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ON GORENSTEIN SURFACE SINGULARITIES WITH
FUNDAMENTAL GENUS p; 2 2 WHICH SATISFY SOME
MINIMALITY CONDITIONS

TADASHI TOMARU

In this paper we study normal surface singularities whose
fundamental genus (:= the arithmetic genus of the fundamen-
tal cycle) is equal or greater than 2. For those singularities,
we define some minimality conditions, and we study the rela-
tion between them. Further we define some sequence of such
singularities, which is analogous to elliptic sequence for ellip-
tic singularities. In the case of hypersurface singularities of
Brieskorn type, we study some properties of the sequences.

Introduction.

Let  : (X,A) — (X,z) be a resolution of a normal surface singularity
and, where 77!(z) = A = Ui, 4; is the irreducible decomposition of the
exceptional set A. For a cycle D = Y"1 | d;A; (d; € Z) on A, x(D) is defined
by x(D) = dim¢ H*(X,0p) — dime H (X, 0p), where Op = Oz /O(-D).
Then

01) x(D) = ~3 (D" + DK),

where K is the canonical sheaf (or divisor) on X. For any irreducible
component A;, we have

(0.2) KgzA;=—-A?+29(A;) —2+28(A;) (adjunction formula),

where g(4;) is the genus of the non-singular model of A; and 6(4;) is the
degree of the conductor of A; (cf. [7]). The arithmetic genus of D > 0 is
defined by p,(D) = 1— x(D). Let Z be the fundamental cycle on A (cf. [1]).
Then the following three holomorphic invariants of surface singularities are
defined by (cf. [1], [7]),

Py = py(X, ) = dime R'7,O% (geometric genus),

(0.3) Pa = pa(X, z) = maxp,(D) (arithmetic genus),
ps =ps(X,2) = pa(2) (fundamental genus).
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These values are independent of the choice of a resolution of (X, z) and there
is a relation: p; < p, < p,.

Now assume p; 2 1. Let E be the cycle on A defined by £ = min{D >
0]p.(D) = ps, 0 < D < Z} (see Definition 2.1) and let K the canonical cycle
on A (cf. [24]).

In §1, we prove the followings.

Theorem 1.6. Let (X,z) be a numerically Gorenstein surface singularity
with p;(X,z) 2 1 which is not a minimally elliptic singularity. If © is the
minimal resolution or the minimal good resolution, then —K 2 Z + E.

In §2, we prove the following.

Theorem 2.2. Let (X, z) be a normal surface singularity with — K = Z+E,
then p, < py + 1.

Moreover, for normal surface singularities of p; = 2, we consider some min-
imality conditions which are similar to the minimality conditions by Laufer
([7], Theorem 3.4).

In §3, we consider the fundamental cycle for normal surface singularities
with star-shaped dual graphs and describe a formula of p; for them (Theorem
3.1).

In §4, we consider hypersurface singularities of Brieskorn type with degree
(@o,a1,0az) (ie., (X,z) = {af® + z7* + 23> = 0} C C*). For them we prove
the following two theorems.

Theorem 4.3. If a; 2 l.c.m.(ag,a;), then

ps(X,) = 5 {(a0 — @ ~ 1)~ (ao,a1) +1}

Theorem 4.4. If l.c.m.(ag,a1) < az < 2-l.em.(ag,a1) and ps(X,z) > 1,
then Z = E on the minimal resolution.

In Section 5, for singularities with p; = 2, we consider sequences which
are analogous to Yau’s elliptic sequences. We study such sequences of hyper-
surface singularities of Brieskorn type and find several properties for them
(Theorem 5.5).

The author would like to thank Prof. Kei-ichi Watanabe and Prof. Masa-
taka Tomari for their helpful advice and encouragements during the prepa-
ration of this paper. In particular, Prof. Tomari kindly communicated The-
orem 3.1 of this paper to the author. Also the author would like to thank
Prof. Oswald Riemenschneider. He sent the author the thesis of J. Stevens
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and pointed out that the minimal cycle (Definition 1.2) had already been
defined in it (p. 33 in [13]).

Notations and Terminologies. For integers (or real numbers) a4, a,, ...,
a, (n 2 2), we put

[a1,a0,... ,a,) :=a; —

Qg —

1

Qn

(continued fraction). For real number a, we put [a] := max{n € Z|n < a}
(Gauss symbol) and {a} = min{n € Z|n 2 a}. Further, for positive integers
ay,... 0, we put (ay,...,a,) = g.cm. (a1,... ,ay).

1. Minimal cycle for normal surface singularities.

Let w : (X,A) — (X,z) be a resolution of a normal surface singularity,
where A = |J;_, A; is the irreducible decomposition. Let D be a cycle with
0 < D < Z, where Z is the fundamental cycle on A. Then we can construct
a sequence of positive cycles Zy =D, Z, = Zo+ Ay,..., Z; = Zi—y + Ay - . -,
Z =2y =21 + A, such that Z;A;;; >0fori=¢,¢e+1,...,l -1, where
e=0if D >0and e =1if D =0. We call this sequence a computation
sequence from D to Z. If D = 0, then it is a Laufer’s computation sequence
of Z. We can always construct a computation sequence from D to Z as in

[6].
Lemma 1.1. Let D be a cycle on A such that 0 < D < Z. Then p,(D) < py.

Proof. Let Zy = D, Z,,... ,Z; = Z be a computation sequence from D to Z.
Then po(Zit1) = 1= x(Z:) = x(Ait1) + ZiAi1 = pa(Zi) + AiAir1 +9(Aig1) —
1 2 p,(Z;) for any i. q.e.d.

Definition 1.2. Let E be a cycle on A such that 0 < E < Z. If E satisfies
that p,(E) = p; and p,(D) < p; for any cycle D such that D < E, we call
E a minimal cycle on A.

If (X,z) is an elliptic singularity (i.e., p;(X,z) = 1), E is the minimally
elliptical cycle [7]. In [13], J. Stevens had already defined the minimal cycle
on the minimal resolution and he called it the characteristic cycle of (X, z).
He showed that if (X, z) is a minimal Kulikov singularity (p. 29 in [13]) and
if 7 is the minimal resolution, then Z = E on A. The existence and the
uniqueness of the minimal cycle E can be shown as in [7]. Though they
were also done in [13], we repeat them for the convenience to the reader.
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Proposition 1.3. For all normal surface singularities with py = 1, there
ezists a unique minimal cycle E.

Proof. We may assume that p; 2 2. Let B =37 b;A; and C = Y1 | c;A;
be cycles such that 0 < B, C < Z and p,(B) = p,(C) = ps. Let m =
min(B, C) := Y, min(b;,c;)A;, then M > 0. Since0 < B+C - M < Z,
by Lemma 1.1 and (0.1),

1-p; S x(B+C - M)
= x(B)+ = z(C) — x(M) — (B - M)(C — M)
<2 -2p; — x(M).

Then x(M) £ 1 —ps, so M > 0. Further, by Lemma 1.1, x(M) 2 1 — py,
S0 p, (M) = p;. After finite steps of this process, we can obtain the minimal
cycle E. q.e.d.

For the definition of the minimally elliptic cycle, we need not the as-
sumption “E < Z” (see [7]). However, in the case of p; = 2, we need the
assumption.

Lemmal.4. Let Zy,=FE, Z, =E+Aj,,...,. Z=2,=E+A; +---+Aj, be
a computation sequence from E to Z. Then A;, is a smooth rational curve
and Zx_1A;, =1 fork=1,...,L

Proof. We have p; = p,(E) £ po(Z1) £ -+ £ po(Z;) = py as in Lemma 1.1.
Then x(Z;) —x(Z-1) =0for k =1,... ,l. By the adjunction formula (0.2),
Zy1Aj, +9(A;,) — 1+ 6(4;,) = 0 for any k. This completes the proof.
q.e.d.

Let us define the Q-coefficient cycle K on A by the relation: A;K = A; K3
for any irreducible component A; C A = |J;_; A;. We call K the canonical
cycle of A (cf. [24]). If K is a Z-coefficient cycle, we say that (X,z) is
numerically Gorenstein. This condition does not depend on the choice of a
resolution.

Now let o : (X,A) — (X, A) be a monoidal transform with center
p € A. For any irreducible component A; of A and L = o~ !(p), we put
0*A; = A; + m;L, where A; is the proper transform of A; and m; is the
multiplicity of A; at p (but if p ¢ A;, we put m; = 0). Further we put
o*D =Y 1, d;o*A; for any cycle D =)  d;A; on A.

Now let Z and K (resp. Zz and K ;) be the fundamental cycle and the
canonical cycle on A (resp. A). We put Z = 31, 2;4; and K = Y0, ki A;.
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Then it is well known that

Zi=0"7Z = Z 2z A; + (Z zimi) L (cf. [18], Proposition 2.9),
(11) =1 . =1 .
Ki=c'K+L=Y) kA + (Zkimi + 1) L.

=1 t=1

Proposition 1.5. Assume the situation above. If p € SuppE (resp. p ¢
Supp E), then 0*E — L (resp. 0*E = Y., e;A;) is the minimal cycle on A.

Proof. Let § = 1 (resp. § = 0) if p € Supp E (resp. if p ¢ Supp E). Since
(6*D)L =0 and (¢*D,)(0*D;) = D, D, for cycles D, D, and D, on A, then

1

x(0c*D + kL) = -5 (D? —k* + Kz0*D — k)
(1.2) - —% (D* + (0K + L)o*D — k* — k)

= x(D) + %k(k +1),

for any k € Z. Hence p,(0*E — L) = p;. Suppose that 0*E — dL is not the
minimal cycle on A. Let Ez = Y., &A; +mL (< 0* E—4L) be the minimal
cycleon A, 50 & < e (i =1,2,...,n) and m £ Y mse; — 6, where m;
is the multiplicity of A; at p. Assume that there is ¢y such that &;, < e;,.
Let Dy = Y i, €A;, then Dy < E. From the definition of E, p,(Dy) < py.
However, the fundamental genus is independent of the choice of a resolution.
Thus

pr=1-x(Ez)=1—-x(06"Do+myL)
1
=1-x(Dy) - §mo(mo +1) £ pa(Do) < py,

where mg = m — Y., &m;. This is a contradiction. Hence &; = e; for any
i. Then Ez = 0*E +moL. Since p; = p, (Ez) and (1.2), we have my =0 or
—1. Then if p € Supp E, 0*E — L is the minimal cycle on A. If p ¢ Supp E,
then o*E is the minimal cycle on A because of 0*E — L # 0. g.e.d.

Theorem 1.6. Let (X, z) be a numerically Gorenstein singularity with py 2
1 which is not a minimally elliptic singularity and let A be the exceptional
set of the minimal resolution or the minimal good resolution of (X,z). Then
~K2Z+FE on A.

Proof. Let 7 : (X, A) — (X, ) be the minimal resolution. Then K - 4; = 0
for any i, s0 —K 2 Z. If —K = Z, then (X,z) is a minimally elliptic
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singularity. Hence —K > Z. Let M = min(—K — Z,Z). Since 0 < M < Z,
by Lemma 1.1 and (0.1),

1 —ps < x(M)
=x(-K-2)+Z - M)
=x(-K-2)+x(Z2) — x(M) - (-K - Z - M)(Z — M)
S 2-2ps — x(M).

Then x(M) £ 1 — py, so p,(M) = p;. Hence we have —-K —Z 2 M 2 E.

The minimal good resolution is obtained from the minimal resolution
(X, A) by iterating monoidal transforms centered at points. Let oy : (X, A) —
(X' ,A) be a monoidal transform at p € A, where p is a singular point of an
irreducible component of A or mult,A 2 3. If p € SuppE, then —Kz >
Zjz+ Ej4 from (1.1) and Proposition 1.5. Suppose that p ¢ SuppE. If p is
a singular point of an irreducible component of A; of A, then A; € SuppE.
This contradicts Lemma 1.4. Then we may assume that mult,A =2 3 and
p is not a singular point of an irreducible component of A. Then there are
irreducible components A;,,... A;, (s 2 2) which contain p. Let Z, = E,
Zy = Zy+ Aj,,..., Z; = Z be a computation sequence from E to Z. Since
A; € SuppE fork=1,...,s, {A;,...,A;} is contained in {4;,,... ,4;}.
Then it is obvious that Z;A;,,, 2 2 for some k. This contradicts Lemma 1.4
again. Hence we may only consider a point in Supp E as the center of 0.
Continuing this process, we complete the proof. q.e.d.

2. Minimality conditions for Gorenstein surface singularities.

Let (X, z) be a normal surface singularity. If there is a neighborhood U of
z in X and a holomorphic 2-form w on U — z such that w has no zeros on
U -z, (X,z) is called to be Gorenstein. If (X,z) is Gorenstein, then it
is numerically Gorenstein. If (X, z) is a Gorenstein surface singularity, the
following inequality holds (cf. [5, 14, 20] for general case and [24, 25] for
case of p, = 2):

(21) py(X’ .'L‘) gpf(X, III) +1.

From Definition 1.2, Theorem 3.4 (3) in [7], Theorem 1.6 and (2.1), we can
consider the following four minimality conditions I~IV respectively.

Definition 2.1. Let (X, z) be a normal surface singularity with p; = 2 and
m: (X,A) = (X, z) the minimal resolution. We consider the following four

conditions:
(I) Z=FEon A,
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(I1) Any connected proper subvariety of A is the exceptional set for a sin-
gularity whose fundamental genus is less than p; (X, z),

() —K =Z+E on 4,
(IV) (X, z) is a Gorenstein singularity and p,(X,z) = ps(X,z) + 1.

We can easily see that I—II is always true for any normal surface singu-
larity with p; 2 1. In the following we consider the other relation between
these conditions. Under the condition that (X, z) is Gorenstein, we can show
III-IV. However, we can find that there are no other good implications even
for the Gorenstein case. We show this through some examples. From now
on we will prove Theorem 2.3 and Corollary 2.4. We prepare the following.

Proposition 2.2. (i) H'(X,0(-Z)) ~ H'(X,0(-E)),

(i1) Hl(){, 0z) ~ HI(X,OE:),

(il) H(X,0_g_z) ~ H(X,0_k_g) (j =0,1).
Proof. (i) Let Zy = E, Z; = Zo+ Ajy,...,Z; = Zi1+ Aj, = Z be a
computation sequence from E to Z. By Lemma 1.4, A;; is a smooth rational

curve and Z;_;A;, =1fori=1,2,...,l. From the sheaf exact sequences:

0— O(—Z) ——)O(-—'Zl_l) — OA,(—ZI—-I) — 0

0— O(=2Z,) —O(—E) — Ou,(-E) — 0,
we have the exact sequences of cohomology groups:

e HO(AI,OA.(_ZI-I)) — HI(X7O(_Z))
— HY(X,0(~2Z,_))) — HY (A, 04,(=21_1)) — -+,

-+ — H°(A;,04,(-E)) — HY(X,0(-Z,))
— H'(X,0(~E)) — H'(A1,04,(-E)) — -
Since A;4 =~ Py, HO(Ai+1,0A;+1(Zi+1)) = Hl(Ai+1’0Ai+1(Zi+l)) = 0 for
any i. It gives the isomorphism of (i).

(ii) Let us consider the following commutative diagram:

0 —— O(-E) > O » Og > 0
T I
0 — 0O(-2) » O > Oz > 0.
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Then, from (i) we have

.- = HY(X,0(~E)) - H(X,0) - H(X,08) = 0

o = HY(X,0(-2)) » H(X,0) = H(X,05) - 0,

so H'(X,0g) ~ H'(X,03).
(iii) From the sheaf exact sequences:
0 — 04y, (Kayyy + ZiAiya) — O_g_z, — O_k_3z,,, — 0,
we have the exact sequence of cohomology groups:
0 = H*(Ait1, Oniy,(Kayy + ZiAin1)) = HY(X,0_k_2,)

— HO(X?OK—Z.’-H) — Hl(Ai+1a OA.'+1 (KAi+l + ZiAi+1))
— HI(X,O_K_Zi) — HI(X,O_K_ZH_I) —0 (’L =0,1,...,l— 1)

Since
H°(Aiy1,00,,,(Kaiyy + ZiAip1)) = H'(Ai1, Oacy,(Kasyy + ZiAig1)) =0
for any ¢,
H (X,0_x_z) ~H (X,0_k_7_,) ~
o~ HI(X,0_k_z)~ H(X,0_x_g)
for j =0,1. q.ed.

Theorem 2.3. Let (X, z) be a normal surface singularity with —K = Z+E,
then p,(X, ) < py(X, 1) + 1.

Proof. We may assume that p;(X,z) 2 1 and p,(X,z) 2 2. Let 7 :
(X,A) — (X, z) be a resolution and A = |J, A; the irreducible decompo-
sition. Let Z; = Ay, Zy, = Z,+ Ag, ..., Z = Z; = Z,_, + A, be a computation
sequence of the fundamental cycle Z on A, so Z;A;;; >0fori=1,... ,l-1.
From the sheaf exact sequences:

0> OK +Z)/]O(K) > O_g > O_g_z, =0,

00— O(K + Z)/O(K + Zl—l) — O—K—Z;_l = O_g_z >0,
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we have the exact sequences of cohomology groups

- = H(X,0(K + Z,)/O(K))
— HI(X,O__K) —> HI(X,O_.K_ZI) — 0,

= HYX,O(K + Z)/O(K + Z;_,))
— HY(X,0_k_z,_,) » H(X,0_k_z) = 0.

Further,

HY(X,0(K + 2,)/O(K)) ~ H'(A;, 04, (K + A1)
~ H'(A;,O(K,,)) ~C,

and

Hl (Xa O(K + Zz+1)/O(K + Zt)) = Hl(Ai-H, OA.‘+1 (K + Zi+1))
~ H'(Aiy1,O(Ka,,, + Ait1Zi)) = H*(Aip1,0(=Ain 2;)) = 0.

Therefore we have
hl(Xv O—K) - hl(Xv 0——K——Z) § L

On the other hand, it is well known that py,(X,z) = dim¢ H 1(X 0) =
dime H'(X,0_g) (cf. [7] and [24]) and pr(X,z) = dlmcHl(X 0z). By
Proposition 2.2 (ii), p;(X,z) = dim¢ H' (X,0g) = dime¢ HY(X,0_gk_z).
Hence we have p,(X,z) —ps(X,z) £ 1. q.e.d.

From (2.1) we have the following.

Corollary 2.4. Let (X, z) be a Gorenstein surface singularity with p,(X,z) 2
2. If —-K =Z + E, then p,(X,z) = ps(X,z) + 1.

Let C be a curve of genus 2 and L a line bundle on C with 2L = K,
where K¢ is the canonical bundle of C. We assume that H°(C,O(L)) =
For example, if we take L as O(P, + P, — P;) with three different Weierstass
points P,, P, and P;, then it satisfies the conditions above. Let (X,z) be
the singularity from the contraction of the zero section of the negative line
bundle —L. Then it is a Gorenstein singularity satisfying p, = 3 (see {10])
and p; = 2, but —K = 3C > Z + E = 2C. Therefore the converse of
corollary 2.4 does not hold.

Ezample 2.5. Let (X,z) = {23+ 2] +z}° =0} C C* (a hypersurface sin-
gularity). The w.d. graph (weighed dual graph) associated to (X,z) is
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A A
Then Z = 24, + Ay + 245 + Ay +3A5 + 245 and p; = 2, 50 E = 24, + A, +
2A;+ Ay +2A5 + Ag. We can easily check that (X, z) satisfies the condition
II and Z > E. This shows that II-»I.

Ezample 2.6. Let (X,z) = {z3 + z] + 23 =0} C C*. The w.d. graph is
A

Z=E=24+%., A+ As, pf = 3 and p, = 12 (cf. [21]). This shows
I-»IV.

Ezample 2.7. (i) Let (X,z) be the 5-th Veronese quotient [16] of the hy-
persurface singularity {z3 + 2% + 23> =0} C C*. Then the w.d. graph for
2

the minimal resolution of (X, z) is (cf. Remark in [16]),
O—9)—CO
A, [4]1A, A,
Z = Ay + A; + Ay + A; and p; = 4. Moreover we can see that E = A,
and —K = Z + E. This singularity is Gorenstein and p, = 5. This example
shows III-»1.

Ezample 2.8. Let (X, z) be the 9-th Veronese quotient of a hypersurface sin-

3

A
gularity {z§ + =3 + z3° = 0} C C3. The w.d. graph is given by 2?2@& ,
A, O214,0 As

then —K = 240+Y% | A;, Z = Ag+Y>_, A;andp; = 2. Then —K = Z+E.
Further, (X, z) is Gorenstein and p, = 3. It is obvious that (X, z) does not
satisfy II. This shows ITI-»II.

From examples above, we can find that even for Gorenstein case, there
are not any implications between four conditions of Definition 2.1 except for



GORENSTEIN SURFACE SINGULARITIES WITH FUNDAMENTAL GENUS p; 2> 2 281

the two implications: I—II and ITI—-IV.

3. Fundamental genus of normal surface singularities with
star-shaped dual graph.

Let 7 : (X, A) — (X, z) be the minimal good resolution of a normal surface
singularity whose w.d. graph is given by

Ay ee JA,L
(DD
A (B o
DD
(3.1) Apis oo sAn.
where A;; ~ P' for i = 1,...,n; j = 1,...,7;, and A4, is a curve of

genus g which is called the central curve. Let (Y;,y;) be the singularity
which is obtained by the blowing-down of the i-th branch e
(¢ = 1,...,n). It is isomorphic to the cyclic quotient singularity

. d; . .
Cune =C eg‘ e(e)" , where — = [b;, ... ,b;,] (continued fraction).
d €;

We call (d,e) (resp. d) the cyclic type (resp. the cyclic order) of Cy,y .. We
denote Q-coefficient divisor D and Z-coeflicient divisor [kD] on A, as follows:

n

€; = kei
(3.2) D:=Do—3 —P and [kD] + kD, — Z{ ) }R-,

i=1 ¢ =1

where k is a non-negative integer and D, is a divisor on A, such that O 4, (Do)
is the restriction to A, of the conormal sheaf of 4, in X.

When (X,z) has a good C*-action, H. Pinkham [10] wrote the affine
graded ring Rx of (X, z) in terms of the above numerical data as follows:

o0

Rx = R(Ao, D) = @ H® (A, 04, ([kD))) - t*.

k=0

We call this representation Pinkham’s construction. This was generalized
to higher dimensional case by M. Demazure [3], so the divisor D is called
Demazure’s divisor.

Now let us compute the fundamental cycle Z on an exceptional set A
with star-shaped dual graph and the fundamental genus p;. Let m be the
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coefficient of Z on Ay. For k=1,... ,m, let Z*) be a minimal divisor such
that 0 < Z® < Z and the coefficient of Z*) on A, is k and Z®WA,; <0
for any 4,j. Then a unique cycle Z(¥) exists. It is easy to see that there is
a computation sequence Zo = 0, Z; = Ao, Zy = Zy + Ay, ..., Zp, = ZV,
Ziyor = Ziy + Apyrr oo Ziy = 2P, Zyoy = Ziy + Atgtry o, 20W = Z
which satisfies Z; Ay = 1 for Agyq 7# Ao, where Ay, =40 i=1,... ,m—
1) and other A is a component A; ; of a cyclic branch. We call this a good
computation sequence.

Let 7 : (X, A) = (X, Ap) be the contraction of all cyclic quotient branches
Ciite: (i =1,...,n) and Ay = 7(Ao). In §6 in [15], M. Tomari and K-
i. Watanabe studied the Giraud’s inverse image of kA, (it is denoted by L),
where k is an integer. From the definition of L, and the considerations in
(6.11) of [15], we can easily see that

(3.3) L =2Z® (k=1,...,m) and —-L_,=2Z.
Further, from Lemma 6.14 and (6.15) in [15], we can see the followings:

Z. ( ke; B
(3.4) —L_xAo = kDo — ;{ d. } -pi (= [kD]), and

m = the coefficient of Z on Ay = min {k € N|deg[kD] 2 0}.

The following result is due to Tomari, and we describe it according to his
suggestion.

Theorem 3.1 (M. Tomari). ps(X,z) = Y pp dime H' (Ao, O 4, ([kD))).

Proof. Let Zy =0, Ay = Ay, Zy = Z;y + Aiy,- .-, 2, = Z™ = Z be a good
computation sequence which contains the subsequence {Z(1),... , Z(™} such
as ZW =2Z,,...,Z2(™ = Z, . Then s,, = $,—1 + 1 and A;; is equal to Ay
for i; = s + 1. Let us consider the following sheaf exact sequences:

0 0(-2)/O(—2Z;) &> O_z, =0,

0 0(-2,)/0(-2Z;) & Oz, =+ Oz, =0,

0 O0(-2,,-1)/0(=Z) 5 Oz - Og, _, = 0.
Then H%(X,0z,) =Cforj=1,...,sn (cf. [7, (2.6)]). If A;; # Ao, then A;;
is a smooth rational curve and Z;,_, A;; = 1. Hence H'(A;;,0(-Z;;_, A;;)) =

O0fori; =s,+1,...,5041 —1land £k =0,1,... ,m. Therefore

0 = H' (A, O(~Z,, A)) » H' (X,03,,,) = H' (X,0z,) 0,
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(k=0,1,... ,m—1),

0 H'(X,0,,) » H (X,05) =0,
(k=0,1,...,m—1; j=s+1,... 841 — 1).
Hence

ps(X,z) = dimec H (X, 05)
m—1
= z dlII].c Hl (AO, O(_ZskAO))
k=0
m—1

=Y dimc H' (Ao, O(—L_¢Ao))
k=0
m—1

= Y dime¢ H' (40, O([kD])).  qed.

k=0

For normal surface singularities with C*-action, similar formulas for the
geometric genus and the arithmetic genus were already proved in [10] and
[14] respectively.

From now on, we prepare two lemmas for the proof of Theorem 4.4 by
using (3.4). Let A = Uﬁio A; be an exceptional set with star-shaped dual
graph with central curve A;,. We consider a cyclic branch U}, A; with

AoUA;, # 0. Let ‘ 4‘ be the w.d. graph of U}; A;, where

A? = —b;,. Let — = [by,...,b,] (continued fraction), where (d,e) = 1. Let
c=d,¢c =e gnd let ¢y,c3,...,c, be the integers which are inductively
defined by the relation ¢;;; = bic; —¢i.; (1 £1<n—-1),s0¢, =1 and
ciy1 < b (1 £1< n—-1). From (3.4), we can easily see that if we put

mg=m, m; = {ﬂ'_—l} for (i =1,...,n), then

Ci—1
(3.5) the restriction Z IU" A= Zm A;,
i=1

i.e., the coefficient of Z on A; is equal to m;. Then we obtain the following.

Lemma 3.2. Suppose that the coefficient for the fundamental cycle Z on A
is ds (s is a positive integer). Then the coefficient for Z on A; is given by
sc; fori=1,... ,n. In particular, ZA; =0 fori=1,... ,n
Let d,e and b,,... ,b, be as above. Let [, u be integers such that ud—el =
l
1 and 0 < p < d. Then we have — = [by,... ,b,_1,b, — 1]. Therefore if we
w
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put Ao =, A\; = p and define A,,... , A, inductively by A\; = b;_1\j_; — A\i_
((=2,...,n),then \,_; =b, — 1, A\, = 1.

Lemma 3.3. (i) If the coefficient for Z on A, is l, the coefficient for Z on
A; is given by \; (1 =1,...,n). In particular, ZA; =0 fori=1,... ,n—1
and ZA, = —

(i) If [%i] =1, then b, 2 3.

Proof. (i) is easily obtained from (3.5), so only consider (ii). Assume that
b, = 2. Since (d —l)e = 1 modd d = [2,bp—1,... ,b1]. Then 0 <

" d—1
[br-1,--.,b1] = :_211 < 0. This is a contradiction. g.e.d.

4. Hypersurface singularities of Brieskorn type.

Let (X,z) be a 2-dimensional hypersurface singularity of Brieskorn type,
so the defining polynomial is given by zg° + z7* + 23 for integers ay, a1,
ay. We call (ag, az, a) the degree of (X, z). In this section we consider the
fundamental genus and minimalities for such singularities. For the degree

(ao, a1, a3), we denote positive integers dy, ... ,ds as follows:
i a;
ds = (a0, a1,az) (= g.cm. (ao,a1,0a2)), diys = “lw—l)é‘(ﬁ)‘,
(4.1) o
d; = , li= d(i+l)d(i+2)d3+i (¢=0,1,2),

ds (i+1)d34 (i+2)ds

where for an integer 4, (i) is the integer satisfying (i) = i mod 3 and 0 <
(i) < 2. Hence we have (d<is, d<it1>) (diiy+3, drny+3dats) = (diy diiygy) =1
and [; = —c—ﬂw for i = 0,1,2. Let e; be an integer which is determined
by e;l; + 1 = Omodd (0 £ e < d;) for i = 0,1,2. Then, by the results
in [9], the w.d. graph associated to the minimal good resolution of (X, z)
is a star-shaped graph whose associated cyclic branches have at most three
types as follows:

(o) (0) (1)
ln ’ 112

e! !__o‘”

& D@

42) A e A A e A

)
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d; ; ; . .
where o= [bg'),... ,bf:)] (continued fraction) and s; = (at1),airz)) =

dedsyi (3 = 0,1,2). If d; = 1, then ¢; = 0. In this case we put 7; = 0.
Further, the Demazure’s divisor D is given as follows:

(4.3) D= DO—ZZ "

=0 j= l

2
Z . by Theorem 3.6.1 in [9]. The next lemma

=0 1

where deg Dy = 7 d p
00103

is easy, so omit the proof

Lemma 4.2. Let e, | and d be positive integers which satisfy le+1 =0 mod d
and 0 < e <d. Then

5 (k) - be) - ey 1)

(ii) Let e and d be relatively prime positive integers with 0 < e < d, and
let a be any positive integer. Then

£ (55 -

k=1

Theorem 4.3. Let (X,z) be a hypersurface singularity of Brieskorn type
with degree (ag,a1,02). If ay 2 l.c.m.(ag,a,), then

z) = %{(ao — 1)(ay — 1) — (a0, a1) + 1}.
Proof. From (3.2) and (4.3), we have

kdg ( { ke; } kez>
kD = - i 9
deg[ ] dodld Z d3+ d6 di
where k is a non-negative integer. For an integer ¢t with 0 < t < l5, we have

deg[(l —t)D] £ (o —t)ds _ dsdg ({ (L2 (*i:)ez} (- t)eg)

dod,d; dy
1 (lz - t)62 (lg - t)62
< dsd ( { } + ) .
5%\ d, do ds

Since ay 2 l.c.m.(ag,a,), dy >l —t for t > 0. Then (I, —t)e; is not divisible
by d,, because of (dz,e;) = 1. Then deg|(l, —t)D] < 0, and deg[l,D] =
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l l
dsds ({ 2:2 }) — 2% _ 0 since l,e; +1 =1 mod d,. Therefore, from (3.4),

2
= the coeﬁicmnt of Z on Ay = min{k € N\ deg[kD] 20} = I,. By
Theorem 3.1,

lo—1

ps(X,z) =Y _ dimc H® (Ay, O4,(Ka, — [kD])).

k=0

Since deg[kD] < 0for 0 < k <1, — 1, H' (Ao, O4,(K 4, — [kD])) = 0. Hence,
by Riemann-Roch theorem on curves,

l2—-1

ps(X,z) =Y {—deg([kD]) + g(Ao) — 1} + 1.

k=1

Since 0 < I; < d; and (l3,d;) = 1, by Lemma 4.2 we have
d d d, 271
b Z deg[kD] = {—lodo —lLidy — ldy + 1o + 1y + dy}.

Combining Proposition 3.5.1 in [9], we obtain

_ ly dsds  dids _ ds }
pf(X,.'E) 14 = {d3d4d5d2 do dl dodl

- %{(ao ~ 1)@~ 1) - (a0,a1) + 1)) qed.

Theorem 4.4. Let (X,z) be a hypersurface singularity of Brieskorn type
with degree (ag, a1, a2). Ifl.cm.(ag,a,) < az < 2-l.e.m.(ag,a:) and ps(X,z) 2
1, then (X, z) satisfies the minimality condition 1 of Definition 2.1.

Proof. Suppose that the minimal good resolution of (X, z) whose w.d. graph
is given by (4.2). It suffices to prove that p,(Z — A;) < p; for any irreducible
component A; of the exceptional set A of the minimal resolution. By the
definition of p,,

(4~4) Pa(Z - Ai) =Ppy— ZA; + A? —g(A4;) +1—6(A).

First we consider the case that the minimal good resolution is equal to the
minimal resolution (i.e., the central curve Ay is not an exceptional set of 1-st
kind). By (3.4), the coeflicient of Z on A, is dyd;ds, so by Lemma 3.2,

ZA§) =0and p, (2 - AR) <p;

(4.5)
(:=0,1; 5=1,...,8;5 k=1,... ,n;).
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Since l.c.m.(ag,a;) < a; < 2-l.c.m.(ap,a1), lo < dy < 21, (i.e., [7—2 = 1])
By Lemma 3.3, we have ’
w ZAD =0 (G=1,...,85 k=1,...,n,— 1),
. 2
ZAG), = -1and (A)) <=2 (j=1,...,5).

jn2 jn2

Thus p, (Z — Aﬁ)) < ps from (4.4). Therefore we may only prove that

Pa(Z — Ao) < py. From Lemma 3.2, the coefficient of Z on Ag-(f) (resp. Aﬁ))
is egd,ds (resp. e;dods) for j = 1,... ,80 = dadg (resp. j = 1,... ,8; = dqds).
By Lemma 3.2 (i) the coefficient of Z on Aﬁ) (7 =1,...,dsdg) is u, where p
is the positive integer which is determined by dopt — €2l =1 and 0 < p < I5.

6
Further, by Theorem 3.6.1 in [9], b = o d: + €odsde + exdsdo + e2d5d6-
lolllz do d1 d2
Then
Z Ay = —lb + eodid3dsdg + e,dodsdsdg + pdsds
dsd
= 25(1+ eyly — pdy) = 0.
d,

Therefore p,(Z — Ay) = ps + A% — g(Ao) + 1 < p; by (4.4).

Next we assume that the central curve A, is an exceptional curve of the
first kind. Let 7 = 700 : (X, 4) -5 (X, A) = (X, z) be the minimal good
resolution, where 7 is the minimal resolution and o is a birational morphism
obtained by iterating monoidal transforms centered at a point. We may
assume that A contains more than two irreducible components. We have to
prove p,(Z — A;) < py for any i, where Z = Z,. Suppose p,(Z — A;) = ps
for some i. By Lemma 1.4, A; is a smooth rational curve. From (4.4),
ZA; = A? + 1. Let A; be the proper transform of A; by . From (0.2.2)
in [18] and Lemma 3.2, 3.3 (i), we have ZA; = ZzA; = 0 or —1. Since 7
is the minimal resolution, we have ZA; = —1 and A? = —2. Hence A; is
equal to Agzw for some j, by Lemma 3.3 (i). Hence the coefficient of Zz
on A; is 1. By (1.1), the coeflicient on Z on A; is 1. Since ZA; = —1,
there is only one irreducible component A; C A such that A, N A; # ¢. A;
intersects transversely at a smooth point of A;. Therefore we may assume
that 7 doesn’t contain any monoidal transform centered at a point of A;,
so A? = A2, Then (Agzu)z = A? = -2, this contradicts Lemma 3.3 (ii).
q.e.d.

In [13], J. Stevens proved that if (X, z) is a minimal Kulikov singularity
and if 7 : (X,4) — (X, z) is the minimal resolution, then Z = E on A.
Hence if we can prove that all singularities as in Theorem 4.4 are minimal
Kulikov, then it gives a proof of Theorem 4.4. However, the author doesn’t
know the proof until now.



288 TADASHI TOMARU

In elliptic case (i.e., (ag,a;) = (2,3) or (2,4) or (3,3)), the result of Theo-
rem 4.4 is already known by the classification of minimally elliptic singular-
ities (cf. H. Laufer [7] and M. Reid [11]). Further, the similar property as
(ii) does not hold in general quasi-homogeneous hypersurface singularities.
For example, let (X,z) = {z3 + zoz} + 23> =0} C C*. If ay = 15 (resp.
ay < 15), then ps(X,z) = 6 (resp. ps(X,z) < 6). However, (X, z) does not
satisfy the minimality condition I of Definition 2.1 for any a, = 15. For

example, if a, = 15, then the w.d. graph of (X, z) is 61

5. Yau sequence of hypersurface singularities of Brieskorn type.

Let (X,a) — (X,z) be the minimal good resolution of a normal surface
singularity (X, z) with p;(X,z) 2 1. We give the following definition which
is an analogue to elliptic sequence (cf. S.S.T.-Yau [24], Definition 3.3).

Definition 5.1. If ZFE < 0, we say that the Yau sequence is {Z}. Suppose
ZE = 0. Let B; be the maximal connected subvariety of A such that B; D
supp E and A,Z = 0 for any A; C B,. Since Z% < 0, B is properly contained
in A. Suppose Zp, E = 0. Let B, be the maximal connected subvariety of
B, such that By D supp F and A;Zg, = 0 for any A; C B,. By the same
argument as above, B, is properly contained in B,. We continue this process.
Finally if we obtain B,, with Zg_FE < 0, we call {Zp, = Z, Zg,,... ,Zgp, }
the Yau sequence of (X, x) and the length of Yau sequence is m+ 1. We call
a connected component of U, g,y g Ai an eliminative branch of (X, z).

Let {Z,Zp,,...,Zp, } be the Yau sequence of (X,z) and (Xg,,z;) the
normal surface singularity obtained by the contraction of B; for i = 0,1,...,
m. By Lemma 1.1 we have p;(Xp,,z1) = - =ps(XB,., Tm) = pj.

In this section we study Yau sequence whose member are hypersurface
singularities of Brieskorn type. Yau showed a following fact which is im-
portant in his theory. Namely if (X, z) is a numerically Gorenstein elliptic
singularity, then —Kp, — (—Kp,,,) = Zp, for any i, where Kp, is the canon-
ical cycle on B; (cf. Proof of Theorem 3.7 in [24]). For the case with p; 2 2,
we consider a similar property:

(51) _KBi_(_KB._H)ZCZBg (’L:O,l, ,m—l),

where ¢ € Q is a suitable positive rational number. However this condition
doesn’t hold in general case. For example, let (X, z) be a singularity whose

w.d. graph is
AO Al AZ

[6]
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so —K4 =194y +8A; + 44, and Z = Z, = Ao+ A, + A, and E = A,.
Since B; = AgU A;, we have —Kp, = 17Aq+6A; and Zg, = Ay + A;. Then
(X, z) does not satisfy (5.2), so we consider a more restrictive situation in
the following.

sequence is t + 1. Let (X,A) — (X,z) be the minimal good resolution.
Assume Zg,, = E, and assume that A? = —2 and the coefficient for Z on
A; is 1 for every A; € supp E. Then the w.d. graph of A is given as follows:

Proposition 5.2. Suppose that p;(X,z) 2 1 and the length of the Yau

Ay . Ay
Supp
__-__( )
An,n ’An,i ('I’L = "Zz).

Further, assume that (X, z) satisfy one of the following (i) or (ii).
(i) Yau sequence of (X,z) has one eliminative branch,
(ii) the w.d. graph for (X, z) is star-shaped and every cyclic branch which

contains an eliminative branch has the same cyclic type (see §3).
2pf — 2
Then —Kp, — (—Kp,,,) = 2 " 70 fori=0,1,... ,t 1.
n

Proof. Let D = 3" 4 ¢quppp Ai- 1t is easy to see that Z = E + D and the
coefficient for F on any irreducible component of supp E which intersects
to an eliminative branch is always one. Since ZE = 0, —E? = ED is the
number of eliminative branches. Further any eliminative branch is a chain

whose any component is a rational curve with the self-intersection number
—2. Hence the weighted dual graph of A has the form:

A oo Al
supp E -
An,l b e ’An,r.
Ifri=mrn==mn<nrn, < <r, (0 <k < n), then B,, has

n — k eliminative branches. But —E? = n > n — k = the number of the
eliminative branches of (X Bn, ,a:h>. This contradicts to the fact above, so

ry=T9g=---=71, =t Further Z? = ZD = —n.
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Now we assume that (X,z) satisfies (i) or (ii), so the coefficient of —K
on A;; is independent of ¢ (¢ = 1,...,n). We put —K = Y], a;A; +
S Z;=1 z;A;;, where suppE = J;_; Ai. Then 0 = —K A, ; =z, — 2z,
0=-KA,; =iy —2z; +x;41 (¢t = 1,...,t —1). Therefore we have
-K =Y., ,a4+cYy, }:;:1 (t — j)Ai;, where ¢ is a constant. Similarly
we have —Kp, = Yi_ b;A;i +c1 Yy Z;;i(t —J—1)A;;. It is easy to
see that (—K — (Kp,)) A; = 1 ZA; for any i. Then —K — (Kp,) = ¢1Z.
Comparing the both coefficients on A;;, we have ¢ = ¢;. Hence —K —
(Kp,) = c¢Z. Continuing this process, we obtain that —Kp, — (Kp,,,) = ¢Zp,
(¢=0,1,... ,t—1). Since —K — (—Kp,) =cZ and ZKp, =0, —-KZ = cZ*.
Then
KZ 2p;—2-2° 2p;—2+4n

7 77 - q.e.d.

Cc =

Ezample 5.3. Under the above condition, let (X,z) be a singularity such
that supp F is a smooth irreducible curve A, with genus g and A2 = —n.
Then we have

-K =

—%-2+n {(t+1)A0+Zn:i(t—j+l)A,-j}.

29 — 2
_g““n—*-—n{z‘*‘ZBl”{"‘"*'ZBt_l‘*‘Ao}

n =1 j=1

For example, let (X, 1) = {z5° + zi* + ghem(0a)t+l) = 0} C C?, where ¢

is a non-negative integer. Then the w.d. graph is given by the above, where
-1 -1) - 1

(a0 = D{a: 2) (a0,01) + . Then

n = (ag,a,) and g =

aia; — ag —

NZ+Zp 4+ Zp,_, + E}.
(a07a1)

-K =

For fixed integers ag,a;,a, satisfying 2 < ap < a; and l.c.m.(ag,a;) <
a; < 2-l.cm.(ag,ay), let f, = z§° + zi* + gozttem (et and (X,,z,) =
{fs = 0} C C®, where t is a non-negative integer. We consider a sequence

¥ (ap,a1,as) as follows:
(5.2) 2(&0,0,1,0,2) = {(Xt$$t)lt=071727"'}'
From Theorem 4.3, p;(X;,z:) = % {(ap — 1)(a; — 1) — (ag,a1) + 1} for any

t 2 0 and (X,,z0) satisfies the minimality condition I of Definition 2.1.
Yau has studied such sequences as examples of the elliptic sequence (cf.
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(23], Example 4, 5, 6 and 7. In our notation, they correspond to £(2,3,9),
2(2,3,11), (3, 3,4) and X(3, 3, 5) respectively). In the following, we gener-
alize his results to ¥(ao, a;,as).

Lemma 5.4. Let A, [, and d be integers satisfying IN+ 1 = 0 mod d and
0 < I, A < d. For a non-negative integer t, let \; be an integer satisfying

d
IM+1=0modlt+dand 0 < A < It +d. IfX = [by,...,b,), then
lt+d

T = [bl,--- 7bm2"" ’2,]'

t

Proof. 1t suffices to prove the only case of t = 1. Since (d —I)A =1 mod d,

mz[bn,...,bl] and
d+1 1
o = —[2,b,,... b
d 'd%i [7 1]
l+d
Further, dA\; =1 mod (I +d), 5 = [bry... ,61,2]. qed.
1

Theorem 5.5. Let ag,a; and a, be fized integers satisfying 2 < ap < a,
and l.e.m.(ag,01) < ay < 2-l.c.m.(ag,a;). Then we have the following result
about X(ag, a1,as).

(i) If the w.d. graph associated with the minimal good resolution of (Xo, zo)
is given by (4.2), the w.d. graph of (X;,z;) is given as follows:

Hence, the length of the Yau sequence of (X;,x;) ist + 1.
(i) Let {Z,Zg,,... ,ZB,_,,2ZB,} be the Yau sequence of (X;, ;). Then

(XB;,z;) = (Xi—1,%4—1) € T(ag,a1,a3) for i =0,1,...,t,

where (Xp,, ;) is the singularity obtained by the contraction of B;.

(ifi) —K; — (~K,_,) = “0“‘(_“")" Nzt =1,2,...), where K, (resp.
o, Q1
Z;) is the canonical (resp. fundamental) cycle on the exceptional set of the

minimal good resolution of (X, x;).
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(iv) pg(Xe, Te) — Pg(Xsm1,Te1) = po(Ysy) (¢t = 1,2,...), where (Y,y) =
{zg" + g 4 ghemena) o 0} C C (see Ezample 5.3). Thus p,(X;,z:) —
Pg(Xi—1,2¢-1) is independent of t and a,.

Proof. (i) is obvious from Lemma 5.4 and Theorem 4.4.

For (ii), we describe the outline of the proof. It suffices to compare the
other data of Pinkham’s construction except for cyclic branches (i.e., an
analytic type of the central curve, the normal bundle of the central curve,
intersection points of the central curve and branches) between (X, z,) and
(X¢, ;) for any t. If it is showed, then for fixed value £, the data above of
(Xi-s,zi-;) and (Xo, zo) are equal. Because of (Xp,,zo) = (Xt, zz), the data
of (Xp,,z;) is equal to (Xo,zo). Hence, comparing the cyclic branches, the
all data of Pinkham’s constructions of (Xp,,z;) and (Xi_;, z7_;) are equal.

Hence we compare those data for (Xo,z9) and (X;,z;) in X
(ao,a1,a3). Let Cy C P(lo,l1,1;) (resp. C; C P(Lo, Ly, d2l2)) be the central
curve for (Xo,xzo) (resp. (Xi,z:)), where L; = l;(dy + I5t) for ¢« = 0,1,2.
Let mg : P2 — P(lo,l1,l;) be a map defined by m([z0 : 2 : 22]) =
[eko - 2t :24?] and let m : P> — P(Lo,Li,dsl,) be a map defined by

mo([20 : 21 1 23]) = [z{,’" : 251 : 28212 They are surjective, so we can define

¢ 1 P(lo,l1,15) — P(Lo, L1, dzlz) by ¢(mo(p)) = mi(p) for p € P>. Then
¢ is an isomorphism (cf. [4]) and ¢(Cp) = C;. Since p({z; = 0} N Cp) =
{yo} N C4,p corresponds the intersection points (of C, and branches) for
(Xo, o) to those for (X;,z;). Further, let Dy (resp. D;) be a divisor asso-
ciated to the conormal bundle of Cy (resp. C;). Then Dy can be written
as Dy = Zjv:l r;P; and we have D, = Z;'V=1 r;0(P;) (cf. [9], 3.6), where
{P.,...,Py} CU.y{z: = 0} N C,. Hence, each Pinkham-Demazure’s data
for (Xo,z0) and (X;,z;) are equal except for the type of cyclic quotient
singularities of branches. This shows (ii).
(iii) is obvious by Proposition 5.2.
Now we prove (iv). We put p := (ap,a1), po := a—o, P = 4 and p =

p
l.cm.(ag,a,) = ppop,- Then f; is a quasi-homogeneous polynomial of the

type (ﬁ; D1, Do, @L-;—ﬁt) From Ki. Watanabe’s results ([20], Theorem 1.13),

iz Salt)

X, = L = (10,%1,1% I\ 0= ] )
Pg( X3, T4) #{l (%0,%1,12) € | _P120+p0'51+a2+ﬁt

and N is the set of non-negative integers.

where a(t) =p —p1 —po —

as +

p
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. Do DDPo .
S =1,{—+ ——} = g, wh =1 . 0) if
ince (po,p1) {Pl p” +j5t} €0, Where g, (resp. 0) if py #

(resp. po = p1). Then Iy = {ip € N| iy < ppo — 1 — €o}. For any element
7:0 € Io, let I(Zg) = {21 €N l 0 § pOil é a(t) —pl’io}. Since ﬁ g ay < 217,

P (i + 1)

I(io) = {il €NJ|i; S ppy — —-1- 61}, where £, is 1 (resp. 0) if

0
Dolio+1 (resp. po { 1o+1). Therefore I and I(io) (Vip € Ip) are determined by
Qo and a. For io € Io and 7:1 € I(Zg), let B(io,’il) = p_“‘pl(’lo'i‘].) —po(il +1)
Then

pg(Xtazt) = # {Z € N3 l io € Io,il € I(Zo) and

i +1< (% +t) B(z'g,z'l)}.

Hence py (X411, Te41) —Py Xy, ¢) is independent of t and a. If a; = l.c.m.(ao,
a1), then pg(Xiy1,Tep1) — Po(Xi, T1) = py(Y,y) for any ¢. q.ed.

From results above we can easily see that if ¢ > 0, then (X;,z;) does not
satisfy any minimality condition of Definition 2.1.

Ezample 5.6. Let (X;,2;) = {22 + 2} + 23**% = 0} C C® for a non-negative
integer ¢, where 8 < a; < 16. Then p;(X;,z;) = 3 and —K;41 — (—K;) =
3Z;,, for any t 2 0.

(i) Let a; =9, then w.d. graph of (X;,z;) is

Then Zt = 8A0 + 6A1 + 4A.2 + 2A1 + z:=0 A4,i + Z::O A5’i, E = 4A0 + 3A1 +
2A2 + A3 + A4,0 + A5'O, —Ko = 20A0 + 15A1 + ].OAz + 5A3 + 3A4’0 + 3A5,0
and py(X;,z:) = 6t + 6 for any t 2 0.
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(ii) Let ap = 12, then w.d. graph of (X;,z;) is

A, Ay Ay, e Ay
»—O0—---—0

Ao

11
A, Ay Ay, oo A

Then Zt = 2A0 + A] + A2 + ZE:O A3,,‘ + Z::O A4,i, E = 2A0 + Al + Az +
A3,0 + A4,0, —Ko = 8A0 + 4A1 + 4A2 + 3A3,0 + 3A4,0 and pg(Xta .’Bt) =6t+8
for any t = 0.

In Example 5.6, though p;(X;,z;) is equal to 3 for any ¢ = 0, the arith-
metic genus is given by p,(X;,z;) = 2t + 3 (¢ 2 0) (cf. [14]). From this we
can see that the arithmetic genus and the fundamental genus have different
roles as the invariant for normal surface singularities with p; 2 2, though
both are topological invariants.
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