U A^ E = 2A0 + A1 + A2 +
A3)0 + ̂ 4,o, -Ko = 8Λ + 4ili + 4A2 + 3A3,O + 3^4,o andp g(X ux t) = 6t + 8
for any ί ^ 0.

In Example 5.6, though pf(Xt,xt) is equal to 3 for any t ^ 0, the arith-
metic genus is given by pa(Xt,xt) — 2t + 3 (ί ^ 0) (cf. [14]). Prom this we
can see that the arithmetic genus and the fundamental genus have different
roles as the invariant for normal surface singularities with pf ^ 2, though
both are topological invariants.
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