A MEAN VALUE INEQUALITY WITH APPLICATIONS TO BERGMAN SPACE OPERATORS

Patrick Ahern and Željko Čučković

If u is integrable over the unit disc and $u=T u$, where T is the Berezin operator then it is known that u must be harmonic. In this paper we give examples to show that the condition $T u \geq u$ does not imply that u is subharmonic, but we are able to show that the condition $T u \geq u$ does imply that u must be "almost" subharmonic near the boundary in an appropriate sense. We give two versions of this "almost" subharmonicity, a "pointwise" version and a "weak-star" version. We give applications of these results to hyponormal Toeplitz operators on the Bergman space.

Introduction.

Let D be the open unit disc in the complex plane. We let $H^{\infty}(D)$ denote the space of bounded holomorphic functions in D and let $B(D)$ denote the Bergman space on D; the set of holomorphic functions f on D such that

$$
\int_{D}|f(z)|^{2} d A(z)<\infty
$$

where $d A$ denotes planar Lebesgue measure on $D . B(D)$ is a closed subspace of the Hilbert space $L^{2}(d A)$ and so there is an orthogonal projection P : $L^{2}(d A) \rightarrow B(D)$. If $\varphi \in L^{\infty}(d A)$ we define the Toeplitz operator T_{φ} : $B(D) \rightarrow B(D)$ by $T_{\varphi} f=P(\varphi f)$. For each $z \in D$ we have the kernel function $k_{z}(\zeta)=\frac{1}{\pi(1-\bar{z} \zeta)^{2}}$. For each $f \in B(D)$ we have $f(z)=\left\langle f, k_{z}\right\rangle$ where $\langle f, g\rangle$ denotes the inner product in $L^{2}(d A)$. We use the usual notation of $\|f\|_{2}^{2}=$ $\langle f, f\rangle$ for $f \in L^{2}(d A)$. Note that $\left\|k_{z}\right\|_{2}^{2}=\left\langle k_{z}, k_{z}\right\rangle=k_{z}(z)=\frac{1}{\pi\left(1-|z|^{2}\right)^{2}}$. For each $z \in D$ we have the biholomorphic involution $\varphi_{z}: D \rightarrow D$ given by $\varphi_{z}(\zeta)=\frac{z-\zeta}{1-\bar{z} \zeta}$. With these involutions we can define the Berezin transform $T u$ of any $u \in L^{1}(d A)$, by

$$
T u(z)=\frac{1}{\pi} \int_{D} u \circ \varphi_{z} d A
$$

Equivalently, after a change of variables, we have

$$
T u(z)=\frac{\left(1-|z|^{2}\right)^{2}}{\pi} \int_{D} \frac{u(\zeta)}{|1-\bar{\zeta} z|^{4}} d A(\zeta)
$$

Finally, if A is a bounded operator on a Hilbert space X, with norm $\|x\|$, we say A is hyponormal if $A^{*} A \geq A A^{*}$, or in other words, if

$$
\|A x\| \geq\left\|A^{*} x\right\| \text { for all } x \in X
$$

It is a simple matter to check that if u is harmonic in D, i.e., $\Delta u(z)=$ $\frac{\partial^{2}}{\partial z \partial \bar{z}} u(z) \equiv 0$, and $u \in L^{1}(d A)$, then $T u(z)=u(z)$ for all $z \in D$. In [1], the converse was established, i.e., if $T u=u$ in D then u must be harmonic. Now if u is subharmonic and in $L^{1}(d A)$ then it follows easily that $T u \geq u$ in D. We start Section 1 by showing the converse of this statement to be false, i.e., we show that there exists u (indeed a large class of such u) so that $T u \geq u$ in D but u is not subharmonic. However in Theorem 2 we show that the condition $T u \geq u$ in D implies some sort of vestigal subharmonicity near the boundary. We show, under a rather mild integrability condition on Δu, that if $T u \geq u$ in D then $\overline{\lim }_{z \rightarrow \zeta} \Delta u(z) \geq 0$ for all $\zeta \in \partial D$. Actually Theorem 2 gives a more precise "local" theorem. The main tool in the proof is a formula that represents $T u-u$ as an integral of Δu times a positive kernel. This is the content of Theorem 1.

Our second result of this type says that if $T u \geq u$ in D and if the measures $\Delta u\left(r e^{i \theta}\right) d \theta$ have a weak-star limit as $r \rightarrow 1$ on some interval I, then that limit is a positive measure on I. This is Theorem 3.

In the second section we give two applications of the results of the first section. In [2] H. Sadraoui showed that if $f, g \in H^{\infty}(D)$ and if $T_{f+\bar{g}}$ is hyponormal and if we assume that f^{\prime}, g^{\prime} both lie in the Hardy class H^{2}, then $\left|f^{\prime}\left(e^{i \theta}\right)\right| \geq\left|g^{\prime}\left(e^{i \theta}\right)\right|$ a.e. on the unit circle. Our first result says that if $f, g \in H^{\infty}(D)$ and $T_{f+\bar{g}}$ is hyponormal, then $\overline{\lim }_{z \rightarrow e^{i \theta}}\left(\left|f^{\prime}(z)\right|-\left|g^{\prime}(z)\right|\right) \geq 0$ for all $e^{i \theta}$. Our second result says that if, in addition, there is an arc I on the circle such that $f^{\prime} \in H^{2}(I)$, (this is defined precisely in Section 2), then g^{\prime} has the same property and $\left|f^{\prime}\left(e^{i \theta}\right)\right| \geq\left|g^{\prime}\left(e^{i \theta}\right)\right|$ a.e. on I. This last result can be viewed as a local version of Sadraoui's result and it contains his theorem as a special case.

Section 1.

We begin with an example of a function u such that $T u \geq u$ in D but u is not subharmonic. Note that $\Lambda(a)=\int_{D}\left|\varphi_{a}\right| \frac{d A}{\pi}$ is continuous and $\Lambda(0)=2 / 3$ so there exists $\delta>0$ such that $\Lambda(a)>\frac{1}{2}$ if $|a|<\delta$. Now let u be any
strictly convex function that is continuous and integrable on $[0,1)$ such that $u(0)=u(\alpha)=0$ for some $0<\alpha<\frac{1}{2}$. Then we have $u(r)<0$ for $0<r<\alpha$ and u has a minimum at a unique point $\beta, 0<\beta<\alpha$. We further assume that $\beta<\delta$. We regard u as a radial function on D. We claim any such u satisfies $T u \geq u$. First suppose $|a| \leq \beta$ then $u(a)=u(|a|)<0$. On the other hand

$$
\int\left|\varphi_{a}\right| \frac{d A}{\pi} \geq \frac{1}{2}>\alpha
$$

so

$$
0<u\left(\int\left|\varphi_{a}\right| \frac{d A}{\pi}\right) \leq \int u \circ \varphi_{a} \frac{d A}{\pi}
$$

the latter inequality is Jensen's. Hence

$$
u(a) \leq \int u \circ \varphi_{a} \frac{d A}{\pi}
$$

in this case.
If $|a|>\beta$ we have $a=\int \varphi_{a} \frac{d A}{\pi}$ and hence $|a| \leq \int\left|\varphi_{a}\right| \frac{d A}{\pi}$ and therefore

$$
u(a) \leq u\left(\int\left|\varphi_{a}\right| \frac{d A}{\pi}\right)
$$

because u is strictly increasing on $(\beta, 1)$. Another application of Jensen's inequality proves that $u(a) \leq \int u \circ \varphi_{a} \frac{d A}{\pi}$ in this case. Clearly u is not subharmonic since $u(0)=0$ and

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(r e^{i \theta}\right) d \theta=u(r)<0
$$

if $0<r<\alpha$.
Suppose $u \in C^{2}(D)$ and $0<r<1$, then starting from one of Green's identities we obtain the familiar formula

$$
\begin{equation*}
u(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(r e^{i \theta}\right) d \theta+\frac{2}{\pi} \int_{|\zeta| \leq r} \Delta u(\zeta) \log \frac{|\zeta|}{r} d A(\zeta) \tag{1}
\end{equation*}
$$

which we may rewrite as

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(r e^{i \theta}\right) d \theta-u(0)=\frac{2}{\pi} \int_{|\zeta| \leq r} \Delta u(\zeta) \log \frac{r}{|\zeta|} d A(\zeta) \tag{2}
\end{equation*}
$$

Next we multiply both sides of (2) by $2 r$ and integrate on r from 0 to 1 . We obtain

$$
\begin{equation*}
(T u)(0)-u(0)=\int_{|\zeta|<1} \Delta u(\zeta) K(\zeta) d A(\zeta) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
K(\zeta)=\frac{4}{\pi} \int_{|\zeta|}^{1} r \log \frac{r}{|\zeta|} d r=\frac{1}{\pi}\left[\log \frac{1}{|\zeta|^{2}}-\left(1-|\zeta|^{2}\right)\right] \tag{4}
\end{equation*}
$$

So far this is a purely formal calculation. To see what conditions are required on u, we look at the kernel K. We let $f(x)=\log \frac{1}{x}-(1-x)$, then an application of Taylor's formula with remainder shows that

$$
\begin{equation*}
f(x)=\frac{1}{2 t^{2}}(x-1)^{2} \quad \text { where } 0<x<t<1 \tag{5}
\end{equation*}
$$

From this we see that $f(x) \geq 0,0<x<1$ and
(6) $f(x) \geq \frac{1}{2}(1-x)^{2}$ for $0<x<1$, and $f(x) \leq 2(1-x)^{2}$ for $\frac{1}{2}<x<1$.

So (3) holds if $u \in C^{2}(D)$ and if

$$
\int_{|\zeta|<1}|u(\zeta)| d A(\zeta)<\infty \text { and } \int_{|\zeta|<1}|\Delta u(\zeta)|\left(1-|\zeta|^{2}\right)^{2} d A(\zeta)<\infty
$$

Now we wish to apply (3) not to u but to $u \circ \varphi_{z}$. This yields

$$
T u(z)-u(z)=\int_{|\zeta|<1} \Delta\left(u \circ \varphi_{z}\right)(\zeta) K(\zeta) d A(\zeta) .
$$

Recalling that $\Delta\left(u \circ \varphi_{z}\right)(\zeta)=(\Delta u)\left(\varphi_{z}(\zeta)\right)\left|\varphi_{z}^{\prime}(\zeta)\right|^{2}$ and making the change of variables $\omega=\varphi_{z}(\zeta)$ we arrive at the following

Theorem 1. Suppose that $u \in C^{2}(D)$ and that

$$
\int_{|\zeta|<1}|u(\zeta)| d A(\zeta)<\infty
$$

and

$$
\int_{|\zeta|<1}|\Delta u(\zeta)|\left(1-|\zeta|^{2}\right)^{2} d A(\zeta)<\infty
$$

Then

$$
T u(z)-u(z)=\int_{|\zeta|<1} \Delta u(\zeta) K(z, \zeta) d A(\zeta)
$$

where

$$
K(z, \zeta)=\frac{1}{\pi}\left[\log \frac{1}{\left|\varphi_{z}(\zeta)\right|^{2}}-\left(1-\left|\varphi_{z}(\zeta)\right|^{2}\right)\right] .
$$

Moreover the kernel K satisfies:

$$
\begin{equation*}
K(z, \zeta) \geq \frac{1}{2 \pi}\left[\frac{\left(1-|z|^{2}\right)\left(1-|\zeta|^{2}\right)}{|1-\bar{z} \zeta|^{2}}\right]^{2} \quad \text { for } z, \zeta \in D \tag{7}
\end{equation*}
$$

and

$$
\begin{align*}
K(z, \zeta) \leq & \frac{2}{\pi}\left[\frac{\left(1-|z|^{2}\right)\left(1-|\zeta|^{2}\right)}{|1-\bar{z} \zeta|^{2}}\right]^{2} \quad \text { if } \tag{8}\\
& \frac{\left(1-|z|^{2}\right)\left(1-|\zeta|^{2}\right)}{|1-\bar{z} \zeta|^{2}}<\frac{1}{2}
\end{align*}
$$

Proof. Everything has been proved except (7) and (8) but they follow from (6) and the well-known identity

$$
1-\left|\varphi_{z}(\zeta)\right|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-|\zeta|^{2}\right)}{|1-\bar{z} \zeta|^{2}}
$$

The following well-known estimate is proved by a straightforward calculation that we omit.

Lemma 1. There exists a constant $C_{0}>0$ such that

$$
\int_{|\zeta|<1} \frac{\left(1-|\zeta|^{2}\right)^{2}}{|1-\bar{z} \zeta|^{4}} d A(\zeta) \geq C_{0} \log \frac{1}{1-|z|}
$$

Theorem 2. Suppose that $u \in C^{2}(D)$,

$$
\begin{aligned}
& \int_{|\zeta|<1}|u(\zeta)| d A(\zeta)<\infty \\
& \int_{|\zeta|<1}|\Delta u(\zeta)|\left(1-|\zeta|^{2}\right)^{2} d A(\zeta)<\infty
\end{aligned}
$$

and that $\varlimsup_{z \rightarrow \zeta_{0}} \Delta u(z)<0$ for some $\zeta_{0} \in \partial D$. Then there exists $\delta>0$ such that $T u(z)<u(z)$ for all $z \in D$ such that $\left|z-\zeta_{0}\right|<\delta$.
Proof. For convenience we assume that $\zeta_{0}=1$. By assumption there exists $a>0$ and $\epsilon>0$ such that if $z \in D$ and $|z-1|<\epsilon$, then $\Delta u(z) \leq-a$. If $D(1, \epsilon)$ denotes the set of points in D with $|z-1|<\epsilon$ and $D(1, \epsilon)^{\prime}$ the complement of $D(1, \epsilon)$ in D, then we have

$$
\begin{aligned}
\int_{D} \Delta u(\zeta) K(z, \zeta) d A(\zeta)= & \int_{D(1, \epsilon)} \Delta u(\zeta) K(z, \zeta) d A(\zeta) \\
& \quad+\int_{D(1, \epsilon)^{\prime}} \Delta u(\zeta) K(z, \zeta) d A(\zeta)
\end{aligned}
$$

We deal with the second integral: if $|z-1|<\epsilon / 2$ and $\zeta \in D(1, \epsilon)^{\prime}$, then $|1-\bar{\zeta} z|$ is bounded away from 0 and hence

$$
\frac{\left(1-|z|^{2}\right)\left(1-|\zeta|^{2}\right)}{|1-\bar{\zeta} z|^{2}} \leq C\left(1-|z|^{2}\right)<1 / 2
$$

if $1-|z|^{2}$ is sufficiently small, and hence by (8) we have $K(z, \zeta) \leq C(1-$ $\left.|z|^{2}\right)^{2}\left(1-|\zeta|^{2}\right)^{2}$, so

$$
\left|\int_{D(1, \epsilon)^{\prime}} \Delta u(\zeta) K(z, \zeta) d A(\zeta)\right| \leq C\left(1-|z|^{2}\right)^{2} \int_{D(1, \epsilon)^{\prime}}|\Delta u(\zeta)|\left(1-|\zeta|^{2}\right)^{2} d A(\zeta)
$$

Note that this is $O\left(\left(1-|z|^{2}\right)^{2}\right)$. Next

$$
\begin{aligned}
\int_{D(1, \epsilon)} \Delta u(\zeta) K(z, \zeta) d A(\zeta) \leq & -a \int_{D(1, \epsilon)} K(z, \zeta) d A(\zeta) \\
= & -a \int_{D} K(z, \zeta) d A(\zeta)+a \int_{D(1, \epsilon)^{\prime}} K(z, \zeta) d A(\zeta) \\
\leq & -\frac{a}{2 \pi} \int_{D} \frac{\left(1-|z|^{2}\right)^{2}\left(1-|\zeta|^{2}\right)^{2}}{|1-\bar{\zeta} z|^{4}} d A(\zeta) \\
& +\frac{2 a}{\pi} \int_{D(1, \epsilon)^{\prime}} \frac{\left(1-|z|^{2}\right)^{2}\left(1-|\zeta|^{2}\right)^{2}}{|1-\bar{\zeta} z|^{4}} d A(\zeta) \\
\leq & -C_{0} a\left(1-|z|^{2}\right)^{2} \log \frac{1}{1-|z|}+O\left(\left(1-|z|^{2}\right)^{2}\right)
\end{aligned}
$$

Here we have used (7) and (8) again as well as Lemma 1. Combining these estimates we have, for $|1-z|<\epsilon / 2$,

$$
T u(z)-u(z) \leq-C_{0} a\left(1-|z|^{2}\right)^{2} \log \frac{1}{1-|z|}+O\left(\left(1-|z|^{2}\right)^{2}\right)
$$

which becomes negative as z approaches 1 .

The next lemma shows that the inequality $T u \geq u$ is preserved under certain convolutions.

Lemma 2. Suppose $u \in L^{1}(D)$ and $T u \geq u$ in D. Suppose $w \geq 0$ is a bounded measurable function on the circle. Define, for $z \in D$,

$$
\begin{equation*}
U(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z e^{-i t}\right) w\left(e^{i t}\right) d t \tag{9}
\end{equation*}
$$

Then $U \in L^{1}(D)$ and

$$
T U \geq U \quad \text { in } D
$$

Proof. Note that if $z=r e^{i \theta}$, then

$$
\begin{aligned}
U\left(r e^{i \theta}\right) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(r e^{i(\theta-t)}\right) w\left(e^{i t}\right) d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(r e^{i t}\right) w\left(e^{i(\theta-t)}\right) d t
\end{aligned}
$$

By hypothesis,

$$
u\left(r e^{i t}\right) \leq \frac{\left(1-r^{2}\right)^{2}}{\pi} \int_{0}^{1} \rho \int_{0}^{2 \pi} \frac{u\left(\rho e^{i(t-s)}\right)}{\left|1-r \rho e^{i s}\right|^{4}} d s d \rho
$$

Since $w \geq 0$ we can multiply both sides of this inequality by $w\left(e^{i(\theta-t)}\right)$ and integrate on t. After interchanging the order of integration we get

$$
\begin{aligned}
U\left(r e^{i \theta}\right) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(r e^{i t}\right) w\left(e^{i(\theta-t)}\right) d t \\
& \leq \frac{\left(1-r^{2}\right)^{2}}{\pi} \int_{0}^{1} \rho \int_{0}^{2 \pi} \frac{1}{\left|1-r \rho e^{i s}\right|^{4}} \int_{0}^{2 \pi} u\left(\rho e^{i(t-s)}\right) w\left(e^{i(\theta-t)}\right) \frac{d t}{2 \pi} d s d \rho \\
& =\frac{\left(1-r^{2}\right)^{2}}{\pi} \int_{0}^{1} \rho \int_{0}^{2 \pi} \frac{1}{\left|1-r \rho e^{i s}\right|^{4}} \int_{0}^{2 \pi} u\left(\rho e^{i t}\right) w\left(e^{i(\theta-t-s)}\right) \frac{d t}{2 \pi} d s d \rho \\
& =\frac{\left(1-r^{2}\right)^{2}}{\pi} \int_{0}^{1} \rho \int_{0}^{2 \pi} \frac{1}{\left|1-r \rho e^{i s}\right|^{4}} U\left(\rho e^{i(\theta-s)}\right) d s d \rho \\
& =(T U)\left(r e^{i \theta}\right) .
\end{aligned}
$$

The next theorem says that if $T u \geq u$ and Δu has a weak* limit on some interval, that limit is non-negative.
Theorem 3. Suppose that $u \in C^{2}(D) \cap L^{1}(D)$, and that $\int_{D}|\Delta u(\zeta)|(1-$ $\left.|\zeta|^{2}\right)^{2} d A(\zeta)<\infty$. Suppose further that $T u \geq u$ in D and that there is a closed arc I on the boundary of the unit circle and a finite Borel measure μ on I such that for all continuous functions φ on I we have

$$
\lim _{r \rightarrow 1} \int_{I} \Delta u\left(r e^{i \theta}\right) \varphi\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}=\int_{I} \varphi d \mu
$$

then $\mu \geq 0$ on $\stackrel{\circ}{I}$, the interior of I.
Proof. Let $w\left(e^{-i t}\right)$ be a continuous non-negative function with compact support in $\stackrel{\circ}{I}$, let

$$
U(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z e^{-i t}\right) w\left(e^{i t}\right) d t
$$

From Lemma 2 we know that $T U \geq U$ in D. Since the Laplacian commutes with rotations it follows from (9) that

$$
\begin{equation*}
\Delta U(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi}(\Delta u)\left(z e^{-i t}\right) w\left(e^{i t}\right) d t \tag{10}
\end{equation*}
$$

and hence that

$$
\int_{D}|\Delta U(\zeta)|\left(1-|\zeta|^{2}\right)^{2} d A(\zeta)<\infty
$$

It follows from Theorem 2 that there exists $r_{k} \rightarrow 1$ and $\theta_{k} \rightarrow 0$ such that $\lim _{k \rightarrow \infty} \Delta U\left(r_{k} e^{i \theta_{k}}\right) \geq 0$. Now it follows from (10) that

$$
\Delta U\left(r_{k} e^{i \theta_{k}}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Delta u\left(r_{k} e^{i t}\right) w\left(e^{i\left(\theta_{k}-t\right)}\right) d t
$$

Notice that for all k sufficiently large $w\left(e^{i\left(\theta_{k}-t\right)}\right)$ will have its support in $\stackrel{\circ}{I}$. We have

$$
\begin{aligned}
& \int_{I} w\left(e^{-i t}\right) d \mu(t)-\Delta U\left(r_{k} e^{i \theta_{k}}\right) \\
& \quad=\int_{I} w\left(e^{-i t}\right) d \mu(t)-\int_{I} \Delta u\left(r_{k} e^{i t}\right) w\left(e^{-i t}\right) \frac{d t}{2 \pi} \\
& \quad+\int_{I} \Delta u\left(r_{k} e^{i t}\right)\left[w\left(e^{-i t}\right)-w\left(e^{i\left(\theta_{k}-t\right)}\right)\right] \frac{d t}{2 \pi}
\end{aligned}
$$

The first difference above goes to 0 as $r_{k} \rightarrow 1$ by hypothesis. The second difference is bounded in modulus by

$$
\left(\sup _{k} \int_{I}\left|\Delta u\left(r_{k} e^{i t}\right)\right| \frac{d t}{2 \pi}\right)\left(\sup _{t}\left|w\left(e^{-i t}\right)-w\left(e^{i\left(\theta_{k}-t\right)}\right)\right|\right)
$$

The first factor is bounded, by the principle of uniform boundedness and the second goes to zero as $k \rightarrow \infty$ by the uniform continuity of w. We have shown that $\int_{I} w\left(e^{-i t}\right) d \mu(t) \geq 0$ for all non-negative $w\left(e^{-i t}\right)$ continuous with compact support in $\stackrel{\circ}{I}$; the result follows.

Section 2.

Now suppose that f and g are holomorphic in D and $f+\bar{g}=\varphi$ is bounded. We wish to calculate $\left\|T_{\varphi} F\right\|_{2}^{2}$ for $F \in H^{\infty}(D)$

$$
T_{\varphi} F=P(f+\bar{g}) F=f F+P(\bar{g} F)
$$

$$
\begin{aligned}
\left\|T_{\varphi} F\right\|_{2}^{2} & =\langle f F+P(\bar{g} F), f F+P(\bar{g} F)\rangle \\
& =\|f F\|_{2}^{2}+\|P \bar{g} F\|_{2}^{2}+\langle P \bar{g} F, f F\rangle+\langle f F, P \bar{g} F\rangle \\
& =\|f F\|_{2}^{2}+\|P \bar{g} F\|_{2}^{2}+\langle\bar{f} \bar{g} F, F\rangle+\langle f g F, F\rangle
\end{aligned}
$$

since P is self-adjoint.
By interchanging the roles of f and g we see that

$$
\left\|T_{\bar{\varphi}} F\right\|_{2}^{2}=\|g F\|_{2}^{2}+\langle\bar{f} \bar{g} F, F\rangle+\langle f g F, F\rangle+\|P \bar{f} F\|_{2}^{2}
$$

Hence T_{φ} is hyponormal if and only if

$$
\begin{equation*}
\|f F\|_{2}^{2}+\|P \bar{g} F\|_{2}^{2} \geq\|g F\|_{2}^{2}+\|P \bar{f} F\|_{2}^{2} \tag{9}
\end{equation*}
$$

for all $F \in H^{\infty}(D)$.
In particular (9) holds if $F=k_{z}$ for some $z \in D$. Now it is immediate that $\bar{g} k_{z}-\overline{g(z)} k_{z} \perp B(D)$ for any $g \in H^{\infty}(D)$ and hence that $P\left(\bar{g} k_{z}\right)=\overline{g(z)} k_{z}$.

Theorem 4. Suppose that f and g are holomorphic in D, that $f+\bar{g}=\varphi$ is bounded in D and that T_{φ} is hyponormal, then $T u \geq u$ in D where $u(z)=$ $|f(z)|^{2}-|g(z)|^{2}$.

Proof. By the above discussion, if we let $F=k_{z}$ in (9) we get

$$
\begin{equation*}
\left\|f k_{z}\right\|_{2}^{2}+|g(z)|^{2}\left\|k_{z}\right\|_{2}^{2} \geq\left\|g k_{z}\right\|_{2}^{2}+|f(z)|^{2}\left\|k_{z}\right\|_{2}^{2} \tag{10}
\end{equation*}
$$

Since $\left\|k_{z}\right\|_{2}^{2}=\frac{1}{\pi\left(1-|z|^{2}\right)^{2}}$, a minor rearrangement of (10) proves the theorem.

Corollary. Suppose that f and g are holomorphic in D, that $f+\bar{g}=\varphi$ is bounded in D and that T_{φ} is hyponormal, then $\varlimsup_{z \rightarrow \zeta}\left(\left|f^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}\right) \geq 0$ for every $\zeta \in \partial D$. In particular, if f^{\prime} and g^{\prime} are continuous at $\zeta \in \partial D$, then $\left|f^{\prime}(\zeta)\right| \geq\left|g^{\prime}(\zeta)\right|$.

Proof. The proof follows from the theorem and the simple observation that $\Delta|f|^{2}=\left|f^{\prime}\right|^{2}$ for any holomorphic f.

Suppose that f is holomorphic in an open set of the form

$$
\left\{r e^{i \theta}: r_{0}<r<1 \quad \text { and } \quad e^{i \theta} \in I\right\}
$$

where I is some open arc on the boundary of the unit circle. We say that $f \in H^{2}(I)$ if
(i) f has polynomial growth i.e., there exists $A>0$ such that $f\left(r e^{i \theta}\right)=$ $O\left((1-r)^{-A}\right)$ for all $e^{i \theta} \in I$.
(ii) There exists $r_{k} \rightarrow 1$ such that

$$
\int_{I}\left|f\left(r_{k} e^{i \theta}\right)\right|^{2} d \theta \leq C<\infty, \quad \text { all } \quad k
$$

The next lemma is standard. Since we know of no convenient references we indicate the proof.

Lemma 3. Suppose $f \in H^{2}(I)$, then there exists $F \in L^{2}(I)$ such that $\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)=F\left(e^{i \theta}\right)$ a.e. on I and for every compact subinterval $J \subset I$

$$
\lim _{r \rightarrow 1} \int_{J}\left|f\left(r e^{i \theta}\right)-F\left(e^{i \theta}\right)\right|^{2} d \theta=0
$$

In particular, $\varlimsup_{r \rightarrow 1} \int_{J}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta<\infty$.
Proof. Pick a compact interval L such that $J \subseteq \stackrel{\circ}{L} \subseteq L \subseteq I$. Let $e^{i \theta_{1}}, e^{i \theta_{2}}$ be the end points of L and choose N such that

$$
\lim _{r \rightarrow 1}\left[\left(r e^{i \theta}-e^{i \theta_{1}}\right)\left(r e^{i \theta}-e^{i \theta_{2}}\right)\right]^{N} f\left(r e^{i \theta}\right)=0
$$

if $\theta=\theta_{1}$ or θ_{2}. This is possible by i). Let $g(z)=\left[\left(z-e^{i \theta_{1}}\right)\left(z-e^{i \theta_{2}}\right)\right]^{N} f(z)$. Let $r_{0}<r_{1}<1$ and $\Delta_{k}=\left\{r e^{i \theta}: r_{1} \leq r \leq r_{k}, e^{i \theta} \in L\right\}$. Let $\partial \Delta_{k}=\Gamma_{k} \cup L_{k}$ where $L_{k}=\left\{r_{k} e^{i \theta}: e^{i \theta} \in L\right\}$. If $z \in \AA_{k}$ we have

$$
g(z)=\frac{1}{2 \pi i} \int_{\Gamma_{k}} \frac{g(\zeta)}{\zeta-z} d \zeta+\frac{1}{2 \pi i} \int_{L_{k}} \frac{g(\zeta)}{\zeta-z} d \zeta
$$

If we let $k \rightarrow \infty$ we get $g(z)=g_{1}(z)+g_{2}(z)$ where $g_{1}(z)$ is holomorphic on $\stackrel{\circ}{L}$ and $g_{2}(z)$ is the Cauchy integral of an L^{2} function on the circle. It follows that the conclusions of the lemma hold for g and hence for f.

Theorem 5. Suppose that f and g are holomorphic in D, that $f+\bar{g}=\varphi$ is bounded in D and that T_{φ} is hyponormal. Suppose further that there is an open interval I such that $f^{\prime} \in H^{2}(I)$. Then for any open subinterval $J \subseteq \bar{J} \subseteq I g^{\prime} \in H^{2}(J)$ and $\left|f^{\prime}\left(e^{i \theta}\right)\right| \geq\left|g^{\prime}\left(e^{i \theta}\right)\right|$ almost everywhere on I.

Proof. Let $w\left(e^{-i t}\right)$ be a continuous function with compact support in I such that $0 \leq w \leq 1$ and $w\left(e^{-i t}\right) \equiv 1$ on a neighborhood of \bar{J}, combining Theorems 2 and 3 with Lemma 2 we have the existence of $r_{k} \rightarrow 1$ and $\theta_{k} \rightarrow 0$
such that

$$
\lim _{k \rightarrow \infty} \int_{0}^{2 \pi}\left(\left|f^{\prime}\left(r_{k} e^{i t}\right)\right|^{2}-\left|g^{\prime}\left(r_{k} e^{i t}\right)\right|^{2}\right) w\left(e^{i\left(\theta_{k}-t\right)}\right) d t \geq 0
$$

Let L be compact interval so that $\bar{J} \subseteq \stackrel{\circ}{L} \subseteq L \subseteq I$. As before, for large k, $w\left(e^{i\left(\theta_{k}-t\right)}\right)$ has support in L and hence,

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|f^{\prime}\left(r_{k} e^{i t}\right)\right|^{2} w\left(e^{i\left(\theta_{k}-t\right)}\right) d t \\
& \quad \leq \int_{L}\left|f^{\prime}\left(r_{k} e^{i t}\right)\right|^{2} d t \leq C<\infty, \quad \text { by Lemma } 3
\end{aligned}
$$

Also, for large $k, w\left(e^{i\left(\theta_{k}-t\right)}\right) \equiv 1$ on J from which it follows that

$$
\varliminf_{k \rightarrow \infty} \int_{J}\left|g^{\prime}\left(r_{k} e^{i t}\right)\right|^{2} d t \leq C<\infty
$$

Now since $g \in H^{\infty}(D), g^{\prime}$ has polynomial growth and hence $g^{\prime} \in H^{2}(J)$. It now follows that the measures $\left(\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2}-\left|g^{\prime}\left(r e^{i \theta}\right)\right|^{2}\right) \frac{d \theta}{2 \pi}$ have a weak * limit as $r \rightarrow 1, e^{i \theta} \in J$, and that this limit is $\left(\left|f^{\prime}\left(e^{i \theta}\right)\right|^{2}-\left|g^{\prime}\left(e^{i \theta}\right)\right|^{2}\right) \frac{d \theta}{2 \pi}$. It follows that $\left|f^{\prime}\left(e^{i \theta}\right)\right| \geq\left|g^{\prime}\left(e^{i \theta}\right)\right|$ a.e. on J, and hence on I since $J \subseteq \frac{2 \pi}{J} \subseteq I$, was arbitrary.

References

[1] P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, Journal of Functional Analysis, vol. 111, 2 (1993), 380-397.
[2] H. Sadraoui, Hyponormal Toeplitz operators on the Bergman space, preprint.
Received October 12, 1993.
University of Wisconsin-Madison
Madison, WI 53706
E-mail address: ahern@math.wisc.edu
AND
University of Toledo
Toledo, OH 43606
E-mail address: zcuckovi@math.utoledo.edu

