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THE COHOMOLOGY OF HIGHER-DIMENSIONAL SHIFTS
OF FINITE TYPE

KLAUS SCHMIDT

We discuss the cohomology of higher-dimensional shifts of
finite type, and prove the following: if a (/-dimensional shift
of finite type X has a rich supply of homoclinic points and a
certain specification property, then every Holder cocycle for
shift-action of Zd on X with values in a locally compact, second
countable group with a doubly invariant metric is Hδlder-
cohomologous to a homomorphism. The result is illustrated
with a number of examples.

1. Introduction.

One of many surprising differences between Z-actions and Zd-actions for
d > 1 is that certain first cohomology groups of the latter actions may
be very small. The first example which came to my attention was due
to J.W. Kammeyer ([Kami], [Kam2]), who proved that every continuous
cocycle for the shift-action of Z d on the full rf-dimensional A -shift with val-
ues in Z/2Z is continuously cohomologous to a homomorphism from Z d to
Z/2Z (the terminology is explained in Section 3). A second instance of
this phenomenon appeared in a recent paper by A. Katok and R. J. Spatzier
[KaSp]: every real-valued Holder cocycle for an Anosov action of Zrf on a
compact manifold is Hόlder-cohomologous to a homomorphism, in complete
contrast to the rich supply of nontrivial Holder cocycles for a single Anosov
map. Based on ideas in that paper and the machinery developed in [Schl],
[KS1], and [KS3], it was proved in [KaS] that every real-valued Holder co-
cycle (or, more generally, every real-valued cocycle with summable variation)
for an expansive and (topologically) mixing Zd-action by automorphisms of
a compact, abelian group is Holder- (or continuously) cohomologous to a
homomorphism. Since every expansive Zrf-action by automorphisms of a
compact, zero-dimensional, abelian group is topologically conjugate to the
shift-action of Zd on a shift of finite type, the paper [KaS] provides further
examples of shifts of finite type with small cohomology groups. The situation
is different if one considers continuous cocycles with values in a finite, abelian
group: in Example 5.3 below we show that expansive and mixing Zd-actions
by automorphisms of a compact, zero-dimensional, abelian group may have
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Holder (i.e. continuous) cocycles with values in a finite group which are not
cohomologous to homomorphisms.

The purpose of this paper is to present conditions on a d-
dimensional shift of finite type Jf, under which ever Holder cocycle (or every
cocycle with summable variation) for the shift-action σ of Z d on X with
values in a locally compact group with a given doubly invariant metric is
trivial, i.e. cohomologous to a homomorphism (the existence of a double in-
variant metric is required to make sense of the notion of a Holder cocycle;
if G is discrete, then every continuous cocycle with values in G is automati-
cally Holder). The conditions are that there exists a point x £ X whose set
of homoclinic points is dense in X and has a certain specification property
(a point y £ X is homoclinic to x if limm-^ δ(Tm(x),Tm(y)) = 0 for some
metric δ on X). Although these conditions force the shift to have positive
entropy, one can conclude from this result that certain zero entropy shifts of
finite type must have trivial Holder cohomology (cf. Section 5).

This paper is organised as follows: In Section 2 we define the Gibbs (or
homoclinic) equivalence relation Ax on a d-dimensional shift of finite type
X, discuss its connection with entropy and periodic points, and introduce
the notion of n-specification of Δ*. Section 3 contains the main results
(Theorem 3.2 and Corollaries 3.3-3.4) about triviality of cocycles for an ex-
pansive Zd-action T on a compact, zero-dimensional space X under the as-
sumption that the equivalence relation Ax is topologically transitive and has
n-specification for some nonzero element n E Zd. Prom the proof of Proposi-
tion 3.1 (which forms the main tool for the proof of Theorem 3.2) it appears
that there is a close connection between the triviality of the fundamental
group of the shift in the sense of [GePr] and the triviality of all Holder co-
cycles (Corollary 3.6), but the precise extent of this connection is not at all
clear. In Section 4 we discuss a variety of classical higher-dimensional shifts
of finite type, determine for each of them whether it satisfies the conditions
of Corollary 3.3, and find nontrivial cocycles in all cases where the condi-
tions are not satisfied. The specific examples are the full shifts ([Kami],
[Kam2]), tilings of Z2 by dominoes (or dimers), the colourings of infinite
chessboards or lattices with at least 3 colours, the 'square ice' model and
other related shifts of finite type, such as lozenge tilings, and the higher-
dimensional golden mean shifts. The chessboard colourings show that the
triviality of all Holder cocycles is quite a subtle phenomenon: if one uses
3 colours, then there exist nontrivial Holder cocycles with values in every
locally compact, second countable, abelian group; however, if n > 4, ev-
ery Holder cocycle with values in any locally compact group must be trivial.
Furthermore, all these shifts have finite-to-one factors with nontrivial Holder
cohomology. In particular, the 'square ice' model is a three-to-one factor of
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the set of chessboard colourings with three colours and admits nontrivial
integer-valued Holder cocycles, and one can obtain nontrivial cocycles on
the set of lozenge tilings by embedding it as a subshift of the 'square ice'
model, and by restricting the cocycles on that shift space to the lozenge
tilings. In Section 5 we turn to shifts of finite type with zero entropy and
investigate their cohomology. Example 5.1 is due to W. Parry and shows
that a two-dimensional shift of finite type with zero entropy may have non-
trivial real (or integer) valued Holder cocycles. In Examples 5.3 (l)-(7) we
present some shifts of finite type with zero topological entropy introduced
in [Led], [KS2], and [KS3]? for which every real (or integer) valued cocycle
with summable variation is trivial ([KaS]), but which may have nontrivial
continuous (and hence Holder) cocycles with values in finite, abelian groups.
These examples are based on an algebraic criterion for the existence of cer-
tain nontrivial cocycles for such actions (Proposition 5.2). Other examples
in this section are a zero entropy shift of finite type for which every Holder
cocycle with values in a locally compact group is trivial (Example 5.4), and a
shift which has nontrivial Holder cocycles with values in certain nonabelian
groups, but for which every such cocycle with values in a discrete abelian
group is trivial (Proposition 5.5).

There are a number of open questions attached to these examples. Every
example in Section 4 with trivial Holder cohomology also has trivial fun-
damental group (cf. [GePr]). Where the cohomology is nontrivial it seems
reasonable to conjecture some link between the fundamental group of the
shift X and those groups G for which there exists a nontrivial cocycle c on
X with values in G; however, this link is likely to be quite complicated. The
domino tilings provide an example where the fundamental group is abelian
(and isomorphic to Z), but there does not appear to exist a nontrivial Holder
cocycle c on the set of all such tilings with values in an abelian group; there
are, however, nontrivial cocycles with values in some nonabelian groups. Ex-
ample 5.4 is a three-dimensional shift of finite type with trivial cohomology,
but with nontrivial fundamental group. Finally, even if there exist nontriv-
ial cocycles on some of these shift spaces, then the first cohomology of the
shift-actions appears to be very small; at this stage there are, however, no
precise results in this direction.

The triviality of all Holder cocycles (or of all cocycles with summable
variation) for a shift of finite type X has obvious dynamical implications for
suspensions of that system, as well as for certain factor maps. For example, if
the shift-action σ of Zd on X is individually mixing (i.e. if σn is topologically
mixing for every nonzero n G Zd), and if every continuous cocycle for σ with
values in a finite group is trivial, then σ has no continuous, individually
mixing G-extensions for any discrete group G (Corollary 3.4), and there
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cannot exist an (individually) mixing shift of finite type Y and a continuous,
shift-commuting, open φ : Y ι—> X which is everywhere n-to-one for some
n > 2 (Corollary 3.5).

On a more philosophical level, the triviality of all Holder cocycles can be
interpreted as a 'rigidity'-property. This point of view is taken in [KaSp],
but is also implicit in the link between cocycles and height functions on
spaces of tilings (such as the domino and lozenge tilings, or the square ice
model) discussed in [Thu]: if a cocycle is trivial, the Lipschitz surface defined
by its height function is essentially flat, and in the absence of nontrivial
cocycles there are no interesting 'deformations' of these surfaces. Rigidity
assertions of this nature are quite natural in the context of the algebraic
Zrf-actions investigated in [KaSp] or [KaS], but it strikes me as surprising
to find analogous results for certain higher-dimensional shifts of finite type,
which seem far removed from any algebraic setting.

2. Subshifts and equivalence relations.

Let X be a compact, metrizable space. A Borel equivalence relation R C
X x X is an equivalence relation which is a Borel set ([FeM]). Since we shall
never deal with equivalence relations which are not Borel we use the term
equivalence relation to denote a Borel equivalence relation. If R C X x X
is an equivalence relation we write Έί(x) = {x1 G X : (x,x') G R} for the
equivalence class of a point x G X, and call R topologically transitive if H(x)
is dense in X for some x G X, minimal if R(rr) is dense in X for every x G X,
trivial if Έl(x) = {x} for all x G X, and nontrivial otherwise.

We are going to be interested in certain equivalence relations associated
with higher-dimensional shifts of finite type as defined in [Rue] or [Sch2], for
example. Let d > 1, A a finite set (the alphabet), and let Az be the set of all
maps x : Zd ι—> A. For every subset F C Zrf we denote by πp : Az ι—> AF

the projection map which restricts each x G Az to the set F. The space
Azd is compact in the product topology. We write a typical point x G Az

as x = (xm) — (# m ,m G Zd), where xm G A denotes the value of x at m,
and define, for every n G Zd, a homeomorphism σn of Az by

(2.1) (σn(x))m = Zm+n

for every x — (xm) G Az . The map σ : n •—> σn is the shift-action of Zd on
Az , and a subset X C Az<1 is shift-invariant if σn(X) = X for all n G Zd.
A closed, shift-invariant set X C Az<* is a subshift, and X is a shift of finite
type (sfl) if there exists a finite set F c Z d such that

(2.2) X = {z G Azd : πF σn(x) G πF{X) for every n G Zd} .
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If X C Az is a sft we may change the alphabet A, if necessary, and assume
that

(2.3) F^Id = {0, l}d C Zd.

The restriction of the shift-action σ on 7Ld on Aχd to a subshift X C Az

will again be denoted by σ, or by σ x if there is any danger of confusion.
A point x G X is periodic if the group {n G Z d : σn(#) = #} has finite
index in Zd, and the subshift X has dense periodic points (dpp) if its set
of periodic points is dense. A sft X may not contain any periodic points,
and this potential absence of periodic points is associated with some of the
difficulties one encounters when dealing with sft's in higher dimensions.

For the remainder of this section we fix an alphabet A and a sft X C AΣ ,
and consider the Gibbs (or homoclinic) equivalence relation Ax C X x X
defined by

(2.4)
Δx — {(x,xf) £ X x X : xm φ x'm for only finitely many m £ Zd} ,

which is connected with the topological entropy of the shift-action σ of Z d

on X defined by (2.1).

Proposition 2.1. If the topological entropy h(σ) of the shift-action σ ofZd

on X is positive, then the Gibbs relation Ax is nontrivίal. Furthermore, if

X has dpp and h(σ) — 0, then Ax is trivial, and the restriction of σ to any

subgroup Γ ~ Z d - 1 in Z d has finite topological entropy.

Proof. We assume without loss in generality that X satisfies (2.2)-(2.3). For
every N > 0 we set Q(N) = {-JV,... ,N}d C Zd and write dQ{N) =
Q(N) \ Q{N - 1) for the boundary of Q{N), N > 1. If | 5 | is the cardinality
of a set 5, then

(c.f. e.g. [LSW]). Suppose that Δ * is trivial. Then πQ(N)(x) =

whenever πdQ(N)(x) = πdQ(N)(xf), so that

for every N > 1. Since |dQ(i\Γ)|/|Q(iV)| -> 0 as N -> CXD we conclude that
h(σ) = 0.

Now suppose that X has φp, and that Δx is nontrivial. Choose an
integer N > 1 for which there exist two distinct points x,x* G X such that
%n = ^ή for all n G Z d \ Q(iV — 1), and choose a periodic point y G X and
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an integer L > 2N such that πQ(N)(y) — πQ(iv)(^) a n d &Lm(y) = V for every
m G Ίjd. Then there exists, for every z G {0,1}Z , a unique point α ( z) G X
with the following properties:

^Q{N)(σLm(x{z))) = πQ(ΛΓ)(a:) for every m G Z d with z m = 0,
πQ(JV)(0LmOz(2))) = KQ(N)(X') for every m G Z d with z m = 1,

x(z)n = Vn for every n G Z d \ | J (Q(JV) + Lm).
m€Zd

In particular, h(σ) > 0.

In order to prove the last assertion we assume for simplicity that Γ =

{n = ( n 1 } . . . ,n d ) G Zd : nd = 0}, write r : n ι—>• σn, n G Γ, for the re-

striction of σ to Γ, and set e^ — (0, . . . , 0,1). For every M, N > 0 we put

£ ( M ) = {fce(d) : |fc| < M } , Q(AΓ)' = Q(ΛΓ) ΠΓ, R(M,N) = Q(N)' + E(M),

dR{M,N) = R(M,N) \ R(M - 1 , ^ - 1 ) , M,iV > 1, and write P M =

<BS — π^ M j ( s ) : 5 G 7r#(M)(^θ} f° r the partition of X defined by the coor-

dinates in E(M). Since IΪR(M,N){X) = ^R(M,N){X') whenever πdR(M,N)(z) =

x') we have, in the usual notation, that

h { τ ) = V

- 2 1 o g μ ι < °°

The proof for an arbitrary subgroup Γ ĉ  Zd~x in Zd is completely analogous,
but notationally more complicated. D

We write || || and ( , •) for the Euclidean norm and inner product on Wd D
Z d , put 0 = (0, . . . ,0) G Z d , and set B(r) - {n G Z d : | |n | | <r},r> 0. If
JB, B' C Z d are nonempty sets we put B + B' = {k + k7 : k G J5, k' G JB'}.
For every ξ G (0,1) and 0 φ n G Z d we define cones

C + (n,ξ) = {m e Z d : (m,n) > ξ | |m| | | |n| |} ,
( ] C-(n,O = {mGZ d : (m,n)<-^ | |m | | | | n | | } ,

and set

(2.6) C(n,O = C+(n,OUC-(n,O.

Definition 2.2. Let 0 φ n G Zd and ξ G (0,1). The equivalence class
Δχ(x) of a point x e X has (n,£)-specification if Δχ(x) is dense in X, and
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if there exist constants s1 > 1, t' > 0 with the following property: if r > 0,
and if x,x' G Ax(x) satisfy that πB(s*r+t')(x) = πB(s'r+t'){x'), then we can
find a y G Aχ(x) with

f xm for every m G C+(n, ξ) + B(r),

The equivalence class Aχ(x) has n-specification if it has (n, ̂ -specification
for some ξ G (0,1), and the Gibbs relation Ax has n-specification if there
exists a point x G X whose equivalence class has n-specification.

Remark 2.3. Let A be a finite set, d > 2, F C Z d a finite set, and P C AF.

Then we define a sft X(F,P) C A Z by

(2.8) X(F,p) = {x £ Aχd : πF σm(x) e P for every m G Zd} .

If 2? C Ίjd is a finite set we shall call an element y E AE allowed if

(2.9) πFn{E+τi)(y) G πFn{E+n)(P)

for every n G Zrf. In general, if y G A^ is allowed, there need not exist an

element x G X(F,P) with TΓE(X) — y

We fix a sft X = X(F,P) C Az . lΐ X has trivial fundamental group in
the sense of [GePr], then Ax(x) has (n, ̂ -specification for every x G X,
0 ^ n G Zd, and ξ G (0,1). Indeed, if C" C Md is a convex subset, N > 1, and
if C'(iV) = { tG_l d : min^c ||s - t | | <N},C = C"ΠZd, C(JNΓ) = C'(iV)nZd,
and ΘN(C) = C(N) \ C, then the triviality of the fundamental group of X
essentially implies the following: if N is large enough, and if y G AdN^c>} is
allowed, then there exists an allowed point x G A^(ΛΓ) such that πdN{C)(x) =
y. A brief glance at Definition 2.2 shows that this implies that Ax has the
required specification property.

We end this section with a brief discussion of the connection between
topological transitivity of Ax and the topological transitivity of σn for some
given, nonzero n G Zd. Example 2.4 below shows that this connection is by
no means automatic.
Example 2.4. Let d = 2, A = {0,1}, F = I2 = {0,1}2,

•{::)•{")}•
where * indicates that either 0 or 1 can be put in that location, and let

X = X(F,P) The equivalence relation Ax is topologically transitive, but not
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minimal, since Ax(y) = {y} if y is one of the two fixed points of σ — σ x ,
whereas Ax(x) has (1,1 ̂ specification for x = (xn) with

(0 if Πι < —n2,

1 if nλ > —n2.

The shift σ( M ) is clearly not topologically transitive on X.

Let A be a finite set, and let X C Az be a subshift. The Zd-action σx

is topologically mixing if there exists, for all nonempty open subsets OUO2

of X, an integer K > 1 such that Oλ Π σ_n(O 2) ^ 0 whenever | |n | | > K.

If we can find, for all nonempty, open subsets 0 1 ? . . . , (9r of X, an integer

K > 1 such that σ_n i((9i) Π Π σ_ n r (O r ) 7̂  0 whenever nu... , n r are

elements of Z d with Πx = 0 and ||n^ — iii\\ > K for 1 < i < j < r, then σx is

topologically mixing of order r. The action σx is individually mixing if σ^

is topologically mixing for every nonzero n G Z d .

Lemma 2.5. Let d>2, A a finite set, and let X C Az be a sft. Suppose
that there exists a periodic point x G X for which Ax(x) is dense in X.
Then X has dpp, and σ is topologically mixing of every order. In particular,
σ n is topologically transitive for every nonzero element n G Z d .

Proof. Fix K > 1 with σKm(x) = x for every m G Σd. Since Ax(x) is dense
in X we can find, for every nonempty, closed and open subset O C X, a
point x ^ G Δ χ ( ί ) Π 0 and a positive integer m^ with 7Γχd\-B^m(o)^(x^) —
7ΓZcί\B(m(σ))(^). The assertion about periodic points is obvious, since we
can find, for each χ(°\ a periodic point y^ G X with πB(m(o))(^ ( C ) )) =

In order to prove that σ is topologically mixing of every order we fix
r > 2 and nonempty, closed and open sets C?i,... , Or C X, and claim that
σ_n i (Oλ) Π - Π σ_Πr (O r) 7̂  0 whenever n l 7 . . . , n r are elements of Zd such
that Πi = 0 and ||nj — n^l is sufficiently large for all i,j with 1 < i < j < r.
Let

W = {σ_k(O i) : 1 < i < r and k = (ku... , kd) G TLd with

0 < kj < K for 1 < j < d],

and let M - m a x { m ^ :OeW}. If n x = 0 and | |n, - n i | | > 2M for
1 < i < j < r there exists, for every choice of Ό\ G VF, i — 1,... , r, a unique
point y G Δχ(x) with

for every j = 1,... , r, and with
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In particular, σ^Kϊlι{O[) Π Π σKnr(Ό'τ) φ 0 whenever n l 5 . . . , n r € Zd,
n = 0, and IJIL, - n^l > 2KM for 1 < i < j < r.

Since σ is topologically mixing of every order, σn is topologically mixing—
and hence topologically transitive—for every nonzero element n € Zd. D

3. Cohomology.

Let A be a finite set, d>l, X C Az a subshift, G a locally compact, second
countable group, and assume that G has a metric 7 : G x G 1—> R+ which
is doubly invariant, i.e. which satisfies that 7(3,9') = j(hg, hg1) = j(gh^g'h)
for all g,g',h G G (such a metric exists, for example, if G is compact, discrete,
or abelian). The metric 7 will be fixed throughout the following discussion.
As in [KaS] we set, for every continuous function / : X «—> G and every
integer r > 0,

(3.1) ω r ( / ) = sup
{(x,x>)eXχX:πBir)(x)=πB{r)(x

and we say that / has summable variation if

(3.2) α/(/)

The function / if Holder if there exist constants u>, α/ > 0 with 0 < α; < 1
such that

(3.3) ωr(f) < ω'ωr

for every r > 1. If G is discrete, for every continuous function / : X «—» G
is Holder.

A map c : Zrf x I 1—)• G is a continuous cocycle for the shift-action σ of
Z d on X defined in (2.1) if c(n, •) : X 1—> G is continuous for every n G Zd,
and

(3.4) c(m + n, #) = c(m, σn(a:)) e(n, x)

for all # € X and m, n € Zd. The cocycle c is a homomorphism if c(n, )is
constant for every n E Zd, and c is a coboundary if there exists a Borel map
6 : X 1—• G such that

(3.5) c(n,x)^b(σn(x))-1-b(x)

for all x € X and n € Zd. The map b in (3.5) is the cobounding function of c.
Two cocycles c, c' : Zd x X 1—̂  G are cohomologous, with transfer function
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6, if c(n, x) — 6(σn(a;))~1 c'(n, x) b(x) for all n G Z d and x £ X. A cocycle
c : Z d x I i—> G has summable variation or is Holder if c(n, •) has summable
variation or is Holder for every n G Zd. Two cocycles c, c' : Z d x X ι—> G
are continuously (or Holder) cohomologous if they are cohomologous with
continuous (or Holder) transfer function.

If R C X x X is an equivalence relation we call a Borel map c : R ι—> G
a cocycle if

(3.6) φ,a; / /) = c(a;,x/) φ / ^ / / )

for all x,x\x" G X with (x,x'), {x ,x") G R. Two cocycles c l 7c 2 : R —> G
are cohomologous if there exists a Borel map b : X ι—> G with

(3.7) c1(x,x') = b(x)-1 c2(x,x')-b(x')

for all (x, xι) G R, and a cocycle c is a coboundary if it is cohomologous to
the constant cocycle Co defined by CQ{X,X') = 1 for all (#,#') G R, where
1 = 1G is the identity element of G.

Suppose that d > 1, A a finite set, X C i z a subshift, and / : X \—> G
a function with summable variation. We define cocycles Cf : Ax \—> G
by setting

(3.8)

for every (x:x
f) G Ax. In order to explain the notation in (3.8) and check

that these cocycles are well defined we assume for the moment that the
function / only depends on finitely many coordinates and choose an integer
N > 0 such that f(x) — f(x') whenever x,x' G X and TΓB(N)(X) — 7ΓB(iv)(^/)
For every (x, x1) G Ax there exists an integer M > 0 such that xm — x'm for
all m G Zd with ||m|| > M, and our choice of N implies that / σkn(x) =
f σkn(x') for all k G Z with |Jb| > M + TV. Then

since all other terms in the infinite product are deemed to cancel. If / has
summable variation, our assumption that G possesses a doubly invariant
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metric implies that the finite products

fix)'1 • • • /(σ^Or))" 1 f(σmn(x')) /(*')

converge to Cf+'(x, x1) for all (x, x') G Δ * as m -* oo, so that c^n>+) is again

well defined. The existence of c^n'~^ is verified in exactly the same manner.

Proposition 3.1. Let d > 1, A a finite set, X C Az a subshift, G a
locally compact, second countable group with a fixed doubly invariant metric
7, and f : X ι—> G a function with summable variation. Suppose that the
Gibbs equivalence class Δχ(^) has (n,ξ)-specification for some x E X, some
nonzero n G Zd, and some ξ G (0,1), and that the cocycles Cf : Δ j ι—> G
in (3.8) are equal. Then there exists a continuous function b : X ι—> G such
that the map x ι—> bfo^x))'1 f(x) b(x) is constant on X. If f is Holder,
the function b : X \—> G is again Holder.

Proof. In order to simplify notation we set c^ = Cf . For every r > 0 we
put

Δ+(r) = {{x,x') e Ax : πσ-(

and note that 7 ( c ^ z O , 1 ^ ) < (1 —ξ2)~i 'Σk>rωk(f) < oo for all fax9) G

The (n, ̂ -specification of Δχ(a ) allows us to choose constants s' > 1,
A;' > 0 such that we can find, for every r > 0, and for all #, rr' G Δχ(x) with
π B(a'τ+?)(x) = ^"Bίβ'r+to^Oί a n element y G Δχ(5) with (x,y) G Δ+(r) and
(rr',j/) G Δ~(r). Since the metric 7 is doubly invariant and c4" = c~ we
obtain that

( 3 ' 9 )

 7(c+(ar,y)5lG) = 7(c-(x,y) 5 lG) < C'(r) and hence

Ί{c+faαf),lG)<2C'(r),

for all a;,^ G Δx(x) with πB(yr+tθ(x) = ^Bfe'r+t')^)- % varying r we see
that

lim 7 ( C + ( Z , O O

where Δ = {(z,x) : x G X} C X x X. The cocycle equation (3.6) shows
that the function c+( , •) : Ax(x) x Aχ(x) «—• G has a unique extension to
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a continuous function c+ : X x X ι—> G with c+(x,x') — c+(x,x') for all
x,x' E Δχ(ί) , and c+ is a cocycle on the equivalence relation Έl = X x X.
We define b : X \—> G by b(x) — c+(x,x) for every x E X, and obtain that
c+(£,x') = 6(x) 6(z')~1 for all x ,^ E X.

If / is Holder we choose 0 < ω < 1, ωf > 0, such that (3.3) is sat-
isfied. From (3.9) we see that there exists a positive constant ώ' such
that 7 (c+(£,#'), 1G) < ώ'ωr for all {x,x') E Δχ(x0) with πB(s'r+ί')(:z:) ~
πB(s'r+ί/)(χ/)5 a n d we conclude that 7 (c+(x,x7), 1G) < ώ'ωr for all (x,^')
E X x X with πB(S'r-κ')(x) = πB(*'r+t')(x') Hence 7(6(0;),6(x')) < 2ώ/α;r

whenever 7ΓB(5'r+ί/)(x) = 7ΓB(s/r+ί/)(:z;/)5 which implies that b is Holder.
Define a second equivalence relation Ax (n) on X by setting

Δ x (n) = {(a;,σJbn(a;/)) : A; G Z, (a;,^) E Δ x } ,

and consider the Borel map φ : Δχ(n) 1—> G given by

•φ{x,σka{x')) =

for every (x, x') E Ax and A; E Z, where we are using the same interpretation
of the infinite products as in (3.8). Then φ is a cocycle on Δχ(n). In
particular,

= ^(^, σn(x)) ψ(σn(x), σn(xf)) ψ(σn(x'), x')

= f(x)-1 b(σn(x)) .bMx1))-1 - f(x')

for all (a;,x') E Δ x , so that b(σn(-))~1 f b is invariant under Δ x (a map
(/> : X 1—>> G is invariant under Ax if φ(x) = φ(x') for every {x,x') E Δj) .
Since Δ x is topologically transitive, the continuity of / and b yields that
b(σΛ'))~l / 6 is constant on X. D

Theorem 3.2. Let d > 2, A a finite set, X C Az a subshift, and G a
locally compact, second countable group with a fixed doubly invariant metric
7. We write σ for the shift-action (2.1) on X and assume that there exists
a nonzero element n E Zd such that the Gibbs equivalence relation Ax has
n-specification and σn is topologically mixing. Then every cocycle c : Zd x
X 1—> G with summable variation is cohomologous to a homomorphism,
with continuous transfer function. If c is Holder, the transfer function is
again Holder.

Proof. Suppose that c : Zd x X 1—> G is a cocycle with summable variation.
We set / = c(n, •) and define the cocycles cf'±] : Ax 1—>G by (3.8). From
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the cocycle equation (3.4) we know that c(m, σn(x)) f(x) c(m, x)~λ —
f(σm(x)) for all m G Zd and x e X, and we conclude that c(m, σ^k+1)n(x))
f(σkn(x)) c{Ώ\,σkn(x))-1 = f(σm+kn(x)) for all k G Z, m G Z d , and rr G
X, so that 4n>±)(z,α;') = c(m,rr) 4n>±)(σm0z;),σm(α;')) φ n , ^ ' ) " 1 for all
(x,xf) G Δ x and m G Z d . Since / has summable variation we obtain that

Ί(cf'+)(x,x'),cf'-\x,x'))

= J i m j (c(

f

n'+)(σlm(x),σlm(x')),c{

f

n'-)(σlm(x),σlm(x'))) = 0

for all (x,x') G Δ ^ and 0 φ m G Z d with (m, n) = 0. According to Propo-
sition 3.1 this implies that there exists a continuous (or Holder) function
b : X i—> G such that the map x ι—> b(σn(x))~1 c(n, x) b(x) is everywhere
equal to some element a G G, and we define a cocycle c' : Zd x X \—> G by
setting c'(m, x) = 6(σm(α;))~1 c(m, x) &(#) for every m G Z d and a; G X.
Then c' is cohomologous to c, and the cocycle equation (3.4) shows that

(3.10) c'(m,x) = a~k c'(m,σkn(x)) ak

for every m G Z d , A; G Z, and x e X. We fix m G Zd and set # = c'(m, •).
If p is not constant, then we can find ε > 0, <7i,#2 £ G, and nonempty, open
sets Oχ and C?2, such that supa.6 O. j(g(x),gi) < ε and 7(^1,^2) > 3ε. Prom

(3.10) we see that 7(α~A: -5(2/) αfc,gi) < ε for every k G Z and y G σ_fcn((9i).
However, since σ n is topologically mixing, we know that σkn(Oι) Π Oi Φ 0
for i = 1,2, and for all sufficiently large k. If & > 0 is large enough we can
thus find elements yi,y2 £ cr-fcn(Oi) such that j{g{yi)^9i) < ε for i = 1,2.
This violates the invariance of the metric 7 and implies that c^m, •) must
be constant. As m G Z d was arbitrary, d is a homomorphism. D

Corollary 3.3. Assume that X C Az is sft, αncί that there exists a periodic
point x G X such that Aχ(x) has n-specification for some nonzero n G Zd. If
G is a locally compact, second countable group with a fixed doubly invariant
metric 7 then every cocycle c : Zd x X 1—> G with summable variation is
cohomologous to a homomorphism, with continuous transfer function. If c
is Holder, the transfer function is again Holder.

Proof. Theorem 3.2 and Lemma 2.5. D

Corollary 3.4. Let d > 2, A a finite set, X C Az a sft which satisfies
the conditions of Corollary 3.3, and let σ be the shift-action of Zd on X.
Assume that G φ {0} is a countable discrete group, H C G a subgroup, and
c : Zd x X 1—> G a continuous cocycle, and denote by σ^c'H^ the skew-product
action of Zd on X x G/H defined by

(3.11) σ£H\x,gH) = (σ n(z),c(n,z) gH)
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for every n G Zd, x G X, and g G G. Then σ^H^ is topologically nonmixing
for every n G Zd.

Proof. Corollary 3.3 implies that c is continuously cohomologous to a homo-
morphism, and we assume without loss in generality that c is a homomor-
phism. Then σ^H>> is obviously nonmixing for every n G Zd. D

Corollary 3.5. Let d > 2, A a finite set, X C Az a sft which satisfies
the conditions of Corollary 3.3, and let σ be the shift-action of Zd on X.
If σ is individually mixing then there does not exist a finite set B, a sft
Y C Bz such that the shift-action σγ ofZd on Y is individually mixing, and
a continuous, shift-commuting, open map φ : Y \—> X which is everywhere
n-to-1 for some n>2.

Proof. If there exists a shift-commuting, open map φ : Y ι—> X which is
everywhere n-to-1 for some n > 2, then [Mic] allows us to find a homeo-
morphism ψ : Y' = X x {1,. . . , n} ι—> Y with φ φ{x, k) = x for every
(rr, k) G Y'. Since φ σγ = σn φ for every n G Z d , there exists a contin-
uous cocycle c : Zd x X ι—> Sn with values in the symmetric group Sn on
{1,. . . ,n} such that φ(σn(x),c(n,x)(k)) = σζ φ(x,k) for every n G Zd

and (xy k) G Y'. The proof is completed by setting H equal to the stability
subgroup of the symbol 1 in G = <Sn, and by applying Corollary 3.4. D

Corollary 3.6. Let d > 2, A a finite set, X C Az a sft, and assume that
there exists a periodic point x G X such that Aχ(x) is dense in X, and that
X has trivial fundamental group in the sense of [GePr]. If σ is the shift-
action of Zd on X and G a locally compact, second countable group with a
fixed doubly invariant metric 7, then every cocycle c : Zd x X 1—> G with
summable variation is cohomologous to a homomorphism, with continuous
transfer function. If c is Holder, then the transfer function is again Holder.

Proof. According to Remark 2.3, the triviality of the fundamental group of

X implies that X satisfies the hypotheses of Corollary 3.3. D

4. Examples with positive entropy.

In this section we consider some of higher-dimensional sft's with positive
entropy and discuss their connections with Corollary 3.3. If A is a finite set,
d > 2, F C Zd a finite set, and P C AF, then we define the sft X(F,P) C AZ*

by (2.10).

4.1. The Full Shift. Let A be a finite set, and let X = Az* be the full d-
dimensional \A\-shift. Then X is a sft, Δχ(x) has (n,^-specification when-
ever x G X is a fixed point (or, indeed, any other point), O ^ n G Z d , and
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ξ G (0,1). Hence Corollary 3.3 applies. A special case of this result is due
to J. Kammeyer ([Kami], [Kam2]).

4.2. Dimers on the Square Lattice. Let d = 2, A = {0,1,2,3},

r - \ (o,o) (i,o) J >

and
p __ f f not 1 1 / 1 \ / not 1

1 7 ~"~ I I 2 O J > l 3 n o t O J > \ 0 not 0
\ Γ n o t l
/ > 1 1 not O

where 'not j ' means that we can put any symbol other than j in this location.
The sft X = X(F,P) is isomorphic to the set of all tilings of Z 2 by dominoes
or dimers, where each domino covers exactly two horizontally or vertically
adjacent lattice points (cf. [Kas], [TeL], [Sch2]): the isomorphism is ob-
tained by interpreting 0 and 2 as the right and left endpoints of a horizontal
domino, and 1 and 3 as the top and bottom endpoints of a vertical domino.
It is easy to see that Δχis topologically transitive, but not minimal: for
example, Ax(y) = {y} for the periodic point

202020202
020202020
202020202
020202020
202020202

whereas Δχ{x) is dense in X for the periodic point

x =

202020202
202020202
202020202
202020202
202020202

(x)where the O-coordinates of a; and y are underlined. In order to see that -
is indeed dense in X we fix an even integer JV > 2 and an element i
put Q(N) = {-JV,... ,JV}d C Zd and z = nQ{N)(y) G πQ(N)(X) c "
and set, for every M>N, S+(JV, M) = {-JV,... , JV} x {-JV,... , M}. If z
has been extended to an element of πs+(NyM)(X) for some M > JV we set

'2 ifz (, ) M )^3forallA;G{-JV,...,JV},

or if min{A; G {—JV,... , JV} : Z(kiM) = 3} is even,

1 if Z(-N,M) = 3

5

0 otherwise,

and define Z(fc,M+i) successively for k = —JV + 1 , . . . , JV by setting ^ M + I ) =
2 whenever possible. This definition of z has the property that the number of
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coordinates {k G {—iV,... , N} : Z^.M) — 2} is a strictly decreasing function
of M, and we conclude the existence of an integer M+ > N such that

ί 2 if he {-N,... , N} is even,
| 0 . f k ^ ^ _ ^ ^ | i

Put Q — {—AT,... , N} x {—ΛΓ,... , M + } , and apply an analogous argument
to the left vertical edge of the rectangle Q. In doing this we may occasionally
have to add a horizontal row at the top of Q whose coordinates are all in
{0,1,2}; if we have to add such a row we can add a second row with all
coordinates in {0,2}, starting with '2' as we move from left to right. By
repeating this process we eventually obtain a rectangle Q' — {—ΛΓ',... , N} x
{—TV,... , M'} and a point z' G πς>> (X) such that TΓQ(Z') = z, all coordinates
of z' along the top row of Q' lie in {0,2}, starting with '2' as we move from
left to right, and z[m_Nt) G {1,3} for all m G {-JV,... , M' - 1}. By adding
yet another column and row on the left and at the top of Q' and thereby
increasing M' and N' by 1, if necessary, we may assume in addition that Nf

is even,

_ ί2 ]ίke {-W,... , N} is even,

and *(_*',*) € {1,3} for all k G {-AT,... , M ' - 1}. Next we set Q" =
{-JV'? ...\2N + N' + l}x {-N,... , M'} and use 'reflection' to extend z' to
point z" G πQ»(X) as follows: for every (k,l) G Q' we put z"k^ = z{k,i)

n z(k,l) — Όi

0 if^)= 2

Then 2:;/ has Ό'-s nd c2'-s along the top row, and 'Γ-s and '3'-s along the left
and right vertical sides below the top corners of Q". Finally we reflect Q"
and z" vertically to obtain the rectangle Q* = {-N\... , 2N + Nf + 1} x
{-2N - M ; - 1,... , M'} and the point ^* G πQ* (X) given by z*(kl) = z|'fc)Z)

and

(4,o tf*(*.ι>e{0,2},
U Z(kl) ~ °J

for every (A;,Z) G Q". The point ^* has Ό'-s and c2'-s along the top and bot-
tom rows, and 'Γ-s and '3'-s along the left and right vertical sides (with the
exception of the corners) of Q*. Our construction guarantees the existence
of a point v G Δχ(x) with πQ*(υ) = z* and KQ(N)(V) — πQ(iV)(y)
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This shows that Δ ^ is topologically transitive. However, Theorem 3.2
cannot be applied to X\ indeed, if G is the discrete matrix group G =
{{ήf ι) - k e Z}, then the shift-action σ of Z d on X admits a Holder cocycle
c : Zd x X i—> G which is not cohomologous to a homomorphism. This
cocycle is related to the 'height-function' of domino-tilings defined in [Thu],
and is given as follows:

4 ( 0 , 1 ) , , ) - !
[( ) lf*(o,o) =0.

It is easy to check that the cocycle (4.1) is not cohomologous to a homomor-

phism.

Since the group G has normal subgroups of finite index the cocycle c in

(4.1) can be used to construct finite group extensions of the sft X. I have

no example of a nontrivial cocycle c:Zd x X \—> G, where G is abelian.

4.3. Colouring an Infinite Chessboard with Three Colours. Let d —
2, A = {0,1,... , n - 1 } , n > 3,

and let X^ = X(F,P)> The sft X^ corresponds to all colourings of the
lattice Z 2 with n colours so that no two horizontally or vertically adjacent
lattice points have the same colour or, equivalently, to all colourings of an
infinite chessboard with n colours in which adjacent squares are coloured
differently ([Lie], [Bax], [Sch2]).

Here we consider the case where n = 3 and X = X^. The equivalence
relation Δ x is topologically transitive, but not minimal: indeed, the periodic
point

• 2 0 1 2 0 1 2 0 1
• 1 2 0 1 2 0 1 2 0

ϊj — 0 1 2 0 1 2 0 1 2
- 2 0 1 2 0 1 2 0 1
• 1 2 0 1 2 0 1 2 0

satisfies that Δχ(y) = {y}, whereas the equivalence class Aχ(x) of the

periodic point

x =

0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0

is dense in X (the O-coordinates of y and x are underlined). This can be
verified by showing that every allowed colouring of an n x n square can be
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extended to an allowed colouring of a (4n — 1) x (4n — 1) square whose edges
only carry the colours 0,1. Consider, for example, the colouring

2 1 0
1 0 1
2 1 0

of a 3 x 3 square. We extend this colouring to a 3 x 6 square by adding suc-
cessively rows at the top which are coloured in the unique allowed colouring
which is minimal in the lexicographic order:

0 1 0
1 0 2
0 2 1
2 1 0
1 0 1
2 1 0

If the original square is n x n this method yields an extension of the colouring
to an 2n x n rectangle whose top row only involves the colours 0,1. Next
we add n columns on the left of the rectangle, which are again coloured in
the lexicographically minimal way (going downwards), and observe that the
left-most column only involves the colours 0, 1:

10 10 10
0 10 10 2
10 10 2 1
0 10 2 10
10 2 10 1
0 10 2 10

The final step is to reflect the 2n x In colouring horizontally about the
right-most column, and then vertically about the bottom row:

1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 2 0 1 0 1 0
1 0 1 0 2 1 2 0 1 0 1
0 1 0 2 1 0 1 2 0 1 0
1 0 2 1 0 1 0 1 2 0 1
0 1 0 2 1 0 1 2 0 1 0
1 0 2 1 0 1 0 1 2 0 1
0 1 0 2 1 0 1 2 0 1 0
1 0 1 0 2 1 2 0 1 0 1
0 1 0 1 0 2 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1

The original coloured square is marked by underlining.
We claim that there exists, for every (nontrivial) locally compact, second

countable, abelian group G, a Holder cocycle c : Z 2 x I ι—> G which is not
cohomologous to a homomorphism; this will imply in particular that Δ * does
not have n-specification for any nonzero n G Z2. Indeed, let α, 6, c, € G, and
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(4.2)

let

a if (#(o,o), #(i,o)) = (0,1),

—a it ^#(o,o),#(i,o)j — v-*-?"/?

b if (#(o,o),#(i,o)) = (0,2),

-b if (#(o,o),#(i,o)) = (2,0),

c if (#(o,o),#(i,o)) = (1,2),

-c if (#(o,o),#(i,o)) = (2,1),

a if (#(o,i),#(o,i)) = (0,1),

- a if (#(o,i),#(o,i)) = (1,0),

b if (#(o,i), #(o,i)) — (0,2),

-b if (#(o,i),#(o,i)) = (2,0),

c if (#(o,i),#(o,i)) = (1,2),

- c if (#(o,i),#(o,i)) = (2,1).

A straightforward calculation shows that (4.2) determines a Holder cocycle
c : Z 2 x X i—> G, and that c is not cohomologous to a homomorphism
whenever a + cφb.

4.4. Colouring an Infinite Chessboard with n > 4 Colours. We begin
with the case n = 4 and define X = X^ as in Example 4.3. If m > 4, and if
c = (ck, k G Q{m)) is an allowed colouring of dQ(m) in the sense of Remark
2.3, where Q(m) and dQ(m) are defined as in the proof of Proposition 2.1,
then we claim that there exists an allowed colouring d — ( c ^ k E Q(m)) of
Q(m) such that πdQ(m)(d) — c (note that every allowed colouring of Q(m)
is of the form πQ(m)(x) for some x E X).

In order to define the colouring d we begin with the top left hand corner
(—m + l,ra — 1) of Q(m — 1) = Q(m) \ dQ(m). Since only two of the four
neighbouring sites of (—m + l,ra — 1) have been assigned colours, we can
colour (—m + l,m — 1) different from these neighbours, and we assume for
the sake of argument that we can colour (—m +1, m — 1) with an even colour
(i.e. with a colour i G {0,2}). Moving along the top edge of Q(m — 1) from
left to right, we can colour the lattice sites alternately with odd and even
colours without causing any clashes with the colours on dQ{m), except for
the last site (m — 1, m — 1), where a different choice may be forced upon us.
Let us call the corner (m — 1, m — 1) good if (m — 1, m — 1) has been assigned
a colour with the correct parity (i.e. with a parity different form that of its
neighbour to the left), and bad otherwise.

Starting with the site (m — l,ra — 1) move down the right edge of the
square Q(m — 1) by colouring the sites with alternating parity, bearing in
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mind the restrictions arising from the colours on dQ(m). Again we can
do this for all sites except possibly for (m — 1, — m + 1), where we may be
forced into a colour of the same parity as that of (m — 1, — m + 2). Call the
bottom right hand corder good or bad depending on whether (m — 1, —ra +1)
has a colour whose parity is different from that of (m — 1, — m + 2) or not.
With the same convention we continue along the bottom edge of Q(m — 1)
from right to left, assign one of the labels good or bad to the bottom left
hand corner of Q(m — 1), and then move up the left hand edge of Q(m — 1)
with alternating parity, until we reach the site (—m + l,ra — 2), where the
parity of the available colour may be forced on us. The top left hand corner
of Q(m — 1) is good if the parities of the colours on (—m + l,ra — 3) and
(—m + l,m — 1) are equal, and bad otherwise.

We claim that we may assume that at most two corners of Q(m — 1) are
bad. Suppose for argument's sake that both bottom corners of Q(m — 1) are
bad. Then we can colour the row (—m + 2, — m + 2),... , (m — 2, —m + 2) in
such a manner that the parities of the colours on (—ra + 1, — m + 2),... , (ra —
1, —m + 2) alternate. With the same definition~of good and bad as before the
bottom corners of the rectangle {—m +1,... , m — 1} x {—m + 2,... , m — 1}
are now both good (the fact that we may no longer be dealing with a square
is irrelevant). Similarly one can deal with any other two adjacent bad corners
of Q(m — 1), so that we are left with a rectangle Q whose boundary ΘQ is
coloured with colours of alternating parity, except for breaks in the pattern in
at most two bad corners, which must be diagonally opposite, and (possibly)
in the top left hand corner, where we may have three adjacent coordinates
coloured with the same parity. Starting from one of the good corners with
strictly alternating parities we begin to colour the boundary dQf of the
rectangle Q' — Q\ dQ with colours of alternating parity as follows: if, for
example, the top right hand corner of Q' is good, and if the parities of the
colours there have the pattern

e o e o

• e

• o

• e

where V is even and Ό' is odd, then we start colouring dQ' in the pattern

e o e o

o eoe

- - e o

- o e

A moment's thought shows that all of dQ' can be coloured with strictly
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alternating parity, and the interior of Q' can be filled in by colouring each
site in a chessboard pattern with alternating even and odd colours.

Prom this argument it is clear that the equivalence relation Ax has (1,0)-
specification. Since there exists a periodic point x £ X whose equivalence
class Δ(x) is dense in X we can apply Corollary 3.3 and conclude the triv-
iality of all cocycles for the shift-action σ of Z 2 on X^ with summable
variation.

For n > 4 the equivalence class Δχ(rv) (x) is dense in X^ for every peri-
odic point x £ χ(n\ and the (I,0)-specification of A(x) is obvious. Hence
Corollary 3.3 applies, and all cocycles with summable variation on X^ are
trivial.
4.5. Square Ice and Related Shifts. Fix n > 3, and put

J3 = / L S I : 1 < o,6,c,d < n - 1 and a + b =

r - \ (o,o) (i,o) J >

r> )
c(0,0)

^(0,0) ^(0,0)
α(0,0)

and C(o,o) =

and define Y^ — X(F,P) by (2.10). One can think of B as a set of square
tiles with coloured edges and of Y(n) as the set of all tilings of the plane
by translates of these tiles such that touching edges of adjacent tiles are
coloured identically, and one of the tiles has (0,0) as a vertex.

Consider the map φ^ : X^ ι—> Y<n) given by

for every x = (xn) £ X^ and m = (mi,ra2) £ Z2, where

«m = JC(mi+l,m2) ~ x{mum2)

dm - I(mi,m2+1) - ^(rrn.mί) (mθdn).

It is easy to see that φ^ is continuous, surjective, and everywhere n-to-1.
From the definition of Y^ it is clear that the maps

(4.3) c((l,0),y) =a0 (modn), c((0, l),y) = d0 (modn),
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for every

y = (yj = ([<>],nez2)€r<">,
define a Holder cocycle c = c^ : Z2 x Y(n) ι—> Z/nZ which is not cohomol-
ogous to a homomorphism.

The sft X(n) is, in fact, a Z/nZ-extension of Y^: we define a home-
omorphism η : X^ H—> X^ by setting η(x)m = xm + 1 (mod n) for
every a: = (xm) G X^n) and m G Z2, and observe that ηn(x) = x and
φ^(x) = 0^n) 77(0;) for every a; G X^n .̂ One can show that there exists a
homeomorphism ψ^ : X^ ι—> Y^ x Z/nZ which carries the shift-action
σ of Z 2 on X^ to the skew-product action r on F ( n ) x Z/nZ given by

τn{y,k) = {σ'n{y),k + c(n,y)(mod n)

for every n G Z2 and (y, A;) G F x Z/nZ, where σ; is the shift-action of Z 2

o n y w .
Since the map ^>(n) : X ( n ) ι—)• Y(n) is finite-to-one, and since X ( n ) has

φ p by Lemma 2.5, the restriction of φ^ to AX(n)(x) must be injective for
every x G X^n\ and a moment's thought reveals that φ^ actually induces a
bijection of AX(n)(x) and Δy(»> (φ^n\x)) for every x G X^n\TYύs shows that
n-specification does not behave well under factor maps: since the shift-action
of Z2 on y ( n ) has a nontrivial continuous cocycle c ( n ) : Z 2x Y(n) ι—> Z/nZfor
every n > 3, none of the equivalence relations Δy(«) can have n-specification
for any nonzero n G Z2. However, Δχ(n> has (I,0)-specification for every
n > 4 by Example (4).

The sft y ( 3 ) can be identified with a sft Y investigated in [Bax] and
[Lie], the so-called 'square ice' model. Suppose that any two horizontally
or vertically adjacent lattice points in Z 2 are linked by an arrow, and let Y
be the set of all configurations of such arrows with the property that every
lattice point has two arrows pointing towards it, and two arrows pointing
away from it. There are six possible patterns of arrows at any given lattice
point in Z2:

t

4
a

4

4
b

4
->••—»•

4
C

t

t
d

4«— —>
t
e

t<-
t
f

By labeling these patterns with the letters α, 6, c, d, e, /, as indicated, we can
regard Y as the subshift Y = X(F,P) C {α, 6, c, d, e, / } z with

zr _ / (o,i) 1
\ (0,0) (1,0) J
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p_ί/Re,/} \ ({a Ac} \ ({a Ac} \

U a {W} J ' I b ίb^f} ί' I c Kc><0 ί'
ί{W} 1 /{«.».*} \ /Re,/}
\ d {α,c,d}/>\ e {M f /}/»\ / {M,/

The notation used in the definition of P in (4.4) should be interpreted as
follows: if, for example, a point y = (yn) G Y satisfies that ym — a for some
m = (mum2) € Z2, then j/(TOl+i>m2) € {6,e,/}, and y(mi,ma+i) ^ R e , / } .
The identification of Y ^ with Y is obtained from the correspondence

( 4 5 )

of the alphabets Y& and y .
By modifying the cocycle c in (4.3) we can define a nontrivial Holder

cocycle c' : Z2 x Y(3) ι—»• Z of the form

, 2 ; ;
- 1 if α0 = 2( mod 3),

- 1 if d0 = 2( mod 3),for every

However, since every integer-valued Holder cocycle on X^ is trivial for
n > 4 (Example 4.4), the shift-action σ on Y^ does not admit a nontrivial
Holder cocycle c" : Z 2 x Y<n> >—+ Z if n > 4.

4.6. Lozenge Tilings. Consider the set Λ of all tilings of the plane by tiles
of the form

(4.7)

where the horizontal and vertical edges of the tiles have unit length, and the
vertices of the tiles are located at in Z2 C M2 (these tilings are isomorphic
to the lozenge tilings discussed in [Thu]). Here is a typical partial tiling of
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the plane by lozenges:

The set Λ of all lozenge tilings is invariant under the shift-action r of Z 2 on
R2. Each lozenge tiling corresponds to a unique tiling of the plane by the
square tiles of unit size

2

(4.8)

1 2 2

where the numbers attached to touching edges of adjacent tiles match, and
the vertices of the tiles are located in Z2CK2. The correspondence between
the two kinds of tilings is obtained by observing that the pattern of solid
black lines arising from a tiling with the tiles in (4.8) determines a lozenge
tiling and vice versa. A comparison of the tiles in (4.8) with those in (4.5)
shows that Λ may be identified with the closed, shift-invariant subset Z C

Γ 2 1

F(3) consisting of all points which do not contain the symbol i i . In
particular, the restriction to Z of the cocycle d : Z2 x Y^ ι—> Z in (4.6) is
a nontrivial Holder cocycle for the shift-action of Z 2 on Z or, equivalently,
for the Z2-action r on Λ.

4.7. The Golden Mean. Let d > 2, and let X C {0,1}2" be the sft defined
by the condition that no two adjacent coordinates of any point x G X are
both equal to 1 (in other words, if xn = 1 for some x = (xn) G X and n G Zd,
then a;n±β(t) = 0 for i = 1,... , d, where e ^ is the i-th unit vector in Zd). It
is clear that Ax is minimal, and that Ax has (n, ̂ -specification for every
nonzero n G Zd and ξ G (0,1). We conclude that Corollary 3.3 holds for this
example.
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5. Examples with zero entropy.

The following example of a zero entropy sft X with a nontrivial Holder
cocycle c: Z 2 x X ι—> E is due to W. Parry.

Example 5.1. Consider the two transition matrices

JET = I ooi ) , V = I l oo ) ,
VI 1 0/ ' Vl 1 0/ '

and define X C {0,1,2}z 2 by the condition that an element x = (xn) G

{0,1,2}z 2 lies in X if and only if H (#n>#n+(i,o)) =

V (^n7^n+(o,i)) ~ 1 f° r every n G Z 2 . Put

α if (x(o,o),a?(i,o))e{(0,0),(0,l)},

2α - 6 if (ar(O|o), tf(i,o)) = (2,0),

(i,o)) = (2,1),

(i,o)) = (1>2),

(o,i)) € {(2,0), (2,1)},

(o,i)) = (0,1),

(o,i)) = (0,2),
/*(*) =

2a

0

a

b

b — a

0

if
if

if

if

if

ifif (3(0,0)^(0,1)) = (1,0),

where α, 6 G K, and note that /i cr(0,i) — f\ — ji 0"(i,o) ~~ Λ We define
c : Z 2 x X 1—> K by setting c((l, 0), •) = /1 and c((0,1), •) = /2, and observe
that, for a suitable choice of α, 6, the cocycle c is not cohomologous to a
homomorphism. The basic idea underlying this example is that the matrix
H defines a one-dimensional sft F , and that V induces a shift-commuting
automorphism of Y which preserves a Markov probability measure v on Y
distinct from the measure of maximal entropy.

We continue with another set of examples which was discussed in [Led],
[KS2], [KS3], [Schl] and [KaS], where it was shown that every real-valued
cocycle with summable variation on these shift spaces is continuously coho-
mologous to a homomorphism. In these examples the Gibbs relation Ax is
trivial. In order to describe these examples we recall the terminology and
notation of [Schl] and [KS3]. Let 9id = Z [tif1,... ,υ%1] be the ring of
Laurent polynomials with integral coefficients in the commuting variables
txi,... ,ud and let / G 9\d. We write / in the form / = Σ m € Z d C / ( i n ) t χ m

with um = u™1 u™d and c/(m) G Z for every m = (mu... , md) G Z d ,
where Σ m € Z d |c/(m)| < 00. If a is a Zd-action by automorphism of a com-
pact, abelian group X, then the dual group 9Jt = X becomes a module over
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the ring 9td, where the action of ίftd on SDΐ is defined by

(5.1) f a=

for all a G 9Jt and / G 5Hd; here δn = a^ is the automorphism of 9Jt =
duel to α n . In particular

(5.2) c£(α) = &(α) = u11 α

for all n G Z d and α G 9Jt. Conversely, if SDt is an 9td-module, and if

(5.3) βf{a) =u» a

for every n G Z d and a G 9Jt, then we obtain a Zd-action

(5.4) am:n^σ™ = β™

on the compact, abelian group

(5.5) Xm = Wl

dual to the Zd-action βm : n •-> β™ on ΰJl. Prom [KS1] and [Schl] we
know that 9Jt is Noetherian whenever am is expansive, and duality theory
implies that X^ = 971 is zero-dimensional if and only if 3JI is a torsion
group with respect to addition. Furthermore, if Xm is zero-dimensional and
σM expansive, then there exists a finite, abelian group G and a continuous,
injective group homomorphism φ : Xm ι—> Gz such that φ σ^1 = σ n φ for
every n G Z d , where σ is the shift-action of Z d on G z d , and Y = φ(x) C Gzd

is a s/ί. The dynamical properties of σm (like ergodicity and mixing with
respect to the Haar measure on Xm) are discussed in [Schl]; in particular,
σm is mixing if and only if multiplication by (un — 1) on 971 is injective for
every nonzero element n G Z d .

Proposition 5.2. Let a be an expansive and mixing Ί?-action on a compact,
zero-dimensional, abelian group X, and let 9Jt = X be the ^-module defined
by (5.1)-(5.2). Suppose that (uλ - 1) 9JtΠ(u2 -1) -M φ {uλ - l)(u2 - 1) DJl.
Then there exists a finite, abelian group G c S and a Holder cocycle c :
Ί? x X i—> G, which is not cohomologous to a homomorphism, and which
satisfies that c(m, •) : X ι—> G is a continuous group homomorphism for
every m G Z 2 .

Proof. Let a G ((t*i - 1) SDt Π (u2 - 1) 9Jt)) \ (uλ - l)(ti2 ~ 1) 9Jt. Then
α = (ti2 — 1) αi = (^i — 1) α2 for some αi,α 2 G 9JI, but αi is not of the
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form (uι — 1) bι with bλ G 9Jt. Since a{ G 9Jΐ — X, α; may be regarded

as a homomorphism from X into T = S = { ; Z E C : | 2 | = 1} , and it is not

difficult to verify that this homomorphism sends X to a finite subgroup of

T and is Holder. Since a — (u2 — 1) αi = (uι — 1) α2, we can define a

cocycle c : Z 2 x X ι—> T by setting c((l,0), ) = ax and c((0,l), ) = α2,

and we claim that c is not cohomologous to a homomorphism. Indeed, if c

were cohomologous to a homomorphism, then there would exist a Borel map

b : X i—> T and a constant t G T such that aλ — b σ(iϊ0) — 6 + t. Since

multiplication by ?xi — 1 is injective on 9Jΐ, there exists a smallest 9ΐ2-πiodule

91 D 9Jt such that the multiplication by uλ — 1 is invertible on 01, and we set

b — (u1 — I ) " 1 aλ G 01. Put y = tft and write V> : Y —>• X for the surjective

group homomorphism dual to the inclusion 9Jt C 01. According to [Schl],

aft OΛ is ergodic, and our choice of δ implies that aι - φ = b - a7[ ox — b =

6 α(ί,o) -φ — b φ -\-t ~b ctfip) Ψ — b -0 + ί, so that 6 -0 differs from 6 by

a constant. Hence, b defines a character of X and is thus an element of 9Jt,

contrary to our assumption. D

In order to test whether specific examples satisfy the condition of Propo-

sition 5.2 it will be convenient to consider, for every d > 1 and every rational

prime p > 1, the ring 5H^ = ¥p [uf1,... ,u^λ] of Laurent polynomials in

i ί x , . . . , ud with coefficients in the prime field ¥p = Z/pZ, and to denote by

h/p G 9v£ t h e Laurent polynomial obtained by reducing the coefficients of

a Laurent polynomial h G 9 ^ modulo p. Since 9\£ 1S a quotient ring of 9^,py ^ p £ q g
every 9^ -module is also an 9^-module; in particular, if / ι l 5 . . . , hk G
and if 3 = (/*!,... , ^ ) = ^ 9 ^ + ••• + hkΰ\{

d

p) C m(

d

p\ then the d\ψ-
module 9Jί = 91^/3—regarded as an 9^-module—is equal to 9ΐd/37 where
3 = (p, /i, , fk) = p9ίd + /iίHd H h /jfcίHd, and where the /i G 9ίd satisfy
that (fi)/p = hi. As in [KS1] and [KS2] we may realize the Zd-action am

as the shift-action of Zd on the closed, shift-invariant subgroup

Xm = 11 = (im) e (Z/pZf : Σ c/,(n)im+n = 0 (mod p)

(5.6) I

for every j = 1,... , k and m G Z°

j

Examples 5.3.(1) Let p > 1 be a rational prime, / G 9ΐ;> a polynomial with
/(1,1) = 0 (mod p), J = (/) = / 9 ^ 2 ) , 9Jί - 9^ 2 )/3, and assume that am

is mixing. We claim that 9Jί (regarded either as an 9ΐ2-module or as an
9̂ 2 -module) satisfies the condition of Proposition 5.2.

The ideal m = {uλ - l,u2 - 1) = ( ^ - l)9^ p ) + (w2 - l)9ΐ^p) is maximal
in 9^ , and consists of all Laurent polynomials h G 9^ with Λ(l, 1) =
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0 (mod p). Hence there exist elements /i, f2 G 9l2^ w^h (ui ~ l)/i + (̂ 2 —
1)Λ = /• Since α971 is mixing, / is neither divisible by 7iχ — 1 nor by n2 — 1,
and we conclude that /1 is not divisible by u2 — 1. We set α̂  = (u; — 1)/^ + 3
and conclude that αx G ( ^ - l ) 9Jtn(ΐ/2--l) 9Jt, but α! £ ( t ^ - l X i ^ - l J SDt,
which obviously implies that ((u1-l) MΠ(u2'-l) Wΐ)\(u1-l)(u2-l)'Tl £ 0.

Prom Proposition 5.2 we conclude that there exists a nontrivial cocycle
c : Z 2 x Xm 1—> T such that c((l, 0)^J = - α 2 and c((0,1), •) = °i> where α<
is regarded as a character of Xm = SDt.

In order to illustrate (1) we set A = {0,1} = Z/2Z, choose a nonempty,
finite set F C Zd, and let

X(F) = U = (xm)e/.

= 0 (mod 2) for every

(5.7) l

neZ r fJ.

Then X{F) is a a/ί, and X(F) = J f^/W, where Λ G 5H^2) is the Laurent

polynomial ΣnGF^n

(2) Let p = d = 2, and consider the polynomial / = 1 + ux + w2 + v% G ίH2

2

corresponding to the set F = {(0,0), (1,0), (0,1), (0,2)} C Z2 (cf. (5.6)).
Then f = (u1- 1)1 + (u2 - ΐ)u2. If 9Λ = ^ 2 ) / ( / ) then we obtain, in the
notation of (5.6), that c((l,0),x) = X(0,i) and c((0, l),x) = £(o,o) for every
a; = (xn) e l ^ C (Z/2Z)z2.

(3) Let / = 1 + ^ + ^ G 5H^3) and9π = 9^3)/(/). Then / = (tii-l) + ( u 2 -
1), and (1), Proposition 5.2, and (5.6) yield the cocycle c : Z 2 x ! ι — > Z/3Z
given by c((l,0),x) = 2rr(o,o) and c((0, l),x) = ατ(O,o) for every x = (a?n) G
Xm C (Z/3Z)z2.

(4) Let / = 1 + tii + ul + u2 + uλu2 4- u\ G ίH^2) and SW = 9^2)/(/)- Then
/ = (U l - l)(iii + ii2) + (ι*2 - I) 2 , and the cocycle c : Z2 x X 1—> Z/2Z is
given by c((l, 0), a:) = x(0,0) + #(o,i) (mod 2) and c((0,1), ar) = ar(i|0) + a?(o,i)
(mod 2) for every a; = (α:n) e Xm C (Z/2Z)z2.

(5) Let / = 1 + ui + u2 + u\ + u\ + u\ G 9^2) and 9K = 9^2)/(/) Since
/ = (tii ~ 1) + (ti2 ~ 1)(^2 + ^2) w e obtain the cocycle c : Z 2 x X 1—• Z/2Z
with c((l,0),x) = X(0|i) +^(0,3) (mod 2) and c((0, l),x) = ίC(ofo) for every
a; = (a?n) e Xm C (Z/2Z)z2.

(6) Let / = u\ + u2 (ul + ul) + u\ (1 + ux + ul) + u\ + u\ G 9^2) and
aΠ = 9t22)/(/) τ h e n / = ("1 ~ 1) (1 + tii + u2 + u? + u?u2 + uxu\) + (u2 -
1) (1 + ti2 + ti |), and we obtain the cocycle c : Z 2 x X 1—• Z/2Z with

c((l,0), a;) = X(O,o) + (̂0,1) + (̂0,3) (mod 2) and c((0,1), a;) = a;(O,o) + a;(lϊ0) +

(̂2,0) + (̂3,0) + #(2,1) + #(i,2) (mod 2) for every x = (xn) G Xm C (Z/2Z) z 2 .
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(7) Let p > 1, d > 2, and let / € ίHJf* be a Laurent polynomial with
/ ( I , . . . , 1) = 0 (mod p) such that am is mixing, where 2tt = ^/(f). Prom
(5.6) we see that a = am has p fixed points, and we write G = Fix (am) =
Z/pZ for the group of fixed points of α. Since G C X = Xm is a closed,
o invariant subgroup, we can consider the quotient group Y = X/G and
write a' for the Zrf-action induced by a on Y. Elementary duality theory
shows that the £Hd-module arising from a1 via (5.3)-(5.5) is of the form
9t = (Ul - 1) 9DT + + (ud - 1) 9Jt C SOt. If the modules Wl and 91 are
isomorphic then the Zd-actions aίJJl and α' are topologically and algebraically
conjugate, and we obtain a p-to-1 surjective group homomorphism φm \—>
Xm which commutes with the Zd-action and a and therefore (by general
nonsense about group-extensions of dynamical systems) a nontrivial cocycle
c : Z d x X i—> Z/pZ. The (obvious) necessary and sufficient condition
for 9JI and 91 to be isomorphic as 9td-modules (or, equivalently, as 9v£ -
modules) is that 9t is cyclic, i.e. that there exists an element b E 9t such
that <n = 9\d'b = 9{{*>) b.

When is 91 cyclic? The answer is sometimes yes and sometimes no. For
example, if d — p = 2 and / = 1 + uλ + u2 + u\ as in Example (2), then
(uι-1) 9Jί = (ii 2-1) 9tt and Ή = (ux — l) 90l, so that 01 is cyclic. Similarly, if
d = 2, p = 3, and / = l+Wχ+^2 (Example (3)), then fa-iym = ( u 2 - l ) 9Jί,
and 91 = (ui — 1) SDΐ is cyclic. In Example (5) we see that (uι — 1) 971 C
(w2 — 1) SPΐ, so that 9ΐ = (u2 — 1) 37ί is again cyclic. In Example (6),
\uxu2

l - l ) -aπ= ( t i i - l J aΛΠίua-lJ-ίWί, but (uiuj1 — l)-9Jt£ (tii-lJ-JDt
and (t^iί/^1 — 1) 9JI C (w2 — 1) 9Jί. These conditions can be expressed
dynamically: in the Examples (2) and (3) every point x E X = Xm which
is fixed under QJ(I,O) is also fixed under αj(o,i) and vice versa. In Example
(5) every point which is fixed under α(0,i) is fixed under α(i>0), but not the
other way round. In Example (6) there exist fixed points for α?(i,o) which are
not fixed under c*(0,i), and vice versa, but every point which is fixed under
Qf(i,-i) is fixed under α(i j0) and α(o,i)

We conclude that the Z2-actions am appearing in Examples (2), (3), (5),
and (6), admit continuous, surjective, everywhere two-to-one group homo-
morphisms φ : Xm \—> Xm which commute with or*3*.

On the other hand, if / = 1 + uι + u\ + u2 + uλu2 + u\ €
m = 9^2 ) /( /) as in Example (4), then 91 = (m - 1) M+ (u2 - 1) SDt is not
isomorphic to SDt, and hence not cyclic. In fact, if G = Fix (am) = Z/2Z
is the group of fixed points of am and a' the action induced by am on
y = Xm/G, then the Z2-actions am and a' are not topologically conju-
gate. In order to verify this we note that am has two fixed points (the
elements of G), whereas a' has 4 fixed points in Y: they are the elements
of ((5(1,0) + (2(0,1)) /£?, where G^o) and (7(0,1) are the points in Xm which
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are invariant under cx^Q\ and OLΈ^, respectively. Hence the Z2-action α'
is not topologically conjugate to am, and the modules 9JI and 9t are not
isomorphic ([Schl]).

So far we have only discussed examples with zero entropy whose Holder
cohomology is nontrivial. Here is a simple example with zero entropy and
trivial Holder cohomology.

Example 5.4. Let d = 3, p = 2, and let F C Z 3 be the set

{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (0,0,-1)}

corresponding to the Laurent polynomial h = 1 + u^ + u2 + u% + %"* G
9 ^ . The subshift X = X(F) in (5.7) is topologically mixing and has zero
entropy, and the Gibbs relation Ax is trivial. However, if G is a locally
compact, second countable group with a given doubly invariant metric, then
every cocycle c : Z 3 x X ι—> G with summable variation is trivial. In
order to verify this we put S = {(fci,/^5^3) E Z 3 : fc3 G {0,1}} and observe
that the coordinate projection σs : X —> (Z/2Z) 5 is a continuous group
isomorphism of X and Y — (Z/2Z)S. We write r for the obvious shift-action
of Z 2 on Y and note that σ$ σ^Mfi) — T(kltk2) ' π$ ^oτ e v e r Y (̂ 1? ^2) € Z2,
where σ is the shift-action of Z 2 on X. If c : Z 3 x X 1—»> G is a cocycle for
σ with summable variation, we set, for every k = (fei,^) € Z2, c'(k,y) =
c ((ki, k2,0),πs1 (v)) 1 a n d obtain a cocycle d : Z 2 x y for r which again has
summable variation; if c is Holder then d is also Holder. However, since
r is the shift-action of Z 2 on a full shift space, Example 4.1 shows that d
must be (continuously or Holder) cohomologous to a homomorphism, which
implies the triviality of c.

Another interesting phenomenon occurs if p — d = 2, and if F C Z 2 is the
set {(0,0), (1,0), (0,1)} corresponding to the polynomial h = 1 + Ui + u2 C
ίH^2) (cf. (5.7)). We set 9H - 9^2)/(Λ) and define X(F) - XOT by (5.6)
or (5.7). Then /ι(0,0) 7̂  0 (mod 2), so that we are not in the situation of
Example 5.3 (1). Indeed, since (uλ - 1) + (h) =u2 + (h) and (ux - 1) ffl =
ι*2 9K = 9fl = (u2 -1) 9JI = (τii -1) (w2 - 1 ) • ̂  the hypothesis of Proposition
5.2 is not satisfied, and there is no nontrivial cocycle c : Z 2 x I 1—> Z/2Z of
the special form described in Proposition 5.2. One can actually prove much
more.

Proposition 5.5. Let p = d = 2, h = 1 + t*i + u2 e 9^2 ), 9Jt =
and define the shift-action σ = am ofZ2 on X = Xm C {0, l } z 2 as in (5.6)-
(5.7). If G is a countable, discrete, abelian group, then every continuous
cocycle c : Z 2 : X \—> G for σ is continuously cohomologous to a homomor-
phism. However, σ does have nontrivial continuous cocycles with values in
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nonabelian, discrete groups.

Proof. Let c : Z 2 x X \—> G be a cocycle with summable variation, and
put / = c((l,0), ). In view of the cocycle equation (3.4) we may as-
sume without loss in generality that / only depends on the coordinates
in H = {(mi,m2) G Z 3 : ra2 > 0}, and hence on the coordinates in L =
{(m,0) : m G Z}, since the coordinates {xm : m G H} of a point x G X
are completely determined by the coordinates {xm : m G L}. As G is
discrete, there exists an integer m > 0 such that / is a function of the
coordinates (—ra,0),... ,(ra,0), and does not depend on the coordinates
χ(k,o) with |fc| > m. After subtracting a constant from / (which amounts to
modifying c by a homomorphism) we may also assume that /(0,.. . , 0) = 0.

If n > 0, and if α_ n,. . . ,αn is an arbitrary sequence of 0's and l's, we
consider an element y G l with

{ a>k if k < n,

0 if |fc| > n,

and set

Then F(y) is well defined, and we claim that F(y) = 0, irrespective of the
choice of n and o_ n,.. . ,α n . Indeed, the cocycle equation (3.4) implies that
F(y) = F (σ(o,r)(y)) for every r > 0, and by setting r = 2s for sufficiently
large s > 1 we see that F(y) = 2JP(y) = 0 (a computation shows that the
sequence (2/(̂ ,2-)? ̂  G Z) is of the form

... , 0,0, α_ n , . . . , αn, 0,... ,0, α_ n , . . . , αn, 0,0,... ,

where the gap between the two occurrences of the block α_ n , . . . , an is arbi-
trarily large for sufficiently large s).

By applying Proposition 3.1 to the function / (regarded as a function on
{0,1}Z with summable variation) we conclude that there exists a continuous
map b : {0,1}Z 1—> G such that f{x) = b (σim(x))-b(x) for all x G {0,1}Z,
which implies that / : X 1—> G is of the form &' σ(1)0) —6' for some continuous
function b' : X 1—> G. The ergodicity of σ^q) allows us to conclude that c
is continuously cohomologous to a homomorphism.

The last assertion is proved as follows. For every n > 1 the group Φ(2n +
1) = {xEX: σ(2n+i,o)(^) = #} is finite, nontrivial, and σ-invaxiant, and
we put H(2n + 1) = {n G Z2 : σn(α;) = x for all x G Φ(2n + 1)}. Let
G(2n+1) = (Z2/H(2n + 1)) x Φ(2n +1), furnished with the group operation
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Then G(2n +1) is finite and nonabelian, and we may identify Φ(2n +1) with
the normal subgroup {(H(2n + l),x) : x G Φ(2n + 1)} of G(2n + 1).

We fix n > 1 for the moment, put Y — X/Φ(2n + 1), and let σ' be
the Z2-action on Y induced by σ. Since Ϋ = (i^ n + 1 - 1) 9K ^ 951, there
exists a continuous group isomorphism η : Y ι—»> X such that 77 σ^ = σnη
for every n G Z2. Define a homeomorphism ψ : X 1—> Y x Φ(2n + 1) by
ψ(x) = (x + Φ(2n -f- 1), C(̂ ))? where C(^) G Φ(2n + 1) is the unique element
satisfying that X(i>0) = (C(̂ ))(i,o) for i = 0,... ,2n — 1. Since ((#) = ζ(x')
whenever a;+Φ(2n4-l) = x'+Φ(2n+l), we may regard ζ as a continuous map
C : Y . — > Φ ( 2 n + 1 ) . P u t v ( m , y ) = ζ ( σ m ( y ) ) - σ { m ) ( ζ ( y ) ) f o r e v e r y y e Y

and m G Z2 and observe that φ(σm(x)) = (σm(x) + Φ(2n + l),σm(ζ(x +
Φ(2n + 1))) + v(m,x + Φ(2n + 1))), for all x G X and n G Z2. The map
υ : Z2xY 1—> Φ(2n+1) satisfies that υ(m+n,y) = υ (m,σ'n(y))+σm(υ{n,y))
for all m, n G Z2 and y G V, and we obtain a cocycle c2n+i : Z2 x X 1—>
G(2n+l) by setting c2 n +i(m, η(y)) = (m+if(2n+l),i;(m,y)) for all m G Z 2

and y EY.
In order to prove that c2n+i is not cohomologous to a homomorphism we

define a skew-product action τ of H(2n + 1) on Y x Φ(2n + 1) as in (3.11)
by rm(y,x) = (^(y),?;(m,?/) + x) for every m G J9r(2n 4- 1), y G Y", and
x G Φ(2n + 1). Then rm φ = ψ σm for every m G H(2n + 1), which implies
that r is topologically mixing (cf. [Led]). A straightforward calculation
shows that this implies the nontriviality of c2 n +i for every n > 1. D

References

[Bax] R.J. Baxter, Exactly solved models in statistical mechanics, Academic Press, New-
York and London, 1982.

[FeM] J. Feldman and C.C. Moore, Ergodic equivalence relations, cohomology, and von
Neumann algebras. /, Trans. Amer. Math. Soα, 234 (1977), 289-324.

[GePr] W. Geller and J. Propp, The fundamental group of a Ί?-shift, preprint.

[Kami] J.W. Kammeyer, A complete classification of two-point extensions of a multidimen-
sional Bernoulli shift, J. Analyse Math., 54 (1990), 113-163.

[Kam2] , A classification of the isometric extensions of a multidimensional Bernoulli
shift, Ergod. Th. & Dynam. Sys., 12 (1992), 267-282.

[Kas] P.W. Kasteleyn, The statistics of dimers on a lattice. I, Physica, 27 (1961), 1209-
1225.

[KaS] A. Katok and K. Schmidt, The cohomology of expansive Έd-actions by automor-
phisms of compact, abelian groups, Pacific J. of Math., 170 (1995), 105-144.

[KaSp] A. Katok and R.J. Spatzier, Differential rigidity of hyperbolic abelian actions, preprint,
1992.

[KS1] B. Kitchens and K. Schmidt, Automorphisms of compact groups, Ergod. Th. k,
Dynam. Sys., 9 (1989), 691-735.



COHOMOLOGY OF SHIFTS OF FINITE TYPE 269

[KS2] , Markov subgroups of (Z/2) 1 Contemp. Math., Amer. Math. Soc, 135
(1992), 265-283.

[KS3] , Mixing sets and relative entropies for higher dimensional Markov shifts,
Ergod. Th. & Dynam. Sys., 13 (1993), 705-735.

[Led] F. Ledrappier, Un champ markoυien pent etre d'entropie nulle et melangeant, C. R.
Acad. Sci. Paris Ser. A, 287 (1978), 561-562.

[Lie] E.H. Lieb, Residual entropy of square ice, Phys. Rev., 162 (1967), 162-172.

[LSW] D. Lind, K. Schmidt, and T. Ward, Mahler measure and entropy for commuting
automorphisms of compact groups, Invent. Math., 101 (1990), 593-629.

[Mic] E. Michael, Continuous selections II, Ann. of Math., 64 (1956), 562-580.

[Rue] D. Ruelle, Thermodynamic Formalism, Addison-Wesley, Reading, Mass., 1978.

[Schl] K. Schmidt, Automorphisms of compact abelian groups and affine varieties, Proα,
London Math. Soc, 61 (1990), 480-496.

[Sch2] , Algebraic ideas in ergodic theory, CBMS Lecture Notes, Vol. 76, Amer.
Math. Soc, 1990.

[TeL] H.N.V. Temperley and E.H. Lieb, Relations between the 'percolation' and 'colouring'
problem and other graph-theoretical problems associated with regular planar lattices:
some exact results for the 'percolation' problem, Proc Roy. Soc. London Ser. A, 322
(1971), 251-280.

[Thu] W.P. Thurston, Groups, tilings, and finite state automata, Summer 1989 AMS Col-

loquium Lectures.

Received Decmeber 7, 1992. This investigation was sparked off by discussions with A. Ka-
tok during a visit to Pennsylvania State University in December 1991. The author would
also like to thank W. Parry for permission to include Example 5.1, and to Jim Propp for
useful discussions of domino tilings. Research at MSRI supported in part by NSF grant
#DMS 9022140.

MATHEMATICS INSTITUTE

UNIVERSITY OF VIENNA

VIENNA, A-1090

VIENNA, AUSTRIA

E-MAIL ADDRESS: KLAUS.SCHMIDT@UNIVIE.AC.AT






