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UNIT INDICES OF SOME IMAGINARY COMPOSITE
QUADRATIC FIELDS II

MIKIHITO HIRABAYASHI

Let K be an imaginary abelian number field of type (2, 2, 2, 2)
containing the 8-th cyclotomic field Q(v/—1,v/2). Using the
fundamental units of real quadratic subfields of K, we give a
necessary and sufficient condition for the unit index Qx of K
to be equal to 2.

1. Introduction and Results.

Let K be an imaginary abelian number field and K, the maximal real subfield
of K. Let E and Eq be the groups of units of K and K|, respectively, and
let W be the group of roots of unity in K. Let Qx be the unit index of K,
ie.,

Qx = [E: WE,).

In the previous paper [4] we gave a necessary and sufficient condition for
Qx to be equal to 2 when K is an imaginary abelian number field (whose
Galois group is) of type (2,2,2,2) not containing the 8-th cyclotomic field
Q (\/:—1, \/i) In this paper we give such a condition when K contains
Q (v-1,v2).

In this paper we use the following notation, unless otherwise specified.

N, Z,Q : the sets of natural numbers, rational integers and rational num-
bers, respectively,

= (resp. 5 in k) : the equality up to a rational quadratic factor (resp.
the equality up to a square of a number of a field k),

dy,dy, - ,d; : square-free positive integers such that dy = dods, ds = dsdy,
ds §d1d2, d; :2:d1d2d3 and that d; = 2.

K= Q(vV=1,Vdi, Vi, V&) = Q(V=1,v2,Vdy,V/d) : an imaginary

abelian number field of type (2,2,2,2),
KO = Q(\/El:7\/£7\/d—3)7
E7 : the group of totally positive units of Ky,
KIZQ(\/d_Za\/E)a K2:Q(\/Eg?\/d—l_)a KSZQ(\/d_l?\/EZ_),
K, = Q (\/I, \/dzds) ) K; = Q (\/E; Vdel) , Kg = Q (\/E, d1d2) y
K7 = Q (V d2d37 V d3d1) )
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o;: agenerator of Gal(Ky/K,), ie., (0;) = Gal(Ko/K;) (1=1,2,---,7),

g; : the fundamental unit of k; = Q(V/d;), &; >1 (i=1,2,---,7),

N(z), Sp(z) : the absolute norm and the absolute trace of an algebraic
number z, respectively.

For a totally positive unit n of Ky, let

(1) £=¢&(n) =n+n" +2¢/m,
(2) 6=0(n) =&+£7 +2/E£
under the condition that

(3) Vet € K, and /€2 € k.

Let v be the number of ¢ for which N(g;) = -1 (i =1,2,---,7), ie,
v=#{i|i=1,2,---,7;N(&) = —1}.

Remark 1. Using Lemmas 3 and 6 we can show that the above condition
(3) follows from the equations

Niyxi(n) =1 inK; (i=1,2,6).

Our result is

Theorem. (1) Ifv >4, then Qx = 1.
(2) Suppose that v = 3 and that

N(e;) = N(e) = N(es) = -1

for s,t € {1,2,---,7} (s # t) different from 3. If dsdt§d3 does not hold,
then Qg = 1.
(3) Suppose that v < 2 or that v = 3 and dsdt§d3 holds for above s,t.

Then Qg = 2 if and only if there exists a unit n in Ef such that

7

(4) n= Hcfi'“ . H 5? (ai,bj =0 or ].)

=1 N(ej)=+1
satisfying the following conditions (i), (ii) :

(i)
Nk, k. (1) = 1 mK, (a=1,26),

Nko/k,(n) = 1 in Ky, but not in K5 (8 =3,4,5,7).
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(ii)
0=0(n= (2+V2)dpds in ks =Q(V2)
for some e; € {0,1}.
Moreover, in the representation (4) of n, the number of j’s for which
b; = 1 is greater than one.

Remark 2. When v = 3 and dsdt§d3 holds for s, in Theorem, we have

examples of Qx =1 and Qx =2 :
If dy = 5,dy = 21, then Qg = 1, which is checked by Proposition 1.
If dy = 7,d, = 41, then Qx = 2. Because,

1
n=VeEVe = 5 (3V2+Vid) - (2v2+7)
satisfies the condition (3) of Theorem. In fact,

=6(n) = (2 + \/5) 7 in k3.

Remark 3. In the Theorem, when
b
H Ei = Ej1€jas
N(e;)=+1
it holds that d;, dj2?d3 = 2, as seen in Lemma 5 (2).
The assertions (1) and (2) of the Theorem are easily obtained in §3 from

Proposition 1. Let L be the composite of a 2-power-th cyclotomic field
Q(¢) (¢ = exp(2mi/2™),m > 2) and n independent real quadratic fields
Q (V/D;) where D, are square-free positive integers (i = 1,2,--- ,n), that is,

L=Q(¢VDy,VDs, -+ ,V/Dy).

IfDy =Dy =---=D, =1 (mod 4), then Qp = 1.

2. Characterization of n € E,.

Our argument depends on
Lemma 1 (cf. [3, Satz 15]). Qx = 2 if and only if there exists a unit

Therefore, in order to determine the alternative Qx = 1 or 2, we investi-
gate such n € Ej. We replace the definition of Fy in [4] by

E, = {neEgLIKO(\/Ty)zKO <\/2+\/§)}.
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Here we note that if n € Ey, 7 is totally positive.

Lemma 2 (cf. [4, Lemma 1]). For n € E,, we have

N’ = eitey? ey

for some x; € Z.

Proof. For n € E,, we can put

4 1 T2

n° = ejles? 77 (z; € Z).

In fact, for a (2,2)-extension K/k with Galois group Gal(K/k) = (o,7) we

have
a1+0al+r

(ao)l+ar
for any o € K, a # 0. By this formula we see that E; C Ej, where Ej is the

subgroup of E, generated by +e; (i =1,2,---,7).
We show that every z; is even.

Since K, (y/n) = Ko (\/2+\/§), we have n = (2+ \/5) a? for some
oy € Ky. Then

(1’2:

(5) (2—’1-\/5)4043 = el'ex? €7,

Taking the norms Nk, k, and Nk, /i, (i # 3) of this equation (5) and then
the positive fourth root, we have

4
(2 + \/i) JVKO//C:;(O‘O)2 = 653 and 22NKo/ki (O‘O)2 = 5?7

respectively. Here we recall that €3 and ¢; are positive. These equations
show that €7 is square in k; and hence z; = 0 (mod 2) for every . [l

Lemma 3 ([2, Satz 1]). Let K; be a field with char(K;) # 2 and K,
a quadratic extension over K,. Let n be an element of Ky which is not a
square in K.

(1) Ko (\/’f_]) /K1 15 Galois < NKo/Kl(n)?l H’LKO

(2) Ko (/n) /K is an extension of type (2,2) <= Nk, /k, (7})?1 in K.
(3) Ko (v/n) /K, is cyclic <= Ng,/x, (n)—?-l in Ky, but not in K.

Lemma 4 (cf. [4, Lemma 3]). Let n € E, and put

n* = e¥ed-.- el (z; € Z).
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(1) If there ezists an even x;, then N(g;) = +1 for each odd z;.
(2) Ifzy =2y =-+- =27 =1 (mod 2), then N(e;) = N(gy) = -
N(€7).

We can prove this Lemma 4 as in the same way in [4, Lemma 3].
Lemma 5. Letn € E, and put
(6) n = eflesr- el (z; € Z).

(1)

(2)
and d;d;

There exist at least two odd integers among the x;’s.
If x,,:c] (i # j) are odd and the others z;, are even, then d; # 2,d; # 2

MH

Proof of Lemma 5. (1) First we suppose that all z, are even. Then 7 is a
product of some of ¢;’s. Noting that 7 is contained in (E})* = Ej N EY,
we see by [4, Proposition 1] that 7 is, up to a square, a product of some of
following totally positive units :

€i (when N(g;) = +1),

Nij = €€, (when dzdjfdk and N(g;) = N(g;) = N(eg) = —1),

Nigk := €;€;€x€ (When d,-d]dk:Q:d, and N(e;) = N(gj) = N(gx) = N(ey)
=-1).

For a unit €; with N(g;) = +1 we have

nSp(€) = €
where n = ¢, and £ = ¢; + 1. For n = n,; or n;;; we also have by
[5, Proof of Zusatz 1] or by [4, Lemma 6] that
nSp(§) = &
where
5 = EiEjEy — & —Ej — &g
or

€ =ceiciene + 1 — (e56, + €56k + i + 561 + €561 + €xEr),

respectively. Therefore, Ky (\/E) , Ko (, /Th‘]) and K| (, /mjk) are 2-elemen-
tary extensions over Q and so is K, (,/7), which contradicts n € E.

Next we suppose that z; is odd and the other z; are even. Choose K for
which /d; ¢ K;. Taking the norm N, k, of the equation (6), we have

Nioyi;(n)° = N(e;) " e2tel™eit

v
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where K; = Q (Vd,,/d,) and dwfdudu- Hence, N(g;) = +1 and so i # 3.
(Then, as for above j, we can take 7 = 3,4,5 or 7.) Moreover, since z,, z,
and z,, are even, we have

NKO/KJ'(T]) =5iu€$vsﬁjw:2—‘1 in KJ

Therefore it follows from Lemma 3 that K, (/1) /K is of type (2, 2). How-
ever, the extension K, (/1) /K; = Ko (\/2 + \/i) /K is itself a cyclic ex-

tension of degree 4. Thus we get a contradiction.
(2) Choose k € {1,2,---,7} for which \/d; € K; and /d; ¢ K. Taking
the norm Nk, k, of the equation (6), we have

Nko/x, (n)? = €% N(e;)*n}

where 7 is a unit of K. Hence N(g;) = +1 and so d; # d3 = 2.
By exchanging 7 and j, we also have N(g;) = +1 and d; # ds.
Finally we show that d;d; = 2. Assume that this is false. Then, K; :=

Q (Vdids, /d;d3) contains neither v/d; nor \/d;. Taking the norm Ny, k,
of (6) and then the positive square root, we obtain

NKO/K[ (77) = Eiasgﬁgf ? 1 in Kl
where da’§did3,dg_;-djd3 and dA,?d[,dg, because, z,,zs and z., are even.

Therefore, it follows from Lemma 3 (2) that K, (,/77) /K; is an extension
of type (2,2). However, by the definition of K;, K, does not contain /ds
and so K; # K, K, or K. Hence K, (/1) /K, is a cyclic extension of degree
4, which is a contradiction. El

3. Proofs of Proposition 1 and Theorem.

Proof of Proposition 1. Let f(x) be the conductor of a Dirichlet character
x. For any even character x, of L, we have 2) f(xo) or 23| f(xo) and
2m+1) f(xo). Then, from [2, Satz 22] it follows that @ = 1. O

Remark 4. Proposition 1 is also proved in [1 (14.7) Corollary and the
comment on p. 87 - 88].
Proof of (1),(2) of Theorem. By the assumption we have

K = Q(V=1,V2,Vi,, V&), N(e)=N(e)=N(es) = 1

for suitable d,,d; # d3. Then for every odd prime p dividing d.d;, we have
p =1 (mod 4). In fact, for example, by N(e,) = —1 we have z? —d,y*> = —4
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for some z,y € Z. Then, for an odd prime p dividing d,, 2 = —4 (mod p)
and hence (—1/p) = (—1)"= = 1, where ( /) is the Legendre symbol. Thus
we get p = 1 (mod 4).

Therefore
K =Q(V=1,v2,VD,, VD))

for some D,;,D; € N,D, = D; = 1 (mod 4). Thus Proposition 1 implies
that QK =1. O

In the following we prove the assertion (3) of Theorem, for which we need

Proposition 2. Let K and K, be as in the notation in §1. Let n be an
element of Ky which is not square in K.
(1) Ko (v/n) /Q is a Galois extension if and only if

(7) NKO/Ki(n)§1 inKy (i=1,2---,7).

(2) Ko (/1) /Q is an abelian extension of type (2,2,2,2) if and only if

(8) NKD/Ki(n)fl nK;, (i=12---,7).

(3) Ko (v/1) /Q is an abelian extension of type (2,2,4) and Ko (/1) [ks
of type (2,2,2) if and only if

Nio/k. (n) 51 in K, (a=1,2,6),

9)
Nk, sk, (1) §1 in Ky, but not in Kg (8 = 3,4,5,7).

Remark 5. This Proposition 2 remains valid if Ky = Q (\/5, Vdy, \/(_1;)

is replaced by K, = Q (Vdi,ds,/d3) with arbitrary d3 € N (ds :
square-free,d; > 2). Therefore, the condition (8) leads to the condition
(5) of [4].

For the proof of Proposition 2, we need the following two lemmas.

Lemma 6. Let k be an algebraic number field. Let Ky/k be an abelian
extension of type (2,2). Let K,,K, and K3 be the intermediate fields of
Ky/k. Letn be an element of K.

(1) Ko (y/n) /k is a Galois extension if and only if
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NKQ/K1(TI)?1 ano (Z=1,2,3)
(2) Suppose that Ko (\/n) [k is a Galois extension. Let
p=#{i|i=1,2,3;Ng, k(1) = 1 in K}

Then, K, (\/0) /k is quaternion, abelian of type (2, 4), dihedral or abelian of
type (2, 2, 2) if and only if p =0, 1, 2 or 3, respectively.

Lemma 7. Let G be a group of order 16. Assume that there exists a normal
subgroup N of G of order 2 with quotient group G/N of type (2,2,2). Then
G 1is isomorphic to one of the followings :

(a) a 2-elementary group

(b) an abelian group of type (2,2,4)

(c) a central product of an abelian subgroup A and a dihedral or quaternion
subgroup B of order 8 such that AB = G,ANB = N. (A is the center of

G.)

Lemma 6 is an immediate consequence of Lemma 3. Lemma 7 is a special
case of [6, (4.16) and Theorem 4.18].
Proof of Proposition 2. (1) Suppose that K, (/1) /Q is a Galois extension.
Then, for any quadratic subfield & of Ky, K, (1/7) /k is also a Galois exten-
sion. Hence, by Lemma 6 (1) we have

NKo/Ki(n) ? 1 inKp

for every intermediate field K; of Ky /k.

Conversely, suppose that the condition (7) is satisfied. For an automor-
phism ¢ of the algebraic closure Q of Q, the restriction of x, of o to Ko
belongs to the Galois group Gal(K,/Q) = {00 = 1,01, -+ ,07}. Then

ql Ko — Ti
for some i. By the assumption, we have
m” = mn;

for some n; € K. Therefore,

o un
M o=+/n7 =+
va Ve

is contained in K, (,/7) and whence K, (,/7) /Q is a Galois extension.
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(2), (3) At first, we suppose that K, (/7) /Q is a Galois extension with
Galois group G. Let N be the subgroup of G corresponding to K.

Here we assume that G is not abelian. Then, it follows from Lemma 7
that G is a central product of an abelian subgroup A and a non-abelian
subgroup B of degree 8. Let k be the subfield of K, (/1) corresponding to
B. Since ANB = N and since B is of order 8, & is a quadratic subfield of K,
ie., k =k, for some a € {1,2,---,7}. Then, K, (\/7) /k, is a quaternion or
dihedral extension. Let K| (i = 1,2,3) be the intermediate fields of Ky/k,
and let

n= #{iINKo/K:(n)§1 in K, }.

Then, by Lemma 6 (2) we have u = 0 or 2.

Now, suppose that the condition (9) is satisfied. Then, K, (,/7) /Q is a
Galois extension with Galois group G. If G is not abelian, then, for above
p and a, we have by the condition (9) that 4 = 3 or 1 according as a = 3 or
not, which is a contradiction. Therefore G must be abelian.

Moreover, the equations

Nko/xs(n) = 1 notinKy; (8=3,4,57)

imply that K, {\/n) /Kg is cyclic. Hence it follows from Lemma 7 that
Ko (/1) /Q is an abelian extension of type (2,2,4). And the equations

Nioyk.(n) =1 inK, (a=1,26)

imply that K, (\/77) /ks is an abelian extension of type (2,2,2).

Next, suppose that the condition (8) is satisfied. In a similar way we see
that K, (1/77) /Q is an abelian extension.

We show that Ko (1/7) /Q is of type (2,2,2,2). Assume that this is false,
i.e., assume that Ko (\/7) /Q is of type (2,2,4). Let, as above,

G = Gal (Ko (v7) /Q), N = Gal (K, (/) /Ko).

Then,
G/N = Gal(K,/Q)

is of type (2,2,2). By the assumption there exists an element o of G of order
4. Since the order of the coset o N of G/N is at most 2, o? is contained in
N. Hence N = (0?), because N has order 2. Let K; be the subfield of K
corresponding to (o). Then K, (/1) /K, is cyclic. Hence, by Lemma 3 (3),
we have

Nk, /. (1) = 1 not in K,
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which is a contradiction to the condition (8).
Thus we have proved the sufficiencies of (2) and (3) of Proposition 2.
Conversely, their necessities are immediately deduced from Lemma 3 .

O

For the proof of (3) of Theorem, we also need

Lemma 8 ([4, Lemma 5]). Let K; be an algebraic number field and K,
a quadratic estension of Ki. Let Ko (/o) (no € Ko, n0o ¢ K1) be a bi-
quadratic bicyclic extension of K; with Gal (K, (v/no) /K1) = (o,7) and
Gal (Ko (v/m0) /Ko) = (7). Let F be the intermediate field of Ko (\/To) /K1
fized by o. Then we have

F =K (Vo ++v/M0°) -

Proof of (3) of Theorem. Suppose that Qx = 2. Then, by Lemma 1 there
exists a unit 7 in EJ such that

KO(\/ﬁ)-—-Ko(\/Z—I—\/?_).

2 — 1 T2 T7
M = & & &

By Lemma 2 we have

for some z;€Z (i =1,2,---,7). And we see by Lemma 5 (1) that there are
at least two odd integers among z;’s.
If all z; are odd, then it follows from Lemma 4 (2) that

N(e1) = N(eg) = N(g3) = -+ = N(er) = -1,

and so v = 7, which contradicts our assumption v < 3. Then there exists
at least one even integer among z;’s. Hence Lemma 4 (1) implies that
N(e;) = +1 for odd z;. Therefore we may represent the 7 in question as

7
17=H6;“- H 5?" (a;,b; =0or 1),
1=1

N(e,)=+1

and Lemma 5 (1) shows that there are at least two b; = 1.
Since K, (/1) = Ko (\/2 + \/2—> is an extension of type (2,2,4) over

Q and of type (2,2,2) over k3 = Q (ﬁ), Proposition 2 (3) implies the
condition (3) (i) of Theorem.
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Moreover, it follows from Lemma 8 that K; (v€) = K (\/fo £+ /70°)
is the intermediate field of Ky (/1) /K; fixed by o or 7o, where o is an
automorphism of Q over Q such that ol = 01, (01) = Gal(Ky/K,) and 7
is a generator of Gal (K, (/) /Ko). Consequently we have K, (/) # Ko.

Similary we can show that ks (\/5) is an intermediate field of K; (V/£€) /ks
and that ks (\/5) # K,. Therefore

ks (V) = ks <\/ (2+v2) di‘d?)

for some e; € {0,1}. Thus we obtain the condition (3) (ii) of Theorem.
Conversely, suppose that there exists a unit n € Ey satisfying the condi-
tions (3) (i), (ii) of Theorem. Then, it follows from Proposition 2 (3) that

Ko (/1) is of type (2,2,4) over Q and of type (2,2,2) over k3 = Q (\/i)
By Lemma 8, we see that K, (v/£) is an intermediate field of K, (/1) /K;
and K; (v£) # Ko. Then we have

Ko (i) = Ko (VE).

In the same way we get
K, (\/Z) =K, (\/5) .

Therefore,
Ko (/) = Ko (VE) = Ko (V) .

By the condition (3) (ii) of Theorem we have

K, (V6) = K, <\/2+\/§).
KO(\/ﬁ):KO(\/er\/z‘),

from which Lemma 1 implies Qx = 2, as desired. O

Thus we obtain
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