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ON HP-SOLUTIONS OF THE BEZOUT EQUATION

ERIC AMAR, JOAQUIM BRUNA AND ARTUR NICOLAU

‘We obtain a sufficient condition on bounded holomorphic
functions gy, ¢, in the unit disk for the existence of fi, f; in
the Hardy space H? such that 1 = fi19; + f292. The sharpness
of this condition is also studied.

1. Let D be the unit disk in the complex plane, T its boundary. For 1 <
p < 0o, H? denotes the Hardy-space of holomorphic functions in ID such that

1 g2n ) 1/p
Iy =sw (= [ ey ds) <400 p<oo
[fllco = sup [£(2)].
|z|<1

It is well-known ([7, p. 57]) that if f € H?, the non-tangential maximal
function

Mf(e”) = sup{|f(2)|; = € [(6)}
['(6) being the Stolz angle with vertex e¥, belongs to LP(T) .

In this paper, given g;,90 € H*, we study the Bezout equation 1 =
f191 + f292. Concretely, we are interested in knowing the precise condition
on g, g; so that solutions f;, fo € HP exist.

If |9 = |g:* + |g2/%, |f P = |Ail* + | f2f?, it follows from 1 = fig: + f2g2
that 1 < |f]||g| and hence

(©) M(lgl™") € L*(T).

It can be easily seen that this condition is sufficient if g, or g, is an inter-
polating Blaschke product. Nevertheless, we show in Section 2 that it is not
sufficient in general. In fact for each € > 0 we exhibit g,,g. € H* such that
M (|g|~?*¢) € LP(T) but no HP? solutions exist.

In Section 3 we obtain a general sufficient condition implying in particular
the following:

Theorem 1. Assume that for some € >0

M (|g|™* |log|g||***) € L*(T).
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Then there exist fy, fo € H? such that 1 = f19; + f29-.

In Section 4, it is shown that the same method gives the following im-
provement on the problem considered by Wolff and also by Cegrell in [4].

Theorem 2. Let f,g,,9, € H*® be such that

lg|?
|log |g] |>**

Then there are fy, fo € H® such that f = fig1 + f29>-

for some €>0.

Ifl <

The proofs rely essentially on: (a) An LP-version of Wolff’s criteria for the
existence of bounded solutions of the J-equation, already used in [1]. (b) An
improvement of Cegrell’s result in [4] on gradients of bounded holomorphic
functions.

Both theorems hold of course for more than two generators, using the
Koszul complex technique as in [7, p. 364]. Theorem 1 holds as well in the
setting of the unit ball, but some modifications are needed (see [2]).

Finally, we mention that similar results to those stated here have been
independently obtained by K.C. Lin in (8] and [9]. The authors thank the
referee for pointing this out to them.

2. Before proceeding, we recall that a positive measure x4 on D is called a
Carleson measure if there exists K > 0 such that

p({z:|z—€’|<r})<Kr €%€T, r>0.

The smallest of such K is called the Carleson norm of p. Equivalently
([7, p.- 32]) u is a Carleson measure if and only if for all functions A in D

/ /D Ihldy < ¢ /0 MRy

In some particular cases it is quite easy to see that the condition (C) is
sufficient. For instance, if g, is a Blaschke product with zeros z,,, the question
is obviously equivalent to the interpolation problem

1 . )
fa(zn) = m , with f, € H?.

Indeed, 1— f,g> belongs then to H? and vanishes on {z,}, so 1 — fag> = fig1,
fi € H?. In case g, is an interpolating Blaschke product, this interpolation
problem has a solution if and only if

1
zn: m(l —|za]) < +o0,
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(see [10] and also [5]). Let d,, denote the delta-mass at the point z,. Since
> (1 — |zn])d, is a Carleson measure, (C) implies the above condition.

Next, we give examples showing that condition (C) is far from being suf-
ficient.

Theorem 3. Given 1 <p < oo and € > 0, there exist bounded analytic
functions g;, g, with M(|g|=2*¢) € LP(T), such that there exist no fi, fo € HP

satisfying figi + fag2 = 1.

Proof. We will denote by p(z,w) the pseudo-hyperbolic distance in the unit
disc, p(z,w) = |z —w| |1 —wz|™', z,w €D and ) the j-th derivative of a
function f. Let N be a natural number such that (V + 1)e > 1.

Let z, =1—2"", n > 1, and take an H°-interpolating sequence {«,},
0 < p(arp, 2,) decreasing to 0, satisfying

o (1L = [zal)pan, )~ N4 < oo

n

(2) Z(l - 'zn|)p(anazn)-(2N+l)p =00.

Let B, and B, be the Blaschke products with zeros {z,} and {e,}. From
now on, the letter ¢ will denote different constants independent on n. Since
B, is an interpolating Blaschke product, one has

inf p(z, @) > [By(2)| > ¢ inf plz,00), |2 <1,

(see [7, p. 404]).

Now as in [3] take g; = B'™', i = 1,2. Let I, be the arc on the unit
circle centered at 1 of length 2(1 — |z,|) = 27!, In estimating |g(z)| !, for
z € T'(6), the worst case occurs when z is one of the {z,} or {a,}. Since
p(ay,, z,) is decreasing, for e? € I, \ I,,;, one has

M(lgl™) <

C

P(a’n+1 s Zn+1 )N'H '

Hence, condition (1) implies M (|g|~>*¢) € L?(T). Now, assume there exist
f1, fo € H? satisfying fig, + fago = 1. Then,

I (z) = (By N Y™ (z,), n>1.

Write

—Qp 2 — ~N-1
B B = h(z)k
2n ILIn 'akl 1 _akz 2 (Z) (Z) (Z)
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where h(z) = (1 — @,2)N*'1 B, ,(2) V71, k(2) = (2 — @) "V~!. Then

Ny ) — S (V) ) -
By ) (Z)—Z(j)h (2)k"N =7 ().

Jj=0
Using Cauchy’s formula on the disk of center z, and radius 47'(1 — |z,]),

one gets
(1 — Jo )™

(1 — |za) < (1 = |za)N 10

B9 (z)] < ¢
and hence
B9 )| £V (2] < = a2V (L = [ ]) 417
< cp(2n, 0) 2V — |2 ) 7N
For 7 = 0, one gets
[h(za)| K™ (20)] 2 € (1 = |2a)¥* |2 — 0| 2V
> cp(an, 2) 2N M1 = |zal) 7
Therefore, for large n,
3) 1AM (2l = 1(B7N )M (2a)] 2 (1 = |2al) N pletn, 20) 2N

Since f, € HP, the function

' 1/2
F(e®) = ( [ 18V @ - |z|)2”-2dm(z>)

r'(6)

belongs to LP(T) ([11, p. 216])). For € € I, \ I, since D, = {z € D :
|2 — z,| <4711 — |2,4])} € T'(8), one has

FE)E 2 [ 1V EP )™ dmz)
> (L=l MAEV @), € € L\ L
Using (3) and F € L?(T), one gets

00 > 3 (1 = |za])p(atn, 2a) ~EVHIP

and this contradicts (2). O
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3. In this section we will prove a generalization of Theorem 1 stated in the
introduction.

Lemma 1. If g is holomorphic on D and 0 < p < 2,
27 . de 27 . d0
W0\|p __ P < 0\ _ P .
(gt ~190PY 5 <4 [ lole”) - gO)P 5

Proof. This is a general statement for a probability measure dy on X and

measurable ¢
p
<4 / lw~ / pdp
be X

/ lol” du — l/ pdu
X X

First notice that this is trivial for p < 1 (with constant 1) and that for p = 2
there is equality with constant 1, too. In general, and assuming without loss

P
du .

of generality that / pdyp = 1, it follows for real ¢ integrating the inequality
b'e

lplP =1 <3|p— 117 +p(p —1).

For complex-valued ¢ = ¢; + ip,, it follows from [P < |p1|P + |p2|P (for
positive ¢ the inequality holds with constant 1). O

We start with a generalization of a result in [4]. Although we need it only
for H* functions we state it in full generality, for BMOA functions (see (7]
for definitions). We denote by ||g||, the BMO norm of g(e®).
dp(a)

5~ < 400, and
a

1
Let dp be a positive measure on [0,1) such that /
0

write .
o(z) = / z¥dp(a), z>0.
0

12
Lemma 2. If g € BMOA, |fq|12 B(lg1*)(1 = |z|?) is a Carleson measure with

Carleson norm bounded by K||g||., K depending on p.

Proof. We consider the function
1 l 2a
9(2)|
G = [ Edue), el <1.
For a > 0, a computation shows that A|g|?* = 4a?|g'|* |g|**~? when g # 0,

hence
AG = 4|g' 9] i(lgl*) -
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Without loss of generality we can assume that g is holomorphic on D. We
argue like in [7, p. 327]. Let z;,...,2y be the non-zero zeros in D, and let
N

Q. be the domain D\ | JA; where Aq = {2] < €}, A; = {|z — 2| < €},
J=0
j=1,...,N.
By Green’s formula applied to the function G in

, o 1 2 ;
[ 1o 161*R (ol log rdA(e) = [ G(e?)as

0

N
19 1 0
- ——G) loe — — |G (lo )
Z/A(an B~ Gl (o8

Let r = |z — z,;|; then for z close to z;,

lg'(2)*lg(2)| 7 E(lg(2)I*) < Cr=*h(r?) .

Now, the hypothesis on u translates to

1
/ M|logac|dar: < +o00.
0 z

1
Hence |¢'|*|g| %1 (|g|2)logﬁ is integrable on D. Also, for |z — z;| = ¢

@l <e [ 55 dute)

0 &

which tends to 0 when € — 0, and

(&
veEl < [

which also tends to zero when multiplied by ¢|loge|. At zero we obtain
—27|G(0)| as limit when € — 0. Therefore

= [[ 16 G lae) () log — a2

_ —1— /27r 1 Ig(eif)z)|2a d'u,(a) g — /1 Ig(gllmx du(a)

27!'0 0 (6

1 62&

o du(e)

z/(; dla;(za) [) }lg(ew)lZa _ lg(0)|2a}g§ < (by Lemma 1)

<4/1dﬂ'(a 19) ( )l2ad0 </ dﬂ( )( “ “ )2cx

27T—o
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If 4, is an automorphism of the disc, applying this inequality to g o %,
changing variables in the area integral and using the invariance of the BM O
norm we get

sup [ 19/(:)Plote) gty - EZ )

|1 — zw|?

<o [BE ) < oo,

and the result follows, by [7, p. 239]. O

Taking for p a delta-mass at € we get Cegrell’s result [4] that |g'|?|g|*~2(1—
|z|?) is a Carleson measure. Taking du(a) = a'**da one gets that

_2_%(1 — 2]
lg1?| log |g||**=

is a Carleson measure for every € > 0.
Next lemma is the LP-version of Wolfl’s criteria for bounded solutions of

the d-equation ([7, p. 322]).

Lemma 3. Let 1 < p < 00, let G be a C function in D such that:
(a) G = p1)1, where M(p;) € LP and |3, |? log —1— is a Carleson measure.

(b) 0G = @21h,, where M(p2) € LP and || log ] is a Carleson measure.

Then there exists a C! function u in D, continuous on D such that

ou
B}—G

and
27
lu(ew)l” do<C
0

where C depends only of the LP-norms of M(p,), M(p2) and the Carleson
norms of the measures in (a), (b).

Proof. We adapt Wolff’s proof for the case p = co. Let g be the conjugate
exponent of p, 1 < g < co. By duality,

27
int (Il : 52 = &} =sup{ |- [ “Frae| : ke 3, el <1}
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where F is a priori solution, say the one given by the Cauchy kernel, which
is continuous on D. By Green’s formula

2l "Fkdg = ——//A (FFk) log——dA( )

Vs

// ¥(2)G log—dA // k(z log IdA(z) L+,

. . 1. .
We will prove now that if |¢|? log — is a Carleson measure with constant

E
K, then
@ [ FEEI ) log 1 dA() < Clkl 1M, K
D z

where C is an absolute constant. This will imply the required bound for I;.
For p = oo, ¢ = 1 this holds true as shown by Wolff reducing the situation
to k = g% with g € H?. Alternatively a real-analysis proof can be obtained
using the inequality, following from [6, Th. 1],

J[E@Nweog - aae) < [awe o)) a
D

where A(k) is the area function of &

A®)(E) (//F(ew)lk' () dA(z ))

and C(v) is given by

C(y)(e”) = es:?é)[ (&I_ //I W[ log |_i|_ dA)l/z

I being the tent over I. This method applies to situations where there is no

factorization.
For p = 1, ¢ = 0o, we use Schwarz inequality to bound the left member

of (4) by

(/L "“"2‘°g|‘i‘|dA<z>)l/2 (/[ 1ot tur 10g ﬁdmz))m

Ifk € BMOA, |K'|*log I-ETdA is a Carleson measure; since Carleson measures

operate on functions with integrable non-tangential maximal function, (4)
follows for p = 1, ¢ = 0o. Next, consider the operator, for fixed

/2

o L,
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1
where L, (k) = // k' o log ,—Z—ldA(z); let T2 be the tent space ([6])
D

Th ={p: M(p) € L*}.

We have shown that L is bounded from T to (BMOA)* and from T to
(H')*. By interpolation, we conclude that L is bounded from T? to (H9)*
ie.
ILy (k)| < Clikllq | Moll, K
(alternatively, ¢ can be replaced by the harmonic extension of M and argue
with the LP-spaces rather than the tent spaces).
It remains to bound I,. But

1
11 < [ G lpa(2)] () og rdA(2)
and this is easier: just note that M (ky;) < M(k)M(p,) is in L' and use

again that Carleson measures operate on such functions. (|

Note that the lemma holds if G, 0G are linear combinations Y ¢;1; with
©;, 1; as above.

Theorem 4. Let g;,g, € H*® such that |g|> = |g1]® + |g2|> > 0. Let p and i
be as above. Assume that

1 1

(LY erm,
lg1> B(lg1?)

Then there are fy, fo € HP such that fig, + fags = 1.

Proof. By a standard regularization argument we may assume that g;, g, are
holomorphic on D. The smooth solutions

9; .
Vi = 775 7’=1,2
lg|?

satisfy M (y;) € L? and the general holomorphic solutions are given by
J1 =1 +ugs f2 =2 —ugs
where u satisfies _ _
Ou _ 9192 91 9 def o
0z lgl* '
We need only check that G satisfies the hypothesis of Lemma 3. For (a) we
can take, by Lemma 2, 1; to be

_9_£~ 2y1/2 <|_9_§l~ 12y1/2
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and . )
9;
1= =, el S Tt -
Y lgPE(gP) 2 TN IglPa(lel?)
Similarly, G is a linear combination of terms of type

and we may take

lg]l2

g1, gJ ~ lgzl ~ i 2 . 2
_ gr 9 1
o = ohager 2 S PR

using again Lemma 2.

O

We note as a particular case of the theorem, corresponding to du(a) =

a'*éda, the sufficient condition

2+4¢€
(o) o

stated in the introduction.

4. Lemma 2 can be used as well to improve Cegrell’s result on the equation

f=fig + fage:
Theorem 5. If f,9,,9. € H® satisfy
If1 < lgl*(lgl*)
there exist fy, fo € H*™ such that f = fig, + f29>.
Proof. In this case it must be shown that the equation du = G where
9192 — 31 9>
0P T Iy

has a bounded solution. In this case

93] + lga| ~ lg1] ~ |g2]
|Gl S ll—glg—,_j,(lgP)l/Q I ll (Ig | )1/2 |g2| (|g2l )7

and |G|*(1 — |z|) is indeed a Carleson measure; similarly for 0G.
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