A MEAN VALUE INEQUALITY WITH APPLICATIONS TO BERGMAN SPACE OPERATORS

PATRICK AHERN AND ŽELJKO ČUČKOVIĆ

If u is integrable over the unit disc and u = Tu, where T is the Berezin operator then it is known that u must be harmonic. In this paper we give examples to show that the condition $Tu \ge u$ does not imply that u is subharmonic, but we are able to show that the condition $Tu \ge u$ does imply that u are able to show that the condition $Tu \ge u$ does imply that u must be "almost" subharmonic near the boundary in an appropriate sense. We give two versions of this "almost" subharmonicity, a "pointwise" version and a "weak-star" version. We give applications of these results to hyponormal Toeplitz operators on the Bergman space.

Introduction.

Let D be the open unit disc in the complex plane. We let $H^{\infty}(D)$ denote the space of bounded holomorphic functions in D and let B(D) denote the Bergman space on D; the set of holomorphic functions f on D such that

$$\int_D |f(z)|^2 dA(z) < \infty$$

where dA denotes planar Lebesgue measure on D. B(D) is a closed subspace of the Hilbert space $L^2(dA)$ and so there is an orthogonal projection P: $L^2(dA) \to B(D)$. If $\varphi \in L^{\infty}(dA)$ we define the Toeplitz operator T_{φ} : $B(D) \to B(D)$ by $T_{\varphi}f = P(\varphi f)$. For each $z \in D$ we have the kernel function $k_z(\zeta) = \frac{1}{\pi(1-\overline{z}\zeta)^2}$. For each $f \in B(D)$ we have $f(z) = \langle f, k_z \rangle$ where $\langle f, g \rangle$ denotes the inner product in $L^2(dA)$. We use the usual notation of $||f||_2^2 =$ $\langle f, f \rangle$ for $f \in L^2(dA)$. Note that $||k_z||_2^2 = \langle k_z, k_z \rangle = k_z(z) = \frac{1}{\pi(1-|z|^2)^2}$. For each $z \in D$ we have the biholomorphic involution $\varphi_z : D \to D$ given by $\varphi_z(\zeta) = \frac{z-\zeta}{1-\overline{z}\zeta}$. With these involutions we can define the Berezin transform Tu of any $u \in L^1(dA)$, by

$$Tu(z) = rac{1}{\pi} \int_D u \circ \varphi_z dA$$
.

Equivalently, after a change of variables, we have

$$Tu(z)=rac{(1-|z|^2)^2}{\pi}\int_D rac{u(\zeta)}{\left|1-\overline{\zeta}z
ight|^4} dA(\zeta)\,.$$

Finally, if A is a bounded operator on a Hilbert space X, with norm ||x||, we say A is hyponormal if $A^*A \ge AA^*$, or in other words, if

$$||Ax|| \ge ||A^*x||$$
 for all $x \in X$.

It is a simple matter to check that if u is harmonic in D, i.e., $\Delta u(z) = \frac{\partial^2}{\partial z \partial \overline{z}} u(z) \equiv 0$, and $u \in L^1(dA)$, then Tu(z) = u(z) for all $z \in D$. In [1], the converse was established, i.e., if Tu = u in D then u must be harmonic. Now if u is subharmonic and in $L^1(dA)$ then it follows easily that $Tu \ge u$ in D. We start Section 1 by showing the converse of this statement to be false, i.e., we show that there exists u (indeed a large class of such u) so that $Tu \ge u$ in D but u is not subharmonic. However in Theorem 2 we show that the condition $Tu \ge u$ in D implies some sort of vestigal subharmonicity near the boundary. We show, under a rather mild integrability condition on Δu , that if $Tu \ge u$ in D then $\overline{\lim}_{z\to\zeta}\Delta u(z) \ge 0$ for all $\zeta \in \partial D$. Actually Theorem 2 gives a more precise "local" theorem. The main tool in the proof is a formula that represents Tu - u as an integral of Δu times a positive kernel. This is the content of Theorem 1.

Our second result of this type says that if $Tu \ge u$ in D and if the measures $\Delta u(re^{i\theta})d\theta$ have a weak-star limit as $r \to 1$ on some interval I, then that limit is a positive measure on I. This is Theorem 3.

In the second section we give two applications of the results of the first section. In [2] H. Sadraoui showed that if $f, g \in H^{\infty}(D)$ and if $T_{f+\overline{g}}$ is hyponormal and if we assume that f', g' both lie in the Hardy class H^2 , then $|f'(e^{i\theta})| \geq |g'(e^{i\theta})|$ a.e. on the unit circle. Our first result says that if $f, g \in H^{\infty}(D)$ and $T_{f+\overline{g}}$ is hyponormal, then $\overline{\lim_{z\to e^{i\theta}}}(|f'(z)| - |g'(z)|) \geq 0$ for all $e^{i\theta}$. Our second result says that if, in addition, there is an arc I on the circle such that $f' \in H^2(I)$, (this is defined precisely in Section 2), then g' has the same property and $|f'(e^{i\theta})| \geq |g'(e^{i\theta})|$ a.e. on I. This last result can be viewed as a local version of Sadraoui's result and it contains his theorem as a special case.

Section 1.

We begin with an example of a function u such that $Tu \ge u$ in D but u is not subharmonic. Note that $\Lambda(a) = \int_D |\varphi_a| \frac{dA}{\pi}$ is continuous and $\Lambda(0) = 2/3$ so there exists $\delta > 0$ such that $\Lambda(a) > \frac{1}{2}$ if $|a| < \delta$. Now let u be any

strictly convex function that is continuous and integrable on [0,1) such that $u(0) = u(\alpha) = 0$ for some $0 < \alpha < \frac{1}{2}$. Then we have u(r) < 0 for $0 < r < \alpha$ and u has a minimum at a unique point β , $0 < \beta < \alpha$. We further assume that $\beta < \delta$. We regard u as a radial function on D. We claim any such u satisfies $Tu \ge u$. First suppose $|a| \le \beta$ then u(a) = u(|a|) < 0. On the other hand

$$\int |\varphi_a| \frac{dA}{\pi} \geq \frac{1}{2} > \alpha$$

so

$$0 < u\left(\int |\varphi_a| \frac{dA}{\pi}\right) \leq \int u \circ \varphi_a \frac{dA}{\pi},$$

the latter inequality is Jensen's. Hence

$$u(a) \leq \int u \circ \varphi_a \frac{dA}{\pi}$$

in this case.

If $|a| > \beta$ we have $a = \int \varphi_a \frac{dA}{\pi}$ and hence $|a| \leq \int |\varphi_a| \frac{dA}{\pi}$ and therefore

$$u(a) \leq u\left(\int |arphi_a| rac{dA}{\pi}
ight)\,,$$

because u is strictly increasing on $(\beta, 1)$. Another application of Jensen's inequality proves that $u(a) \leq \int u \circ \varphi_a \frac{dA}{\pi}$ in this case. Clearly u is not subharmonic since u(0) = 0 and

$$\frac{1}{2\pi}\int_0^{2\pi} u(re^{i\theta})d\theta = u(r) < 0$$

if $0 < r < \alpha$.

Suppose $u \in C^2(D)$ and 0 < r < 1, then starting from one of Green's identities we obtain the familiar formula

(1)
$$u(0) = \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) d\theta + \frac{2}{\pi} \int_{|\zeta| \le r} \Delta u(\zeta) \log \frac{|\zeta|}{r} dA(\zeta),$$

which we may rewrite as

(2)
$$\frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) d\theta - u(0) = \frac{2}{\pi} \int_{|\zeta| \le r} \Delta u(\zeta) \log \frac{r}{|\zeta|} dA(\zeta) \,.$$

Next we multiply both sides of (2) by 2r and integrate on r from 0 to 1. We obtain

(3)
$$(Tu)(0) - u(0) = \int_{|\zeta| < 1} \Delta u(\zeta) K(\zeta) dA(\zeta) ,$$

where

(4)
$$K(\zeta) = \frac{4}{\pi} \int_{|\zeta|}^{1} r \log \frac{r}{|\zeta|} dr = \frac{1}{\pi} \left[\log \frac{1}{|\zeta|^2} - (1 - |\zeta|^2) \right] \,.$$

So far this is a purely formal calculation. To see what conditions are required on u, we look at the kernel K. We let $f(x) = \log \frac{1}{x} - (1 - x)$, then an application of Taylor's formula with remainder shows that

(5)
$$f(x) = \frac{1}{2t^2}(x-1)^2$$
 where $0 < x < t < 1$.

From this we see that $f(x) \ge 0, 0 < x < 1$ and

(6)
$$f(x) \ge \frac{1}{2}(1-x)^2$$
 for $0 < x < 1$, and $f(x) \le 2(1-x)^2$ for $\frac{1}{2} < x < 1$.

So (3) holds if $u \in C^2(D)$ and if

$$\int_{|\zeta|<1} |u(\zeta)| dA(\zeta) < \infty \text{ and } \int_{|\zeta|<1} |\Delta u(\zeta)| (1-|\zeta|^2)^2 dA(\zeta) < \infty.$$

Now we wish to apply (3) not to u but to $u \circ \varphi_z$. This yields

$$Tu(z) - u(z) = \int_{|\zeta| < 1} \Delta(u \circ \varphi_z)(\zeta) K(\zeta) dA(\zeta).$$

Recalling that $\Delta(u \circ \varphi_z)(\zeta) = (\Delta u)(\varphi_z(\zeta))|\varphi'_z(\zeta)|^2$ and making the change of variables $\omega = \varphi_z(\zeta)$ we arrive at the following

Theorem 1. Suppose that $u \in C^2(D)$ and that

$$\int_{|\zeta|<1} |u(\zeta)| dA(\zeta) < \infty$$

and

$$\int_{|\zeta|<1} |\Delta u(\zeta)|(1-|\zeta|^2)^2 dA(\zeta) < \infty \,.$$

Then

$$Tu(z) - u(z) = \int_{|\zeta| < 1} \Delta u(\zeta) K(z,\zeta) dA(\zeta)$$

where

$$K(z,\zeta) = rac{1}{\pi} \left[\log rac{1}{|arphi_z(\zeta)|^2} - (1 - |arphi_z(\zeta)|^2)
ight] \,.$$

Moreover the kernel K satisfies:

(7)
$$K(z,\zeta) \ge \frac{1}{2\pi} \left[\frac{(1-|z|^2)(1-|\zeta|^2)}{|1-\overline{z}\zeta|^2} \right]^2 \quad \text{for } z,\zeta \in D$$

and

(8)
$$K(z,\zeta) \leq \frac{2}{\pi} \left[\frac{(1-|z|^2)(1-|\zeta|^2)}{|1-\overline{z}\zeta|^2} \right]^2 \quad if$$
$$\frac{(1-|z|^2)(1-|\zeta|^2)}{|1-\overline{z}\zeta|^2} < \frac{1}{2}.$$

Proof. Everything has been proved except (7) and (8) but they follow from (6) and the well-known identity

$$1 - |\varphi_z(\zeta)|^2 = \frac{(1 - |z|^2)(1 - |\zeta|^2)}{|1 - \overline{z}\zeta|^2}.$$

The following well-known estimate is proved by a straightforward calculation that we omit.

Lemma 1. There exists a constant $C_0 > 0$ such that

$$\int_{|\zeta|<1} \frac{(1-|\zeta|^2)^2}{|1-\overline{z}\zeta|^4} dA(\zeta) \ge C_0 \log \frac{1}{1-|z|} \,.$$

Theorem 2. Suppose that $u \in C^2(D)$,

$$\begin{split} &\int_{|\zeta|<1} |u(\zeta)| dA(\zeta) < \infty \,, \\ &\int_{|\zeta|<1} |\Delta u(\zeta)| (1-|\zeta|^2)^2 dA(\zeta) < \infty \,, \end{split}$$

and that $\overline{\lim}_{z\to\zeta_0}\Delta u(z) < 0$ for some $\zeta_0 \in \partial D$. Then there exists $\delta > 0$ such that Tu(z) < u(z) for all $z \in D$ such that $|z-\zeta_0| < \delta$.

Proof. For convenience we assume that $\zeta_0 = 1$. By assumption there exists a > 0 and $\epsilon > 0$ such that if $z \in D$ and $|z - 1| < \epsilon$, then $\Delta u(z) \leq -a$. If $D(1,\epsilon)$ denotes the set of points in D with $|z - 1| < \epsilon$ and $D(1,\epsilon)'$ the complement of $D(1,\epsilon)$ in D, then we have

$$\int_D \Delta u(\zeta) K(z,\zeta) dA(\zeta) = \int_{D(1,\epsilon)} \Delta u(\zeta) K(z,\zeta) dA(\zeta) + \int_{D(1,\epsilon)'} \Delta u(\zeta) K(z,\zeta) dA(\zeta).$$

We deal with the second integral: if $|z - 1| < \epsilon/2$ and $\zeta \in D(1, \epsilon)'$, then $|1 - \overline{\zeta}z|$ is bounded away from 0 and hence

$$\frac{(1-|z|^2)(1-|\zeta|^2)}{\left|1-\overline{\zeta}z\right|^2} \le C(1-|z|^2) < 1/2$$

if $1-|z|^2$ is sufficiently small, and hence by (8) we have $K(z,\zeta) \leq C(1-|z|^2)^2(1-|\zeta|^2)^2$, so

$$\left|\int_{D(1,\epsilon)'} \Delta u(\zeta) K(z,\zeta) dA(\zeta)\right| \leq C(1-|z|^2)^2 \int_{D(1,\epsilon)'} |\Delta u(\zeta)| (1-|\zeta|^2)^2 dA(\zeta).$$

Note that this is $O((1 - |z|^2)^2)$. Next

$$\begin{split} \int_{D(1,\epsilon)} \Delta u(\zeta) K(z,\zeta) dA(\zeta) &\leq -a \int_{D(1,\epsilon)} K(z,\zeta) dA(\zeta) \\ &= -a \int_D K(z,\zeta) dA(\zeta) + a \int_{D(1,\epsilon)'} K(z,\zeta) dA(\zeta) \\ &\leq -\frac{a}{2\pi} \int_D \frac{(1-|z|^2)^2 (1-|\zeta|^2)^2}{\left|1-\overline{\zeta}z\right|^4} dA(\zeta) \\ &\quad + \frac{2a}{\pi} \int_{D(1,\epsilon)'} \frac{(1-|z|^2)^2 (1-|\zeta|^2)^2}{\left|1-\overline{\zeta}z\right|^4} dA(\zeta) \\ &\leq -C_0 a (1-|z|^2)^2 \log \frac{1}{1-|z|} + O\left((1-|z|^2)^2\right). \end{split}$$

Here we have used (7) and (8) again as well as Lemma 1. Combining these estimates we have, for $|1 - z| < \epsilon/2$,

$$Tu(z) - u(z) \leq -C_0 a (1 - |z|^2)^2 \log rac{1}{1 - |z|} + O((1 - |z|^2)^2),$$

which becomes negative as z approaches 1.

The next lemma shows that the inequality $Tu \ge u$ is preserved under certain convolutions.

Lemma 2. Suppose $u \in L^1(D)$ and $Tu \ge u$ in D. Suppose $w \ge 0$ is a bounded measurable function on the circle. Define, for $z \in D$,

(9)
$$U(z) = \frac{1}{2\pi} \int_0^{2\pi} u(ze^{-it})w(e^{it})dt.$$

Then $U \in L^1(D)$ and

$$TU \geq U$$
 in D .

Proof. Note that if $z = re^{i\theta}$, then

0-

$$egin{aligned} U(re^{i heta}) &= rac{1}{2\pi} \int_0^{2\pi} u\left(re^{i(heta-t)}
ight) w(e^{it}) dt \ &= rac{1}{2\pi} \int_0^{2\pi} u(re^{it}) w\left(e^{i(heta-t)}
ight) dt. \end{aligned}$$

By hypothesis,

$$u(re^{it}) \leq \frac{(1-r^2)^2}{\pi} \int_0^1 \rho \int_0^{2\pi} \frac{u\left(\rho e^{i(t-s)}\right)}{|1-r\rho e^{is}|^4} ds d\rho.$$

Since $w \ge 0$ we can multiply both sides of this inequality by $w(e^{i(\theta-t)})$ and integrate on t. After interchanging the order of integration we get

$$\begin{split} U(re^{i\theta}) &= \frac{1}{2\pi} \int_0^{2\pi} u(re^{it}) w\left(e^{i(\theta-t)}\right) dt \\ &\leq \frac{(1-r^2)^2}{\pi} \int_0^1 \rho \int_0^{2\pi} \frac{1}{|1-r\rho e^{is}|^4} \int_0^{2\pi} u\left(\rho e^{i(t-s)}\right) w\left(e^{i(\theta-t)}\right) \frac{dt}{2\pi} ds d\rho \\ &= \frac{(1-r^2)^2}{\pi} \int_0^1 \rho \int_0^{2\pi} \frac{1}{|1-r\rho e^{is}|^4} \int_0^{2\pi} u(\rho e^{it}) w\left(e^{i(\theta-t-s)}\right) \frac{dt}{2\pi} ds d\rho \\ &= \frac{(1-r^2)^2}{\pi} \int_0^1 \rho \int_0^{2\pi} \frac{1}{|1-r\rho e^{is}|^4} U\left(\rho e^{i(\theta-s)}\right) ds d\rho \\ &= (TU)(re^{i\theta}). \end{split}$$

The next theorem says that if $Tu \ge u$ and Δu has a weak^{*} limit on some interval, that limit is non-negative.

Theorem 3. Suppose that $u \in C^2(D) \cap L^1(D)$, and that $\int_D |\Delta u(\zeta)|(1 - |\zeta|^2)^2 dA(\zeta) < \infty$. Suppose further that $Tu \ge u$ in D and that there is a closed arc I on the boundary of the unit circle and a finite Borel measure μ on I such that for all continuous functions φ on I we have

$$\lim_{r\to 1}\int_{I}\Delta u(re^{i\theta})\varphi(e^{i\theta})\frac{d\theta}{2\pi}=\int_{I}\varphi d\mu,$$

then $\mu \geq 0$ on \mathring{I} , the interior of I.

Proof. Let $w(e^{-it})$ be a continuous non-negative function with compact support in \mathring{I} , let

$$U(z) = rac{1}{2\pi} \int_0^{2\pi} u(ze^{-it}) w(e^{it}) dt.$$

From Lemma 2 we know that $TU \ge U$ in D. Since the Laplacian commutes with rotations it follows from (9) that

(10)
$$\Delta U(z) = \frac{1}{2\pi} \int_0^{2\pi} (\Delta u) (ze^{-it}) w(e^{it}) dt,$$

and hence that

$$\int_D |\Delta U(\zeta)|(1-|\zeta|^2)^2 dA(\zeta) < \infty.$$

It follows from Theorem 2 that there exists $r_k \to 1$ and $\theta_k \to 0$ such that $\lim_{k\to\infty} \Delta U(r_k e^{i\theta_k}) \ge 0$. Now it follows from (10) that

$$\Delta U(r_k e^{i\theta_k}) = rac{1}{2\pi} \int_0^{2\pi} \Delta u(r_k e^{it}) w\left(e^{i(\theta_k - t)}\right) dt.$$

Notice that for all k sufficiently large $w(e^{i(\theta_k-t)})$ will have its support in I. We have

$$\begin{split} \int_{I} & w(e^{-it}) d\mu(t) - \Delta U(r_{k}e^{i\theta_{k}}) \\ &= \int_{I} w(e^{-it}) d\mu(t) - \int_{I} \Delta u(r_{k}e^{it}) w(e^{-it}) \frac{dt}{2\pi} \\ &+ \int_{I} \Delta u(r_{k}e^{it}) \left[w(e^{-it}) - w\left(e^{i(\theta_{k}-t)}\right) \right] \frac{dt}{2\pi} \end{split}$$

The first difference above goes to 0 as $r_k \to 1$ by hypothesis. The second difference is bounded in modulus by

$$\left(\sup_{k}\int_{I}|\Delta u(r_{k}e^{it})|\frac{dt}{2\pi}\right)\left(\sup_{t}\left|w(e^{-it})-w\left(e^{i(\theta_{k}-t)}\right)\right|\right).$$

The first factor is bounded, by the principle of uniform boundedness and the second goes to zero as $k \to \infty$ by the uniform continuity of w. We have shown that $\int_I w(e^{-it})d\mu(t) \ge 0$ for all non-negative $w(e^{-it})$ continuous with compact support in \mathring{I} ; the result follows.

Section 2.

Now suppose that f and g are holomorphic in D and $f + \overline{g} = \varphi$ is bounded. We wish to calculate $||T_{\varphi}F||_2^2$ for $F \in H^{\infty}(D)$

$$T_{\varphi}F = P(f + \overline{g})F = fF + P(\overline{g}F),$$

so

$$\begin{split} \|T_{\varphi}F\|_{2}^{2} &= \langle fF + P(\overline{g}F), fF + P(\overline{g}F) \rangle \\ &= \|fF\|_{2}^{2} + \|P\overline{g}F\|_{2}^{2} + \langle P\overline{g}F, fF \rangle + \langle fF, P\overline{g}F \rangle \\ &= \|fF\|_{2}^{2} + \|P\overline{g}F\|_{2}^{2} + \left\langle \overline{f}\overline{g}F, F \right\rangle + \langle fgF, F \rangle, \end{split}$$

since P is self-adjoint.

By interchanging the roles of f and g we see that

$$\|T_{\overline{\varphi}}F\|_{2}^{2} = \|gF\|_{2}^{2} + \left\langle \overline{f}\overline{g}F,F\right\rangle + \left\langle fgF,F\right\rangle + \left\|P\overline{f}F\right\|_{2}^{2}.$$

Hence T_{φ} is hyponormal if and only if

(9)
$$||fF||_2^2 + ||P\overline{g}F||_2^2 \ge ||gF||_2^2 + ||P\overline{f}F||_2^2$$

for all $F \in H^{\infty}(D)$.

In particular (9) holds if $F = k_z$ for some $z \in D$. Now it is immediate that $\overline{g}k_z - \overline{g(z)}k_z \perp B(D)$ for any $g \in H^{\infty}(D)$ and hence that $P(\overline{g}k_z) = \overline{g(z)}k_z$.

Theorem 4. Suppose that f and g are holomorphic in D, that $f + \overline{g} = \varphi$ is bounded in D and that T_{φ} is hyponormal, then $Tu \ge u$ in D where $u(z) = |f(z)|^2 - |g(z)|^2$.

Proof. By the above discussion, if we let $F = k_z$ in (9) we get

(10)
$$||fk_z||_2^2 + |g(z)|^2 ||k_z||_2^2 \ge ||gk_z||_2^2 + |f(z)|^2 ||k_z||_2^2$$

Since $||k_z||_2^2 = \frac{1}{\pi(1-|z|^2)^2}$, a minor rearrangement of (10) proves the theorem.

Corollary. Suppose that f and g are holomorphic in D, that $f + \overline{g} = \varphi$ is bounded in D and that T_{φ} is hyponormal, then $\overline{\lim}_{z \to \zeta} (|f'(z)|^2 - |g'(z)|^2) \ge 0$ for every $\zeta \in \partial D$. In particular, if f' and g' are continuous at $\zeta \in \partial D$, then $|f'(\zeta)| \ge |g'(\zeta)|$.

Proof. The proof follows from the theorem and the simple observation that $\Delta |f|^2 = |f'|^2$ for any holomorphic f.

Suppose that f is holomorphic in an open set of the form

$$\{re^{i\theta} : r_0 < r < 1 \quad \text{and} \quad e^{i\theta} \in I\}$$

where I is some open arc on the boundary of the unit circle. We say that $f \in H^2(I)$ if

- (i) f has polynomial growth i.e., there exists A > 0 such that $f(re^{i\theta}) = O((1-r)^{-A})$ for all $e^{i\theta} \in I$.
- (ii) There exists $r_k \to 1$ such that

$$\int_{I} |f(r_k e^{i heta})|^2 d heta \leq C < \infty, \quad ext{all} \quad k.$$

The next lemma is standard. Since we know of no convenient references we indicate the proof.

Lemma 3. Suppose $f \in H^2(I)$, then there exists $F \in L^2(I)$ such that $\lim_{r\to 1} f(re^{i\theta}) = F(e^{i\theta})$ a.e. on I and for every compact subinterval $J \subset I$

$$\lim_{r \to 1} \int_J |f(re^{i\theta}) - F(e^{i\theta})|^2 d\theta = 0.$$

In particular, $\overline{\lim}_{r \to 1} \int_J |f(re^{i\theta})|^2 d\theta < \infty$.

Proof. Pick a compact interval L such that $J \subseteq \overset{\circ}{L} \subseteq L \subseteq I$. Let $e^{i\theta_1}, e^{i\theta_2}$ be the end points of L and choose N such that

$$\lim_{r \to 1} [(re^{i\theta} - e^{i\theta_1})(re^{i\theta} - e^{i\theta_2})]^N f(re^{i\theta}) = 0$$

if $\theta = \theta_1$ or θ_2 . This is possible by i). Let $g(z) = [(z - e^{i\theta_1})(z - e^{i\theta_2})]^N f(z)$. Let $r_0 < r_1 < 1$ and $\Delta_k = \{re^{i\theta} : r_1 \le r \le r_k, e^{i\theta} \in L\}$. Let $\partial \Delta_k = \Gamma_k \cup L_k$ where $L_k = \{r_k e^{i\theta} : e^{i\theta} \in L\}$. If $z \in \mathring{\Delta}_k$ we have

$$g(z) = \frac{1}{2\pi i} \int_{\Gamma_k} \frac{g(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \int_{L_k} \frac{g(\zeta)}{\zeta - z} d\zeta.$$

If we let $k \to \infty$ we get $g(z) = g_1(z) + g_2(z)$ where $g_1(z)$ is holomorphic on $\overset{\circ}{L}$ and $g_2(z)$ is the Cauchy integral of an L^2 function on the circle. It follows that the conclusions of the lemma hold for g and hence for f.

Theorem 5. Suppose that f and g are holomorphic in D, that $f + \overline{g} = \varphi$ is bounded in D and that T_{φ} is hyponormal. Suppose further that there is an open interval I such that $f' \in H^2(I)$. Then for any open subinterval $J \subseteq \overline{J} \subseteq I$ $g' \in H^2(J)$ and $|f'(e^{i\theta})| \geq |g'(e^{i\theta})|$ almost everywhere on I.

Proof. Let $w(e^{-it})$ be a continuous function with compact support in I such that $0 \le w \le 1$ and $w(e^{-it}) \equiv 1$ on a neighborhood of \overline{J} , combining Theorems 2 and 3 with Lemma 2 we have the existence of $r_k \to 1$ and $\theta_k \to 0$

such that

$$\lim_{k \to \infty} \int_0^{2\pi} (|f'(r_k e^{it})|^2 - |g'(r_k e^{it})|^2) w\left(e^{i(\theta_k - t)}\right) dt \ge 0.$$

Let L be compact interval so that $\overline{J} \subseteq \overset{\circ}{L} \subseteq L \subseteq I$. As before, for large k, $w(e^{i(\theta_k-t)})$ has support in L and hence,

$$egin{aligned} &\int_{0}^{2\pi} |f'(r_k e^{it})|^2 w\left(e^{i(heta_k-t)}
ight) dt \ &\leq \int_L |f'(r_k e^{it})|^2 dt \leq C < \infty, \quad ext{by Lemma 3.} \end{aligned}$$

Also, for large k, $w(e^{i(\theta_k - t)}) \equiv 1$ on J from which it follows that

$$\underline{\lim}_{k\to\infty}\int_J |g'(r_k e^{it})|^2 dt \le C < \infty.$$

Now since $g \in H^{\infty}(D), g'$ has polynomial growth and hence $g' \in H^{2}(J)$. It now follows that the measures $(|f'(re^{i\theta})|^{2} - |g'(re^{i\theta})|^{2})\frac{d\theta}{2\pi}$ have a weak * limit as $r \to 1, e^{i\theta} \in J$, and that this limit is $(|f'(e^{i\theta})|^{2} - |g'(e^{i\theta})|^{2})\frac{d\theta}{2\pi}$. It follows that $|f'(e^{i\theta})| \ge |g'(e^{i\theta})|$ a.e. on J, and hence on I since $J \subseteq \overline{J} \subseteq I$, was arbitrary. \Box

References

- P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, Journal of Functional Analysis, vol. 111, 2 (1993), 380-397.
- [2] H. Sadraoui, Hyponormal Toeplitz operators on the Bergman space, preprint.

Received October 12, 1993.

UNIVERSITY OF WISCONSIN-MADISON MADISON, WI 53706 *E-mail address*: ahern@math.wisc.edu

AND

UNIVERSITY OF TOLEDO TOLEDO, OH 43606 *E-mail address*: zcuckovi@math.utoledo.edu