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A MEAN VALUE INEQUALITY WITH APPLICATIONS TO
BERGMAN SPACE OPERATORS

PATRICK AHERN AND ZELJKO CUCKOVIC

If u is integrable over the unit disc and u = Γix, where
T is the Berezin operator then it is known that u must be
harmonic. In this paper we give examples to show that the
condition Tu > u does not imply that u is subharmonic, but we
are able to show that the condition Tu > u does imply that
u must be "almost" subharmonic near the boundary in an
appropriate sense. We give two versions of this "almost" sub-
harmonicity, a "pointwise" version and a "weak-star" version.
We give applications of these results to hyponormal Toeplitz
operators on the Bergman space.

Introduction.

Let D be the open unit disc in the complex plane. We let H°°(D) denote
the space of bounded holomorphic functions in D and let B(D) denote the
Bergman space on D\ the set of holomorphic functions f on D such that

[ \f(z)\2dA(z)<oo
D

where dA denotes planar Lebesgue measure on D. B(D) is a closed subspace
of the Hubert space L2(dA) and so there is an orthogonal projection P :
L2{dA) -> B{D). If φ e L°°{dA) we define the Toeplitz operator Tφ :
B(D) -> B(D) by Tφf = P(φf). For each z 6 D we have the kernel function

M O = (Λ * x2- For each / 6 B(D) we have f(z) = (f,kz) where (f,g)
π(l zQy

denotes the inner product in L2(dA). We use the usual notation of | |/ | | i =

(/,/) for / e L*(dA). Note that ||fc,||| = (kz,kz) = k,{z) = _* .

For each ^ G D w e have the biholomorphic involution ψz : D —» D given by

ψz{ζ) = 'Λ—ZT With these involutions we can define the Berezin transform

Tu of any u 6 Lx{dA), by

Tu(z) = — / u o ψzdA.
7Γ JD
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Equivalent ly, after a change of variables, we have

D l-ζz

Finally, if A is a bounded operator on a Hubert space X, with norm ||a;||,
we say A is hyponormal if A* A > AA*, or in other words, if

\\Ax\\ > \\A*x\\ for all xeX.

It is a simple matter to check that if u is harmonic in D, i.e., Au(z) =
d2

-u(z) = 0, and u G Lι(dA), then Tu(z) = u(z) for all z e D. In [1],dz&z
the converse was established, i.e., if Tu = u in D then u must be harmonic.
Now if u is subharmonic and in L1 (dA) then it follows easily that Tu > u
in D. We start Section 1 by showing the converse of this statement to be
false, i.e., we show that there exists u (indeed a large class of such u) so that
Tu > u in D but u is not subharmonic. However in Theorem 2 we show
that the condition Tu > u in D implies some sort of vestigal subharmonicity
near the boundary. We show, under a rather mild integrability condition on
Δu, that if Tu > u in D then Έmz^ζAu(z) > 0 for all ζ G dD. Actually
Theorem 2 gives a more precise "local" theorem. The main tool in the proof
is a formula that represents Tu — u as an integral of Au times a positive
kernel. This is the content of Theorem 1.

Our second result of this type says that if Tu > u in D and if the measures
Au(reιθ)dθ have a weak-star limit as r —> 1 on some interval /, then that
limit is a positive measure on /. This is Theorem 3.

In the second section we give two applications of the results of the first
section. In [2] H. Sadraoui showed that if f,g G H°°(D) and if T / +^ is
hyponormal and if we assume that f',g' both lie in the Hardy class if2,
then \f'{eiθ)\ > \gr(eiθ)\ a.e. on the unit circle. Our first result says that if
f,g G H°°{D) and Γ / + ? is hyponormal, then ϊSϊ z^ ei (|/'(^)| - \g'(z)\) > 0
for all eiθ. Our second result says that if, in addition, there is an arc / on the
circle such that /' G iϊ 2(/), (this is defined precisely in Section 2), then g1

has the same property and \f'{eiθ)\ > \gf(eiθ)\ a.e. on /. This last result can
be viewed as a local version of Sadraoui's result and it contains his theorem
as a special case.

Section 1.

We begin with an example of a function u such that Tu > u in D but u is
not subharmonic. Note that Λ(α) = JD \φa\^ is continuous and Λ(0) = 2/3
so there exists δ > 0 such that Λ(α) > | if \a\ < δ. Now let u be any
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strictly convex function that is continuous and integrable on [0,1) such that
u(0) — u{a) — 0 for some 0 < a < | . Then we have u(r) < 0 for 0 < r < a
and u has a minimum at a unique point /3, 0 < β < a. We further assume
that β < δ. We regard u a s a radial function on D. We claim any such u
satisfies Tu > u. First suppose \a\ < β then u(a) = ^(|α|) < 0. On the other
hand

]\<P*\-*2>a

so

/ Λ ^A\ f dA
0 < u [ \φa\— < / uoφa—,

\J π J J π

the latter inequality is Jensen's. Hence

t \<- ( dA

u(a) < / uoφa —
J 7Γin this case.

If \a\ > β we have a — Jφa^~ a n d hence |α| < / |</?α|~~ ^nd therefore

i \s ( ί\ \dA

u(a) <υ>\^j \ψa\ —

because u is strictly increasing on (/?, 1). Another application of Jensen's
inequality proves that u(a) < Ju o ψa^~ in this case. Clearly u is not
subharmonic since ^(0) = 0 and

-!- / u(reiθ)dθ = u(r) <0
2π Jo

if 0 < r < a.
Suppose u E C2(D) and 0 < r < 1, then starting from one of Green's

identities we obtain the familiar formula

(1) u(0) = — / u(reiθ)dθ + - / Au(ζ) log l-^
lπ Jo π y|ζ|<r T

which we may rewrite as

(2) J - Γ u{reiθ)dθ - u{Q) = - / Δtι(C) log {-dA{ζ).
2π Jo π J\ζ\<r ICI

Next we multiply both sides of (2) by 2r and integrate on r from 0 to 1. We
obtain

(3) (Tu)(0) - ti(O) -
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where

So far this is a purely formal calculation. To see what conditions are required
on ?/, we look at the kernel K. We let f(x) = log ^ — (1 — #), then an
application of Taylor's formula with remainder shows that

(5) f(x) = — (x- I) 2 where 0 < x <t < 1.

From this we see that f(x) > 0, 0 < x < 1 and

(6) f(x) > hi - xf for 0 < x < 1, and f(x) < 2(1 - xf for \ < x < 1.

So (3) holds if u e C 2(P) and if

/ \u(ζ)\dA(ζ) < oo and / |Δ«(C)|(1 - |C|2

JK\<i J\C\<i

Now we wish to apply (3) not to u but to uo ψz. This yields

Tu{z) - u(z) = ί A(uo φz)(ζ)K(ζ)dA(ζ).

Recalling that A(uoφz)(ζ) = (Au)(φz(ζ))\φ'z(ζ)\2and making the change of
variables ω = φz(ζ) we arrive at the following

Theorem 1. Suppose that u G C2(D) and that

ί \u(ζ)\dA(ζ) <oo
J\ζ\<i

and

J\c\

Then

Tu(z) - u(z) = / Au(ζ)K(z, ζ)dA(ζ)

where
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Moreover the kernel K satisfies:

and

(8) κ(z,o < 1 [ ( 1 ~ |f_ ) (j"CpIC |2 )] if
(1 - |z|2)(l - |d 2 ) 1

h — pTΊ2 9'

Proof Everything has been proved except (7) and (8) but they follow from
(6) and the well-known identity

( i - | * l 2 ) ( i - I C I 2 )

D

The following well-known estimate is proved by a straightforward calcu-
lation that we omit.

Lemma 1. There exists a constant Co > 0 such that

Theorem 2. Suppose that u € C2(D),

|u(C)|Al(0<oo,

ICI<1

and that ]ϊmz-+ζ0Au(z) < 0 for some ζ0 G 3D. Then there exists δ > 0 such
that Tu(z) < u(z) for all z G D such that \z - ζo\ < δ.

Proof For convenience we assume that ζ0 = 1. By assumption there exists
a > 0 and e > 0 such that if z G D and \z — 1| < e, then Au(z) < —a.
If 22(1, e) denotes the set of points in D with \z — 1| < e and D(l,e)' the
complement of 2?(1, β) in 2), then we have

/ Δu(C)ΛΓ(*,C)Al(O = / Au(ζ)K(zX)dA(ζ)

+ ί Au(ζ)K(z,ζ)dA(ζ).
JDd.eV
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We deal with the second integral: if \z — 1| < e/2 and ζ G £>(l,e)', then

1 — ζz is bounded away from 0 and hence

(i - |*|2)(i - id 2 ) ,

1-ζz

if 1 — \z\2 is sufficiently small, and hence by (8) we have K(z,ζ) < C{\ —
|z | 2 ) 2 (l - Id2)2, so

Δu(C)ϋΓ(z, ζ)dA(ζ) 2f- \z\2 - \ζ\2)2dA{ζ).

Note that this is O ((1 - \z\2)2). Next

Au(ζ)K(z,ζ)dA(ζ) <-«JDi( K(z,ζ)dA(ζ)

= -a f K(z, ζ)dA(ζ) + a ί K(z, ζ)dA(ζ)
JD JD(l,e)'

2a Γ

/D(l,€)'

< -C0o(l - \z\2)2 log

1-ζz

1
O ((1 -

Here we have used (7) and (8) again as well as Lemma 1. Combining these
estimates we have, for |1 — z\ < e/2,

Tu(z) - u(z) < -Coa(l - \z\2)2 log j

which becomes negative as z approaches 1.

- |z|2)2),

D

The next lemma shows that the inequality Tu >uis preserved under certain
convolutions.

Lemma 2. Suppose u G Lλ(D) and Tu > u in D. Suppose w > 0 is a
bounded measurable function on the circle. Define, for z G D,

(9) U{z) = ~ Γ uize-^wie^dt.
2π Jo
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ThenUeL^D) and
TU>U in D.

Proof. Note that if z = retθ, then

U(re*°) = £- Γ u (re*9-*) w(eu)dt
2τr Jo \ /

= 7Γ- Γ u(re«)w (eW-'A dt.
2π Jo \ /

By hypothesis,

κ J - π Jo Jo | l - r p e * ψ H

Since w > 0 we can multiply both sides of this inequality by w(eι^θ~^) and
integrate on t. After interchanging the order of integration we get

r2π1 r2π χ

l

J \1 rpeιa\4 J v )
/ p / ,, . u / u (peA w ( e Λ ^

π Jo Jo \1 - rpeιa\4 Jo v ) V J 2π
2 2 /-I / 2π 1 2

J KH ' J 2π

π Jo io l l - r p e ' ψ \H J H

= (TU)(reiθ).

Π

The next theorem says that if Tu > u and Δtό has a weak* limit on some
interval, that limit is non-negative.

Theorem 3. Suppose that u e C2(D) Π Lι{D), and that JD |Δϋ(C)|(l -
|ζ|2)2rfA(ζ) < oo. Suppose further that Tu > u in D and that there is a
closed arc I on the boundary of the unit circle and a finite Borel measure μ
on I such that for all continuous functions φ on I we have

O

then μ > 0 on I, the interior of I.

Proof. Let w(e~it) be a continuous non-negative function with compact sup-
o

port in /, let

U(z) = -!- / Έ u{ze~it)w{eit)dt.
2π Jo
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Prom Lemma 2 we know that TU > U in D. Since the Laplacian commutes
with rotations it follows from (9) that

(10) AU{z) = i- / *{Au^ze-^wie^dt,
2π Jo

and hence that

JD

It follows from Theorem 2 that there exists rk —> 1 and θk -» 0 such that

lim^oo AU(rke
iθk) > 0. Now it follows from (10) that

ΔC/^e^) = -?- / π Δuίπke**)!!; (e^-'Λ dt.
2τr Jo ^ '

o

Notice that for all k sufiBciently large w (e*^h"^) will have its support in /.
We have

= Jw{e-«)dμ{t) - jί

The first difference above goes to 0 as rk —> 1 by hypothesis. The second

difference is bounded in modulus by

(I — sup \w[e "J -w
2πJ \ t I

The first factor is bounded, by the principle of uniform boundedness and

the second goes to zero as k —» oo by the uniform continuity of w. We have

shown that JIw(e~it)dμ(t) > 0 for all non-negative w{e~ιt) continuous with
o

compact support in I the result follows. D

Section 2.

Now suppose that / and g are holomorphic in D and / + 'g = φ is bounded.
We wish to calculate \\TφF\\\ for F G H°°(D)
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SO

\\TΨF\\l = (fF + P(gF), fF + P(gF))

= WfF\\l + \\PgF\\l + (PgFJF) + (fF,PgF)

= WfFWl + \\PgF\\l + (fgF,F) + (fgF,F),

since P is self-adjoint.
By interchanging the roles of / and g we see that

||2VF||! = \\gF\\l + (fgF,F) + (fgF,F)

Hence Tφ is hyponormal if and only if

(9) WfF\\l + | |P5F| | 2

2 > WgFWl +

for all F E H°°(D).
In particular (9) holds if F = kz for some z G D. Now it is immediate that

gkz - φ)kz _L B(D) for any g G H°°(D) and hence that P(gkz) = 'g(z)kz.

Theorem 4. Suppose that f and g are holomorphic in D, that f + ~g = φ
is bounded in D and that Tφ is hyponormal, then Tu>u in D where u(z) =

Proof. By the above discussion, if we let F = kz in (9) we get

(10) ||/M» + \g(z)\2\\kz\\l > \\gkz\\l + |/(*)|a||fc,|β.

Since ||A;Z||2 = —rΛ | 2 . 2 , a minor rearrangement of (10) proves the theo-
7Γ(1 — \Z\ )

rem. D

Corollary. Suppose that f and g are holomorphic in D, that f + ~g = φ is
bounded in D and that Tφ is hyponormal, then limz^(\f'(z)\2 — \g'(z)\2) > 0
for every ζ E dD. In particular, if f and g1 are continuous at ζ G dD, then

> W(0\-
Proof. The proof follows from the theorem and the simple observation that
Δ |/ | 2 = I/')2 for any holomorphic /. Q

Suppose that / is holomorphic in an open set of the form

{reiθ : r0 < r < 1 and eiθ G /}



304 PATRICK AHERN AND ZELJKO CUCKOVIC

where / is some open arc on the boundary of the unit circle. We say that
feH2(i)iΐ

(i) / has polynomial growth i.e., there exists A > 0 such that f(reιθ) =
O((l-r)-Λ)foτalleiθ el.

(ii) There exists rk -> 1 such that

\f(rke
iθ)\2dθ<C<oo, all k.

The next lemma is standard. Since we know of no convenient references
we indicate the proof.

Lemma 3. Suppose f G H2(I), then there exists F G L2(I) such that
(reιθ) = F{eιθ) a.e. on I and for every compact subinterval J C I

lim [ \f(reiθ)-F(eiθ)\2dθ = 0.

In particular, limr_n Jj \f(reiθ)\2dθ < oo.

Proof. Pick a compact interval L such that J C L C L C J . Let eiθl, eiθ2 be
the end points of L and choose N such that

lim[(re^ - eiθl)(reiθ - ei(h)]Nf(reiθ) = 0

if θ = 0χ or 02. This is possible by i). Let g(z) = [(z - eiθ*)(z - eiθ*)]Nf{z).
Let r 0 < r x < 1 and Ak = {reiθ : r λ < r < rk,e

iθ G L}. Let dAk = ΓkULk

o

where Lk = {rke
iθ : eiθ G L}. If z eAk we have

7Γ f c C - ^ 2 π i JLk ζ - z ς

If we let k -> oo we get g(z) = 51(2?) + g2(z) where gi(z) is holomorphic on
o

L and g2 (2) is the Cauchy integral of an L2 function on the circle. It follows
that the conclusions of the lemma hold for g and hence for /. D

Theorem 5. Suppose that f and g are holomorphic in D, that f + g = ψ
is bounded in D and that Tφ is hyponormaL Suppose further that there is
an open interval I such that f G H2(I). Then for any open subinterval
JQlQI g' G H2(J) and \f'{eiθ)\ > \g'(eiθ)\ almost everywhere on I.

Proof. Let w(e~ιt) be a continuous function with compact support in / such
that 0 < w < 1 and ̂ (e"^) = 1 on a neighborhood of J, combining The-
orems 2 and 3 with Lemma 2 we have the existence of rk —> 1 and θk -> 0
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such that

r

k—κx>
lim / \\}'{rk^)\2 - \gf(rke*)\2)w (e^"-*Λ dt > 0.

impact interval so that J C
w (ef^*~*)) has support in L and hence,

o

Let L be compact interval so that J C L C L C I. As before, for large A;,

< ί If'ir^^dt < C < oo, by Lemma 3.

Also, for large fc, iϋ(ei^fc~^) = 1 on J from which it follows that

oo ftf(rke«)\2dt<C <oo.
Jj

Now since 3 E H°°(D),gr has polynomial growth and hence 5' G H2(J).

It now follows that the measures (\f'(reiθ)\2 — (^'(re^)!2)-— have a weak *

limit as r -> 1, e*" e J, and that this limit is ( | / V ) | 2 - ^ ' (e^) ! 2 )—. It
2τr

follows that \f'(eiθ)\ > \g'(eiθ)\ a.e. on J, and hence on J since J C J C /,
was arbitrary. D
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