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DIFFERENTIAL GALOIS GROUPS OF CONFLUENT
GENERALIZED HYPERGEOMETRIC EQUATIONS: AN

APPROACH USING STOKES MULTIPLIERS

CLAUDE MITSCHI

In memory of Ellis Kolchin

We explicitly compute the differential Galois groups of
some families of generalized confluent hyper geometric equa-
tions by a method based on the asymptotic analysis of their
irregular singularity at infinity. We obtain the Galois group
directly from a particular set of topological generators. These
are formal and analytic invariants of the equation, reflecting
the asymptotic behaviour of the solutions. Our calculations
yield classical groups as well as as the exceptional group G2.

0. Introduction.

The differential Galois groups of all irreducible confluent hypergeometric dif-
ferential equations have been determined by Katz and Gabber, after previous
work of Beukers, Brownawell and Heckman (see [BBH] and [K2]). Their
proofs use purely algebraic arguments, and rely on global characterizations
of semisimple algebras. The aim of the present paper is to recover these
differential Galois groups in a number of cases by explicitly giving some of
their topological generators. It is indeed a classical result of Schlesinger that
the local differential Galois group of a meromorphic differential operator at
a regular singular point is topologically generated by the monodromy acting
on a fundamental solution. The presence of exponential factors in formal so-
lutions at an irregular singularity and the fact that the corresponding formal
series may be divergent give rise to new Galois automorphisms, reflecting the
asymptotic behaviour of the solutions. These particular automorphisms of a
solution field are the elements of the exponential torus, the Stokes multipliers
and the formal monodromy, which together generate the differential Galois
group topologically by a theorem of Ramis (cf. [Rl], [MR2]). We show
how Ramis's theorem can be applied to determine explicitly the differential
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Galois group over C(z) of generalized confluent hypergeometric equations
Dqp(y) = 0 where

with d = zj-z , 1 < p < #, and with complex parameters /iJ? v3 such that all
/î  are distinct modulo Z for 1 < i < p.

The results were announced in [Ml], [M2]. Our method, relying on the
computation of Stokes matrices, allowed us in a joint work [DM] with A.
Duval to determine the Galois group of equations D31 and JD3 2, including in
the reducible cases. The present paper deals with higher order irreducible
equations.

Our aim is to illustrate on these examples how the analytic invariants
introduced by Birkhoίf ([Bi]) and generalized by Sibuya [Si], Balser, Ju-
rkat, Lutz ([BJL]) and Malgrange ([Ma]), as well as the formal invariants
obtained from the canonical form of Levelt-Turrittin ([LI], [Tu]), play an
essential role in the algebraic structure of the differential Galois group.

Let us detail the content of each section. In Section 1 we recall the main re-
sults in differential Galois theory and complex analysis needed in the proofs.
In Section 2 we define a formal fundamental solution for the general equa-
tion Dqp. In Section 3 we prove some general results for the Galois group
G = GdlC(z){Dqp). We explicitely compute G for equations D42 in Section
4, for selfdual equations D2q,2q-2 in Section 5, for equations D5λ in Section
6, and for equations D71 in Section 7.

1. Generalities.

For basic facts on differential Galois theory we refer to [B], [Ka], [Ko],
[L2], [MR1] and [S]. An overview of recent developments is presented in
Bertrand's Bourbaki lecture [Be] on the subject.

We consider a linear differential system

AY = dY - AY = 0

where i i s a n n x n matrix with entries in some differential field (K, d) whose
field of constants is C, and Y is an unknown matrix function with entries in
some differential field extension of K. Up to K-equivalence (that is a change
Y = PZ with P E GL(n, K) of Δ into a system in Z) one may suppose that
Δ is the system naturally obtained from a linear differential operator
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with coefficients in K.

Definition 1.1. The differential Galois group Galκ(Δ) of Δ over K is
the group of differential ίf-automorphisms of a Picard-Vessiot extension of
K relative to D. It is defined up to isomorphism and represented as an
algebraic subgroup of GL(n, C) with respect to a fundamental solution of
Δ.

Definition 1.2. Let Δ be a linear differential system with coefficients in
C(x). The global (resp. local at a point a G P^C)) differential Galois group
G (resp. Ga) of Δ over P^C) (resp. at a G P^C)) is the group Galκ(Δ)
where K = C(x) (resp. K is the field C ^ α } ^ " 1 ] of germs of meromorphic
functions at a G P 1(C), where xa denotes a local uniformisant at a).

1.2.1. Let us fix a base-point x0 of PX(C) \ 5, where S denotes the set of
singular points of D and let ΣXo denote an analytic germ of fundamental
solution of D at α;0. We may analytically continue ΈXQ to a "sectorial" germ
of fundamental solution at every a G 5, provided that we fix a number of
choices. More precisely let (7α, for every α G 5, be an open disc with center
α, together with a local parameter xa at α, and such that Ua Π S = {a}.
Let da be a fixed ray from a in Ua, together with a point ba G da in Ua

and a path j a from x0 to ba. Analytic continuation of ΣXo along j a and da

provides an analytic germ Σα of fundamental solution on a germ of open
sector with vertex α, bisected by da. Let Ga be the local Galois group of D
over Cj^αj^α]" 1 with respect to Σ o . If we "conjugate" elements of Ga by
the analytic continuation described above, we get an injective morphism of
algebraic groups Ga ^ G with respect to the representation of these groups
in GL(n, C) given by Σα and Σa.o respectively. Thus all Gα, a G 5, can
be simultaneously identified with closed subgroups of G and we have the
following result.

Proposition 1.3. The global Galois group G is topologically generated in
GL(n, C) by the subgroups Ga, where a runs over S.

Proof. Let u be an element of the Picard-Vessiot extension of C(x) gener-
ated by the entries of ΣX o in C{x — Xo}[(x — ̂ o"1)] (we choose x0 in the
finite plane). With notations as above, suppose that u is invariant by the
subgroups Gα, a € S, all these subgroups of GL(n, C) being defined with
respect to ΣXQ (via the prescribed analytic continuations). Then, by nor-
mality of Picard-Vessiot extensions, u extends to a meromorphic function
on P ^ C ) , that is, a rational function u e C(x). Equivalently, by differential
Galois correspondence, G is the Zariski closure in GL(n, C) of the subgroup
generated by the (finite) union of the closed subgroups Ga, that is, G is
generated as a group by the Ga. D
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When K = C{x}[a;"1], we know from the classical theory that the system
AY = 0 admits a formal fundamental solution

(1.4) Ϋ(x) = H(x)xLeQ{t)

where tσ = x (σ G N*), L G Mn(C), # G GL(n; Cffrr]]^-1]) and Q =
diag(g1?... ,qn), where q{ G r^Cfί" 1 ], i = 1,... ,n.
We may moreover suppose that 11-> te2l7Γ^σ permutes the polynomials qι and
that [e2ί7rσL, Q] = 0 if σ φ 1, while [L,Q] = 0 if σ = 1. Note that f is given
here in terms of formal series in x, rather than t. This can easily be deduced
from ([BJL], Th.I, p. 199).

Notations 1.5. A solution Ϋ being given as in (1.4), let K = Cflrc]]^"1],
Kt = C{t}[t^], ^ = Cfltp- 1], C = e 2 ΐ π / σ and let K denote the differential
extension of Kt generated by the entries of xL and eQ (considered as symbols
as long as no determination has been fixed for log(a )). Let C = K(Y) denote
the Picard-Vessiot extension of K generated by the entries of Y in K, and let
G denote the differential Galois group Gal^(Δ).

Definition 1.6. The formal monodromy M G G of Δ relative to Y is
defined by Ϋ(tζ) = Ϋ(t)M and the formal monodromy group GM is the
closed subgroup of G topologically generated by M.

Definition 1.7. The exponential torus T(Δ) of Δ relative to Y is the
group of differential ίίί-automorphisms of the differential extension Kt(e®) =
Kt(eqi,... , eqn) of Kt. By extending these automorphisms to /C, we can iden-
tify T(Δ) with a subgroup of G. It is a torus T ^ (C*) r, where r denotes
the rank of the Z-module generated by the polynomials qiβ More precisely,
we may order these <&, or equivalently the columns of Y, in such a way
that {^i,... , qr} is a Z-basis for J27=o %Qi- Then there exist monomial func-
tions α r +χ,... ,αn such that T(Δ) consists of all matrices T(λi,... , λr) =
diag(/i,... , Zn), where λi,... , λr are arbitrary complex parameters and

U = λi? i < r

ί* = θ i ( λ i , . . . , λ r ) , ΐ > r .

Remark 1.8. The formal monodromy and the exponential torus are formal
invariants, depending only on the if-equivalence class of Δ or, with other
words, on the connection defined by Δ over K. They generate topologi-
cally the formal Galois group Gal^(Δ) corresponding to the Picard-Vessiot
extension K(Ϋ) ofK{d. [Be]).
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Lemma 1.9. The formal monodromy M acts by conjugation on T. Hence
T is a normal subgroup

Proof. For a given choice of Y as in (1.2.1) there exists a permutation a E Θn

such that q^te2^) = qa(i)> The change of variable t *-* te2^" operates on
polynomials in t (considered as functions of x — tσ) as the usual monodromy,
hence preserving any possible algebraic relation between the functions q{. If
we order these as in 1.7 we get, for every T(A i 5... , λr) = diag(/i,... , ln) G T

MT(λ l 5 . . . ,λ r )M- 1 =diag(/ β ( i ) j . . . ,/α(n)) = T(/ α ( 1 ) , . . . ,/α(r))

whence MTM"1 G T. Ώ

From now on we shall assume that all non-zero (^ — ς̂  ) for 1 < i, j < n
have the same degree k. This is enough for our purpose.

Definition 1.10. All angular directions and sectors are to be considered on
the universal covering of the unit circle or, with other words, on the Riemann
surface of the logarithm. A singular direction for Δ with respect to Ϋ is a
bisecting ray of any maximal angular sector where Re(qi(χi) — qj(x«)) < 0
for some i, j = 1,... , n.

Definition 1.11. For a given A; > 0 and a given direction d the formal
series / = Σ n > 0 «n^n € C[[x]] is k-summable in the direction d if there exists
a germ V of open sectors bisected by d with opening greater than π/k and
a holomorphic function / on V, satisfying inequalities:

\/χeW,\/neN*,

on every proper subsector W C V, with constants Aw and Cw depending on
W only. The function / is then unique, since the difference f—g with another
function g satisfying the same inequalities would be "exponentially flat" of
degree k on a sector with opening greater than π/k, whence identically zero
by Watson's lemma (cf. [W], p. 295). The function / is called the uk-sum
of f along d ". These definitions easily extend to formal Laurent series.

In order to define the Stokes multipliers as elements of the Galois group
we need the following fundamental result (cf. [R4], [Tu]):

Theorem 1.12 (Turrittin, Martinet-Ramis). With notations as before,
the matrix H is k-summable in every non-singular direction d and if H
denotes the k-sum of H along d, then Y = HxLeQ is an actual solution of
Δ. Moreover H can be obtained from H by a Borel-Laplace transform, which
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yields an injectiυe morphism of differential algebras from the algebra of k-
summable series along d to the algebra of germs of holomorphic functions
on germs of sectors bisected by d.

Let a be a singular direction for Δ at 0 and let α + = a + ε (resp. oΓ =
a — ε) where ε > 0 be non-singular neighbouring directions of α. Let Ya+
(resp. Ya- ) be actual solutions of Δ obtained from Y by (1.12) on a germ
of sector bisected by a+ (resp.α_).

Definition 1.13. With respect to a given formal fundamental solution Y
as in (1.4), the Stokes matrix (or multiplier) Sa G GL(n, C) corresponding
to the singular line a of Δ at 0 is defined by Ya- = Ya+Sa on a.

Note that this definition is independent of the choice of a+ and α~ as soon
as these are sufficiently near a (cf. [M2], p. 158). Moreover, if we identify
Sa with its conjugate by Borel-Laplace transform then the map Y ι—>> YSa

appears as a differential automorphism of £, that is an element of G (cf.
[M2], 2.3.10, Th. 2.3.11). The formal monodromy^M clearly operates by
conjugation on the set of Stokes matrices by MSaM~ι = 5 α + 2 π .

Note that the Stokes multipliers are analytic invariants, which only depend
on the jFΓ-equivalence class of Δ.

The actual monodromy M can be recovered from the formal monodromy
and the Stokes matrices by the formula

(1.14) M = MSaι...Sar

where 0 < aλ... < ar < 2π are the singular rays lying in the x-plane.

All results in the forthcoming sections are based on the following descrip-
tion of G (cf. [Be], [MR], [Rl], [R2], [R3] and also [LR] for a different
proof of this theorem).

Theorem 1.15 (Ramis). With respect to a formal solution Y given as
in (1.2.1) the analytic differential Galois group G of Δ at 0 is the Zariski
closure in GL(n, C) of the subgroup generated by the formal monodromy M,
the exponential torus T(Δ) and the Stokes matrices Sa for all singular rays
a.

2. Confluent generalized hypergeometric equations.

We consider the family of differential equations:

(2.1) Dqp = (-l)'-'z f[(d + μj) - f[(d + i/j - 1)
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where d = z j^, 1 < p < q and /iJ5 Uj are complex parameters. Throughout
this paper we will assume that

(2.1.1) all μι are distinct modulo Z , for 1 < i < p.

These equations have exactly two singularities, a regular singular one at
0 and an irregular one at oo. Let G denote the global differential Galois
group GalC(z){Dqp) and Go (respectively G^) the local Galois group at 0
(repectively oo). The local differential Galois subgroup Go corresponding
to the regular singularity at 0 is topologically generated by the monodromy
operator at 0. This is a well-known result due to Schlesinger(cf. [Sch]). As
outlined in 1.2.1, both Go and G^ appear as subgroups of G relatively to a
given germ of fundamental solution ΣXo at a base-point x0 G PX(C) \ 5, and
with respect to prescribed sectors and paths. We see that the action on ΣXo

of the monodromy round 0 coincides here with the (inverse) monodromy
round oo, so that Go actually is a subgroup of (?<», that is, G = G^ in
this case. To compute G, we shall therefore first determine a fundamental
solution of Dqp at infinity.

Notations 2.2. For a given equation Dqp as in (2.1) let

_ _ 2iπ/σ _ ! /

For x = (rri,... , xp) G Cp and a £ C, let

[x + a) = (xx + α,... , xp + a)

(x)n = Π xi(xi + 1) (Si + Λ - 1).

For a e Cp and b G (C\Z")« let

and

i Γ(6rf - s) Π"= 1 Γ(l - aj + s)/
2m Λ Π? = m + 1 Γ(l - b, + s) Π^=n+i Γ( β j - s)
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for a suitable path 7.

A classical computation yields a formal fundamental solution:

(2.3) Ϋ(z) =
for fc = 1 , . . . ,

for j eZ and 1 - [-f ] <j< [§].

where Θ is a formal series in the ramified variable z*.

The Mellin transform of Dqp is a difference equation of order one. Special
solutions of it can therefore be expressed by means of the Γ-function. The
corresponding solutions of Dqp are G-functions in the sense of Meijer (cf.
[Me]), namely

Gk(z) = Gfa -z
1 - 1 /

1 r Γ(l-i/-s)Γ(μ4= —ί
2iπ JΊ

on one hand (k = 1,... ,p), and

— vJ 2iπ JΊ

Γ(l-t/-a)

Γ(l-μ-s)
zsds

on the other hand, where the paths j k and 70 from —ioo to +ioo both leave
the points (—Vj + n), j — 1,... , g, n G N, on the right whereas 7^ also has
to leave the points (—μk — n), A; = 1,... ,p, n 6 N, on the left.

As I J2ΓJ tends to infinity, the asymptotic expansion of Gk (respectively Go)

is

fc-l/; 1 - / 4 5

(respectively e σ z <T2:Λ/σΘ(^)) on suitable sectors of the universal covering
of the z-plane at the origin. Analytic continuation of the G-functions Go

and Gk (or of linear combinations of these) on the ί-plane (tσ = z) yields
1-sums of Y along all non-singular lines.

The singular lines of Dqp at 00 are the bisecting lines of maximal sectors
of decay for e~σζH or e

σ^%~ζk>)t for j , k G N and j Φ k. Prom the natural
fundamental solution of Dqp at 0 consisting of generalized hypergeometric
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series, Meijer (cf. [Me]) deduced useful linear formulas relating the different
determinations of the multivalued functions Go and Gk These formulas were
used in [DM] to compute the Stokes matrices of Dqp.

Notation 2.4. As in 1.13, we define the Stokes matrices relatively to
the formal fundamental solution Y of Dqp given in 2.3. Let Sd G G denote
the Stokes matrix corresponding to a singular ray d and let sd denote the
corresponding element of the Lie algebra <8 of G. These infinitesimal Stokes
matrices are well-defined by exp Sd — Sd since the Stokes matrices are easily
seen to be unipotent from their definition.

The formal monodromy M is represented by the matrix

where D = diag (e~2iπ^) and R = e2iπX/σPσ, if we denote by Pσ the permu-
tation matrix of order σ

P =

/Ό 0
1 0

o' .
o

Let Πjfc, for k G Z and 0 < i < φ(cr) — 1, (φ denoting the Euler function)
be integers defined by

nikζ
i = 0

The exponential torus T = T(Dqp) has dimension φ(σ) and consists of all
diagonal matrices diag(Zχ,... , lq) where

(2.5)
when 1 < k < p,

when l < f c < σ ,

for arbitrary complex parameters λ 0,.. . , λv ?(σ)_1.

Remark 2.6. The torus T is a subgroup of SL(ςr, C) if and only if

Σ J - ! C"7 = 0? o r equivalently if σ Φ 1.
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3. General results.

Let us first give a useful irreducibility criterion due to Beukers, Brownawell
and Heckmann (cf. [BBH]).

Theorem 3.1 (Beukers, Brownawell, Heckmann). The equation Dqp or
equivalently the corresponding representation of G in GL(g, C)'is irreducible
if and only if μ{ φ Vj mod Z for all 1 < i < p and 1 < j < q.

For a different proof of this result, see [DM].

The following result is a consequence of ([K2], Cor. 3.6.1). We give a
different proof, using the invariants introduced in Section 2.

Theorem 3.2 (Katz). // the equation Dqp is irreducible and such that the
complex numbers {μ 1 ?... ,μp, λ, 1} ; with X as in 2.2, are Z-lίnearly indepen-
dent, then G is ismorphic to GL(#, C).

Proof. The formal monodromy group GM is isomorphic to G°M x Gp where

denotes the identity component of GM and Gp is the subgroup generated by
the permutation matrix

( )

The Lie algebra of GM is generated by

where E{^ for 1 < i,j < q denote the elementary matrices of gl(q, C).

i) If σ is odd, we know (cf. [DM], Th. 5.1, 5.3, p. 37) that the Stokes
matrices relative to the singular rays arg t — 0 and arg t = ^ can be written
as follows:

2 = 1

2 = 1

where all coefficients a{ and β% are non-zero (cf. [DM], proof of Th.6.2, p.
42). We clearly have s0 = So — I and sz. — Sz. — I. An easy computation
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shows that for 1 < i < p the matrices EpJtZ±li and EiΆ belong to 0 . If we
conjugate SO and Sz. repeatedly by mσ we prove in the same way that all
Eij for (ij) e {1,... ,p} x { p + 1 , . . . ,q} U {p + 1,... ,<?} x {1,.. . ,p}, are
elements of © and generators of g[(g, C) at the same time.

ii) If σ is even, then (cf. [DM], Th. 5.1.b, 5.2.a, 5.2.b, p. 37) we have

So =
2 = 1

N

where all coefficients β[, and a{ as before, are non-zero whereas N is a linear

combination of elements {£"i,j}P+i<i,j<9 and satisfies N2 = 0, so that we get

= ^o - i -

and for % — 1,... ,

All conjugates of 5 0 by m σ satisfy similar formulas and we conclude as in

(i) •

We can slightly refine this generic result under some irreducibility condi-
tions for the Lie algebra representation of G.

N o t a t i o n s 3.3. Let Gs denote the (connected) subgroup of G topologically
generated

(i) by the Stokes matrices alone if q — p = 1,

(ii) by the Stokes matrices and the exponential torus otherwise,

and let 0 5 denote the Lie algebra of Gs> Note that (5$ is a subalgebra of
?, C).

L e m m a 3.4. The subgroup Gs is normal in the Galois group G and G is
topologically generated by Gs, M and T — C* if q — p = 1, by Gs and M-
otherwise.

Proof. By 1.9 and 1.14 we know that M acts by conjugation on Gs. If
q — p = 1 then T — {diag(l,... , 1, λ), λ G C*}, which is easily seen in this
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case to act on Gs by conjugation (cf. [DM], Th.5.1, p. 37). The result then
follows from Theorem 1.15. D

Remark 3.5. If σ Φ 1 the Stokes subgroup Gst topologically generated by
the Stokes matrices may not be normal in G. This is due to the fact that
the adjoint action of T on the infinitesimal Stokes matrices, which may be
interpreted as a "Fourier expansion" of these (cf. [MR2]) yield elements of
& which do not necessarily belong to &st = Lie Gsti as shown below.

Example 3.6. Consider an equation of order three

The Stokes group Gst in this case is generated by

So = / + OLE21 + βEl3

where α,/?,7 G C (cf. [DM]), and all conjugates of SO by M = mEn +
l(Eι3 + E32) where ra, Z G C*. One may choose the parameters of D3λ in
such a way that /3 = 0, cry Φ 0 and Z j= m (take for instance D31 —
z(d + \) - {d-l)2{d-\)). Let 5Ί - MS0M-1 =I + aE3l +ΊE32. The Lie
algebra 0st is generated by s0 = α£J2i + 7^23 ctnd 5i = α£?31 + 7^32 and is
isomorphic to sί(2,C), with basis {so,Si, [so,Si]}.

Let Tt = diag(l,ί,t"1) be an element of T. We get

= taE21 + t2ηE23 and Ad(Ti)(5i) = taE31 + t2jE
32

for all ίG C* and conclude that <88t is not invariant by the adjoint action
of T, since otherwise 2?2i, £?235 3̂1? -̂ 32 would belong to <Sst which has
dimension 3.

We denote by er (resp. e'r), for 1 < r < q, the elementary symmetric
functions on (e~2iπι/j)i<j<q (resp. on (e2iπl/j)i<j<g) a n ( l by hr (resp. ΛJ.)
the complete symmetric functions on (e~2ιπμj)i<j<P (resp. on (e2ιπμi)i<j<p)
defined by

hr = 2^ e ^i=i .

For r = 1,... ,q\et

(3.7) AP = £ ( - l ) i + 1 * Λ r - i and Br =
i = 0
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Theorem 3.8. // the parameters μ, y_ of Dqp are such that Ar φ 0 for 1 <

r < [^-] and Br φ 0 for 1 < r < [?~^~1], £Λen £Λe representation of G$ in
Cq relative to Dqp is irreducible and so are consequently the representations
of Θ = Lie G and G. Moreover, in this case, <&s is semisimple.

Proof. It is close to the proof of ([DM], Th. 6.2, p. 41). Let { e j ^ ^
denote the canonical basis of C 9, and Vp (resp. Vσ) the subspace generated
by βi, . . . , ep (resp. by ep+1,... , eq). Let F denote an invariant subspace of
Cq by Gs There are three cases:

(i) If F C Vp , then for any v = Σ/b=i υ*efc € -P\ a n d n G Z we have

where e/n E K. and ηk φ 0, A; = 1,... ,p (cf. [DM]), whence £2™ (t?) belongs
to F for all n G Z if and only if v = 0.

(ii) If T̂  C F, let 5X denote the matrix SO (resp. S±) if σ is even (resp.
odd). Then

where ω £ Vσ and 5Λ φ 0, A; = 1,... ,p. The image of eq by the Stokes

matrice MSiM"1 lies in F for all n G Z if and only if

k=l

lies in F for all n G Z. Therefore Fp C F and F = C^ by (ii).

(iii) Assume FΓ\Vσ φ (0). If σ = 1 we are in case (ii), so let σ φ 1. For a
proper choice of the parameters {K}i<i<φ(σ) as in (2.5), the corresponding
matrix To = diag(Zi,... , lq) of T has distinct eigenvalues /p+i,... , ί9 in Vσ,
so there exists i0, with p +1 < i0 < q, such that the eigenvector eio of Γo lies
i n F Π V ; .

a) Let σ φ 2 mod 4. Since Aτ and jBr are non-zero, it is possible for every
i = 1,... , q to find a Stokes matrix S such that

S(eio) = eio+miei, πii G C*

in the following way. One can find integers j , /, with p + 1 < j , I < q afoά
(I — j) = (i — i0) mod σ and a Stokes matrix S' equal to 5 0, S'JL., S J or SW
according to the parity of σ such that

S'(eι) = e/ + m^ ej, m^ G C*
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and one can take S = Mjo-jSfMj~jo.

b) If σ = 2 mod 4, then for every i with p + I < i < q, i φ io
i ψ (z0 + ~) mod σ, there is a Stokes matrix S such that ^(e^) = eio + ra^
where m, E C*. This implies that ê  G F Π i ^ . Let j 0 be such that
P + 1 < j'o < 9 and j 0 = (io + f) mod σ and let 5 r = MrS0M~r where
r = q — i0. We get

p

fc=l

where δu... , J r , δjo E C*. Let t = Z<0 in T o = diag(Zi,. . . , lq) as above. In

the present case, σ being even, we can write

T o =

and we may choose T o such that tφ\. We get

ToSΌTo-^βiJ - ei0 +tΣδkek +t2δjoejo.Σ δjoejo.

Since eio, 5 r(e io) and To^oTo'^βiJ belong toFΠV, we get e jo eFΓ\Vσ

and finally Fσ C F, hence F = C 9 by (ii).
The representation of the connected subgroup Gs being irreducible, so

are the corresponding Lie algebra representations of <δs = Lie Gs and of
0 = Lie G. Since &s C 5l(g, C), the Lie algebra 65 must be semisimple (cf.
[Hu], p. 102). This ends the proof of 3.8. D

The following result is to be compared with ([K2], Th. 3.6). Note that
our hypothesis imply "Lie-irreducibility" in the sense of [K2], so that we, as
expected, recover part (2) of Katz's result.

Theorem 3.9. Ifq — p is odd and if the representation of (5 Π sl(q, C) is
irreducible, then

(i) G~GL(q,C) ifq-p^lorifΣU^tQ
(ii) G ~ SL(<7, C) x Z/i/Z if q — p Φ 1 and Σq

j=1 v$ — ̂  where r,v are
coprime integers.

Proof. Let Gλ be the connected subgroup of G corresponding to the sub-
algebra & Π sl(q,C) of 0. It is clearly generated by Gs and the identity
component of GM Π SL(g,C). Since σ = q — p is odd, the subgroup^6t
contains the Stokes matrix
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(cf. [DM], Th. 5.1 (a) and Th. 5.3 (ii), p. 37-38), where the coefficients β{

are all non-zero since both (2.1.1) and the condition of Th 3.1 are satisfied.
A result by Beukers and Heckman (cf. [BH], Prop. 6.4) states that the
only irreducible connected subgroups of SL(g, C) which can be normalized
by an element υ G SL(g, C), with rank(t; — /) = 1, are SL(g, C) and also
Sp(<7, C) if q is even. But for G\ C SL(g, C) and v = Ss. we claim that
this last case does not occur. To prove the claim, we suppose that there
exists an antisymmetric invertible matrix U = (ΐ/̂  ) such that gtUg = U
for all g G Gi, in particular for the conjugates Sr — I + Y%-\ θίriEri of So

by M r , where ari G C*, 1 < r < σ and 1 < i < p. This implies that
Uij = 0 for 1 < i, j < p, whence σ φ 1. The exponential torus T must then
belong to Gλ. Take T = diag(l,... , l,/ p + i, . . . ,lq) e T such that Z< ̂  1
for j9 + 1 < i < q. Then TlUT = U implies that uiά = u5i = 0 for all ij,
1 < i < p and 1 < j < q, so that rank(w) < ^ — 1, a contradiction. It follows
that Gx = SL(g, C). If ςr - p = 1, then det(T) = C*, so that G = GL(ςr, C)
in this case. Since G\ = SL(g, C) and det M = e~ tπ^ί=t "> ? w e c a n w r i te

ΣΣM = e " 2 ^ Σ =i ̂ M 1 ; w i th Mi e SL(q, C)cG. liq-pφl, this shows that
G is topologically generated by SL(g, C) and the scalar matrix e q ^ J = I 31.
The latter generates a cyclic group of order v if ΣjLi ^ i s a reduced rational
number ^, and generates topologically C* if Σq

j=1 Vj £ Q This proves (i)
and (ii) in this case. D

We recall that two linear differential equations of the same order with
coefficients in C(z) are rationally equivalent if the corresponding differen-
tial systems are C(^-equivalent, which implies that their differential Galois
groups are equal.

Definition 3.10. The differential equation

n - l

D = dn +

where d = •£ and a{ G C(z) for 1 < i < n — 1 is self dual if it is rationally
equivalent to the dual equation

n - l

The following criterion (cf. [K2], Prop. 3.2, p. 93) will be useful.

Proposition 3.11 (Katz). Two irreducible equations Dqp and D'qp with
parameters (μ,^) and (μ',v!) respectively are rationally equivalent if and



380 CLAUDE MITSCHI

only if

(μ,ι>0 = (μ' tli') mod rZi

p+q

for a suitable ordering of the parameters.

In what follows we shall only consider irreducible equations. We refer to
Katy Boussel's thesis for an algebraic study of the Galois group of reducible
hypergeometric equations (cf. [Bol], [Bo2]).

4. Equations £>42.

We now consider irreducible equations of the form

4

DA2 = z(d + μi)(<9 + μ2) —

where the complex parameters μ l 5 μ2, I Ί , . . . , v± satisfy as before the condi-
tions μι φ μ2 and μ̂  φ Vj mod Z for all i = 1,2 and j = 1,... ,4.

Notations 4.1. Let:

λ=4 + ί > ; - ί > ; (as in 2.2)

t j \ i = 1,2

2πrΓ(l +μi-μ2

μ2 -

Ί =

m = aη + βδ.

L e m m a 4.2. For any irreducible equation D 4 2 the following holds:

(i) α, /3,7, δ are defined and non-zero
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(ii) and

aΊ + Eβδ = sinπ(μi-μa) I Π

Proof. Assertion (i) follows from 3.1 and assertion (ii) from the formula

where z G C\Z. D

We begin with the selfdual case, where G can be completely determined.

4.3. Invariants. The Stokes matrices are the conjugates Sr of

So = / + aE31 + βE32 + jE14 + δE24 + τ/^ 4

by M r , where r E Z. More precisely, if Sr = expsr we get

(i) for even r

. Sr = I + θ[aE31 + θr

2βE32 + θϊr-yEu + θ^rδE24 + ηE34

sr = θ[aE31 + θr

2βE32 + θ-r

ΊEu + θ~rδE24 + n £ 3 4 ,

(ii) for odd r

Sr = J + 0Γα£?4i + 0;/?JE42 + 0fΓ7^i3 + θ2

rδE23 + ηE43

sr = θ[aE41 + θr

2βE42 + θ~rηE13 + θ2

rδE23 + nE43

where n = η — ψ.

The exponential torus in this case is

r = { d i a g ( l , l , t , r 1 ) , ίGC*}

and its Lie algebra is generated by r = E33 — E44. The Lie algebra ® 5 is
generated by r and the infinitesimal Stokes matrices sr where r G Z. The
formal monodromy is

M = e'2iπμiEn + e~2iπμ2E22 + eiπX{E34 + JS43).

In the following we recover, for the identity component G° of G, a result
of Katz (cf. [K2], Cor. 3.6.1 and Th. 3.4). We will say that a semidirect
product A xi B is trivial if the action of i? on A is trivial, that is, yt xi B is
actually a direct product.
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Theorem 4.4. Any irreducible selfdual equation D42 is rationally equivalent
to one of the following equations:

2

(a) D42 = z(d + μ)(d — μ) —

with μ,Vχ,v2 6 C ; 2μ $. Z and μ ± v^ fi Z, i = 1,2. /n ^Λis case ί/ιe

differential Galois group is isomorphic to

(i) a non-split extension of Z/2Z by a non-trivial semidirect product
SL(2, C) x C* if2μ = \ and [yx +V2ΈΞ\ orvx-v2 = \) mod Z,

(ii) Sp(4, C) otherwise.

(b) £>42 = z,

Here G is isomorphic to

(i) SO(4, C) if vλ + v2 ψ \ and vx-v2φ\ mod Z,

(ii) a non-trivial semidirect product (SL(2, C) x C*) >i Z/2Z otherwise.

- μ) - a (a - ^ ) (a +1/

ί/i 2μ ^ Z, αnc? G is isomorphic to 0(4, C ) .

Proof. By 3.1, 3.10 and 3.11 the given equation is selfdual if and only if, in
addition to the irreducibility conditions 3.1, the parameters μ on one hand,
v_ on the other hand can be rearranged in pairs either of opposite numbers
modulo Z or of half integers. It must therefore be of type (a), (b) or (c).

Case (a): We have λ = | and m = cry + βδ = 0 by Lemma 4.2 and also

θλ = 0, θ2 = -θ~ι where θ = e - < ί r

To prove (i), let us show that 0 5 is isomorphic to a semidirect product
sl(2, C) >3 C. Since in this case θ = 0 and θ2 = 1, the set of infinitesimal
Stokes matrices reduces to {sOiSι} where

s0 - aE31 + ££24 + βE3

and

5 l - θ{aE41 - δE23 -

Denoting h = [so,Si], we get h = 2θ(aδE21 - βjE12 + 0:7(^33 - £ 4 4 ) ) ,
whence

and [/ι, sx] =
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Since crγ φ 0, the matrices s0 and Si generate a subalgebra isomorphic to
sί(2, C) on which Lie T acts by

[r, s0] = s0 and [r, sx] = - s l 5

the elements s0, sx, /i and τ being linearly independent. We clearly have
GstΠT — (I). Here the Stokes group Gst is generated by SO and 5Ί, so that

we get Gs = Ĝ * x T. In the new basis of C 4 where

( β\
—a

0

W

( β\
—a

0

V * /

f-βθ\
-aθ

0

1 o I

f-βθ\
-aθ

1

1 o /
0 and SΊ are represented by

0 0 \/I 2

0 1 0
0 0 l + u

0
u

0 0 -w 1-uJ

(\ - u -u 0 0 \
w 1 + ^0 0
0 0 1-j
0 0 0 1 )

where u = 2aβθ. It is easy to check that Gst acts as SL(2, C) on each
subspace (̂ 1,̂ 2) and (^3,^4). The formal monodromy generates a finite
subgroup GM — Z/4Z acting non-trivially on Gs and M2 — —I G Gs
whereas M £ Gs> This proves (i).

To prove part (ii) of (a), let us show that ©5 admits the following basis:

B - aE
42

aE
32

aE41 -

The conditions of (ii) imply that 2μ φ \ mod Z or 77 φ 0. To see this, let
us first assume that 2μ = | mod Z. Then

77 = = 4e"ί7rλ

whence η φ 0. Note also that m = 0, so that n = η and sr = Sr — I for
r G Z. The adjoint action of T on 65 gives

[r, sr] = s r + r/J534 if r is even and [sr, r] = s r + 77̂ 43 if r is odd,

so we see that 77̂ 34, ηE43, (sr — 2ηE34) belong to <&s for all even r while
(sr — 2ηE43) belong to 0 5 for all odd r. We have

sr - ηE34 = θr(aE31 + δE24) + θ~r(βE32 + jE14) if r is even,
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and

sr - ηE43 = θr(aE41 - δE23) - θ~r(βE42 - ΊEl3) if r is odd.

Now assume that 2μφ\ mod Z. Since λ = § and μ $ | Z by (2.1.1) we get
θ2 φ θ~2. Comparing (sr-ηE34) (resp. (sr-ηE43)) and (s r + 2 -ηE34) (resp.
( θ r + 2 — ̂ 4 3 ) ) for all even (resp. odd) r, it is easy to show that the elements
aE3ϊ + δE24, aE42 + δEi3 which is proportional to βE42 — jEi3, aE4ϊ — δE23,
aE32 — δEλ4 which is proportional to βE32 +7JS14, all belong to (85. Taking
Lie brackets of these elements we get E12, E2ΐ, Eu — E22, E34^E43 as
elements of ©5 in view of aδ φ 0.

If 2μ = \ mod Z, then 77 φ 0 and θ2 = 1. The set of matrices «sr reduces
to {s0, -Si} and since £̂̂ 34 and r\E43 are elements of &s so are £"34, -E43 and

s 0 - 77^34 = aE31 + δE24 + βE32

β(θi - ^^34) = αJ5 4 1 - ί £ ; 2 3 - βE42

[JE?43, s0 - ηE34] = αJ5 4 1 - ^ 2 3

Θ[E34, Sl - ηE43) = α E 3 1 + δE24 -

We conclude as before that B is a basis of ©5. Therefore the latter consists
of all matrices u such that vfL + Lu — 0 where L is the antisymmetric matrix

L = a(El2 δ(E34 - E43).

We get Gs — Sp(4, C). Since the formal monodromy also satisfies MtLM =

L, it follows that G = G 5 ~ Sp(4, C).

(b): We have λ = 2 and

η — 4 cos π(i/i + v2) cos π(ι/i — i/2) =

and by Lemma 4.2

aj ± βδ — — 8((sinπz^i smπv2)
2 ±

m
—

whence n = η — y = 0, ^ = 1 and 02 = — 1. The set of Stokes matrices
reduces to

So = SE24 + ηE34

and

Si = 77^43
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and the formal monodromy is

M — En ~ E22 + -f?34 + -£"43-

To prove part (i) of (b), let vγ + v2 ψ \ and vλ — v2 φ \ mod Z. Since

n = 0, the Lie algebra &s is generated by

s0 = aE31

5! = aEAl

and r — £^33 - J344. From

[s0, si] = 2α(ϊ£21 - 2βΊE12 + ( α 7 - βδ)(E33 - Eu)

we deduce that k = aδE2\ — βjE12 belongs to 0£. Moreover

[fc, 50] - α 7 ( ^ 3 2 + δE24) - /35(7£;14 + α£?3i)

and

[A, Sl] = aΊ(βEA2 + δE23) + βδ(ΊE13 + aE41).

Since aη + βδ φ 0, by comparing s0 and [fc, 50] (resp. Si and [fc, 5χ]), we get
the following elements of 65

{aEzι + 7 £ 1 4 , βE32 + δE24, aE41 + <yE13, βE42 + δE23} .

Together with k and r, these elements form a basis of ©5, which therefore
consists of all matrices u such that ufR-{- Ru = 0, where R is the symmetric
matrix

R =

It is easy to show that UιRU = R for U = SO, SΊ, M and for f/ G T, so
that G ^ S O ( 4 , C ) .

To prove part (ii) of (b) we assume that vx + v2 = | and ^ — z/2

 Ξ | mod
Z. Then m = 0̂ 7 + βδ — 0, whence aj — βδ φ 0. We have

[[so, si], so] = 2{βδ - a-y)s0 and [[sΌ, Si], Si] = 2(α7 - βδ)s1 .

This implies that the subalgebra generated by s0 and sx is isomorphic to
sl(2, C) with Lie T acting by [r,50] = s0, [τ,Si] = —5!. As in (a), we prove
that Gs is isomorphic to^a semidirect product SL(2, C) x C*. We have
M 2 = / whereas clearly M <£ Gs, and M acts non-trivially on GS- This
proves (ii).
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Case (c): We have λ = 1, ay — βδ = 0, m — aη + βδ φ 0 and

1 7 1 A / \ • / \

77 — — = 4 sin π(ι/ + μ) sm π(i/ — μ)

whence n = 0. Denoting 0 = — e""~2i7rμ we have θλ = θ, θ2 — —θ~ι and

sr = 0 r α £ 3 i + θ~rβE32 + θ~rjE14 + <9r(5J524 if r is even

and

5 r = 6>rα£;4i + θ~rβE42 + θ~rjE13 + θrδE23 if r is odd.

\ί2μψ\ mod Z then 02 φ θ~2 since 2μ ^ Z. If 2μ = | mod Z, then all

5Γ are collinear either to 50 or to sx since ^ 2 = — 1. We have

s0 = <xE31 + /3JB732 + jEu + δE24 and 5i = θ(aE41 - βE42 - -γE13 + δE23).

Since aη — βδ it is easy to show in both cases that

B = {aE31 + δE24, aE32 + δE14, aE42 + δE13, aE41 + δE23,

En — E22, E33 — E44}

is a basis of (5s, which is therefore isomorphic to the Lie algebra so(4, C)
consisting of all matrices u £ sί(4, C) such that uιQ + Qu — 0. Here Q is
the symmetric matrix

Q = a(E12 + E21) - δ(E34 + E43).

It follows from MιQM = Q and d e t M = - 1 that Gs ^ SO(4,C) and
G ~ 0(4, C), which completes the proof of Theorem 4.4. D

In the general case of an irreducible equation D42 we would computeJ3

following the same scheme: we first determine the Lie algebra (5s, then the

corresponding connected subgroup Gs of G and then we obtain G by letting

M (or M and T ~ C* if σ = 1) act on Gs or we determine & by the action

of <δM (or (5 M and C if σ = 1) on &s-
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4.5. Table for 0 5 . In the table below we list all possible Lie algebras
obtained for different values of the parameters μ and u_.

Let I = 2(μλ + μ2) — Σj=i vj a n d m = aj + βδ, n = η — y as before.

<δs

m

*ί(2,

ie\-

= 0

C)xC

\-z

Ml"/

/e|z

n = 0

Z

m = 0

07 =

So(4,C)

6 Z

-βδ

l + z

α 7 ^/35

n

sl(4, C)

z

or

m 7̂

0

0

and

so(4,C)

A»i - M2 ^ | + Z

/ € | + Z

n = 0

so(4,C)

cnφβs

st(4,C)

ί E Z

m = 0

sp(4,C)

ί ίE|Z

5ί(4,C)

Sketch of the proof of the results in 4.5: We first prove that <&s is generated
by r = #33 - #44, n # 3 4 , n # 4 3 and

and

σr = θ[aE31 + θr

2βE32 + θ^r

ΊE14 4- θ2~
rδE24, r E 2Z

σ r - θr

2βEA2 + e~rjE13 + θ2

rδE23, r G 2Z
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where θj = e-
iπ(χ+2»j) for j = i ? 2 and where n£J34, n£J43 are obtained by

the adjoint action of T on (S s ί. The rank over C of each family (σ r ) r € 2 z
and (crr)r62z+i is < 4 if and only if one of the following holds:

1 2 ' 1 2 ' 1 2

This is equivalent (still under assumptions of 2.1) to θ2 — θ\ or Q\ — θ2

2

where

1 2 2

and

u1 — u2 <FΪ [λ H- μ i + μ 2 j G - Z J <=> z(/ii -f- μ2) — 2_^, ^j G -A .

Remark.
(i) The only case where the representation of ©5 is reducible is (5$ ~

3ί(2, C) x C where η — 0 (the irreducibility condition of 3.8 does not hold),
(ii) The different degeneracy cases reflect the inclusions

st(2, C) x C C so(4, C) ~ sl(2, C) x 5t(2, C) C sp(4, C) c sl(4, C).

As an example we will compute G for an irreducible non selfdual equation

Proposition 4.6. The differential Galois group of

l λ 3 / 1
- 4 ) ( a + μ + 4

where μ G C, is isomorphic to

(i) (SO(4,C) x Z/2Z) x C* ifμ^Q (the semidirect product beeing non-
trivial)

(ii) an extension of Z/î Z by SO(4, C) if μ — -s where r, 5 are coprime

integers and

2r if r G 1 + 2Z ,

r if r G 2 + 4Z ,
v = <

21
2

i/ r G 4 + 8Z .

Proof. We have

λ = - 2 μ , Θ2 = -θx = i, 77 = 2, α 7 = /?5 = 2, m = 4, n = 0
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and the formal monodromy is

M = e-2i*»(En - E22 + i(E3i + Ei3)).

The Lie algebra ©5 is isomorphic to 50(4, C) since it admits the following
basis

B = {£33 - #44, En - £ 2 2 , Ά + SE24, aE32 + δE1A,

aEA1+δE2Z,

which leaves invariant the symmetric bilinear form given by the matrix

L = a{E12 + E21) - δ{E34 + £43)

If μ φ Q, the formal monodromy group GM is isomorphic to G°M x (Mi)
where the identity component G°M is the group of scalar matrices and the
subgroup (Mx) ~ Z/4Z is generated by Mx = diag(l, —l,i,i) with M\ E
T CGS but Mλ <£ Gs. Replacing Mx by TMλ where T = diag(l, 1, i, -i) G T
we see that the quotient Z/2Z splits off, so that we finally get

G ~ (SO(4,C) xi Z/2Z) xC*.

If μ E Q, let r denote the order of e2tπμ. We get (ii) by computing GM Π (?S
for different values of r. D

5. Equations D2q,2q-2.

The calculations of Section 4 can be extended to the more general case
of an equation D2q^2q-2. We shall treat the case of an irreducible selfdual
equation, in a "generic" case where the parameters μ and y_ respectively
can be arranged in pairs of opposite numbers modulo Z. Note that our
assumptions actually imply that the equation is not "Kummer induced" in
the sense of ([K2], Lemma 3.5.6) and that Th. 3.6 of Katz ([K2]) could be
applied here to determine the identity component G° of G. Computing G
directly from a set of generators, we get:

Theorem 5.1. The differential Galois group of

f-2 = z
k=l k=l

where for all 1 < k,l < q— 1

« Z ' a n d fjL2k~l ~ μ2l~ι ^ 2
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is isomorphic to Sp(2g, C).

Proof. Let μ2k — —μ2k-i foτ 1 < k < q — 1 and v2k — —V2k-\ for 1 < A; < g.

We have in this case λ = \[σ + 1) + Σj=i βj ~~ ΣjLi vό — \- The exponential

torus is T = {diag(l,... , l , t , t ~ 1 ) , ί G C*} and Lie T is generated by

r = E2q_ιj2q_1 — E2qM. The Stokes matrices are the conjugates by M of

2?-2 2q-2

So = I -h 2 ^ otkE2q_i^k + 2 ^
i f e = l i f e = l

where

«* =
Γ(i/-Ai*)

2g-2 2q

η = e~i7rλ

Let % = e-i*(λ+2μi) for 1 < j < 2g - 2, m = E*L"i2 ^ A and n = ry - f.

As in Section 4, we show that 0s is generated by r, nE2q-ι,2q, nE2q,2q-\

and

2ςr-2 2g-2
σ ^ = Σ θlakE2q-i,k + Σ θkVβkEk,2q ΐoτ all even r

2^-2 2g-2

σ r = Σ θr

kakE2q,k + ^ θk

rβkEki2q-i f° r all o d ( i r

j f c = l fe=l

Under the assumptions of the theorem we have #ĵ  7̂  θf and ^ 7̂  βz~
2 for

1 < k,l < 2q — 2 and k φ I. The elements {σ r } r e Z generate the same Lie

algebra as the elements

q-ι,i+ι 4- βiEij2q

for all odd % such that 1 < i < 2q — 3. We get the following set of generators

oΐ&s'
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for all odd i such that 1 < i < 2q — 3,

for all odd i,j such that 1 < i < j < 2q — 3,

Qtiβj+iEjj - ajβi+1Ei

for all odd i, j such that 1 < i,j < 2q — 3 and

One can check that these g2 + g generators are C-linearly independent and
form a basis of &s Up to scalar multiplication, the following permutation
of the canonical basis of Cq

/ l 2 , . . . q q+l...,2q\
\1 3 2g - 1 2 . . . ,2q)

changes the previous set of matrices into the classical basis of £p(2g, C ) :

{ }^..^ U {Eij ~ Eq+i^+j }χ< ..<q .

More precisely, with respect to the given fundamental solution, Us consists
of all matrices u such that vtL + Lu = 0, where L is the block-diagonal
antisymmetric matrix L = diag (mi, ra2,... , mg_i, m), defined by

with
9 - l

and βi = β(β2i)~1 for I < i < ? - 1 .

Since e i π λ = — i, the formal monodromy also leaves the form L invariant and
we get (? ~ G 5 ~ Sp(2^, C). D

6. Equations Z>5i

In this section we consider particular cases of equations



392 CLAUDE MITSCHI

Notations 6.1. With the notations of 2.2 we get here

2iπ o (2π)Ai
P =

If Ar and Br are defined as in 3.7, let

c = ζ~λA1, d = eiπλζ-χBι, η = ζ'2XA2 , n - 77 - ^ , and θ = e - i i r ( » + 2 μ ) .

Part (b) of the following result is to be compared with ([K2], Cor. 3.6.1).

Theorem 6,2. Consider an irreducible equation Z?51 with parameters
μ, 1^1,... ,1̂ 5 such that cd φ 0. The following holds.

(a) TΛe Lie algebra ©5 25 isomorphic to

(i) 5θ(5, C) if the following conditions aβ = 2?7, 5/i — Σ ^ = 1 ^ G | + Z
αnc? cθ2 + oί = 0 /10W,

(ii) 5l(5,C) otherwise.

(b) Furthermore, if the equation is selfdual, the differential Galois group

is isomorphic to

(i) O(5,C)ί/μeZ
(ii) SO(5,C) otherwise.

Proof. The exponential torus relative to Z)51 is

r = { d i a g ( l , ί 1 , ί 2 , ί Γ 1 , * J 1 ) , ί i , * 2 G C * }

and its Lie algebra is generated by τλ — E22 — E44, τ 2 = E33 — E55. The
formal monodromy is

M = e~2i^En + e^ [E26 )
i=o

With notations as in 6.1, the Stokes matrices are the all successive conjugates
by M of

So = I + aEu + βE13 + ηE35 and Si = I + cE3A + dE2b .

We have So = exps 0 and 5 j = exps^ where

s0 = aE31 + /?E15 + nE35 and 55 = cJ534 + dE25 .
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The adjoint action of T on the infinitesimal Stokes matrices yields the
following elements of &s

(Σ) l i

σ0 = θ4raE31 +θ~4rβE15

σι = θ4r+1aE21 +0-4r-^E:

σ2 = θ4τ+2aE51 +θ~4r-2βE13

σ3 = θ4r+3aE41 +θ~ir-3βE12

for r G Z and

{cE34 + dE25, cE23 + dE54, cEh2 + dE43, cE45 + dE32,

nE35, nE53, nE24, nEi2}

which together with τx and τ 2 generate (85.

Case 1: Suppose that #4 Φ θ~4 or equivalently that | + 5μ — Σ ^ = 1 Vj £ 2Z.
Then it is easy to show that <δs — sl(5, C).

Case 2: Suppose that θ4 = θ~4 (and therefore = ±1). Then, up to scalar
multiplication, the first family (Σ) reduces to

(Σ')

+βE
15

aE31

θaE21

θ2aE51 +θ'2βE13

θ3aEu +θ~3βE12.

The family (Σ') generates the following elements of the Lie algebra

{θ E34 — ΘE25, θ E32 — θ £?45 , θ E23 — ΘE54 , θ Eξ,2 — ΘE43,

Θ~2(E33 - Eu) + θ2(En - ES6), Θ~2(E22 - En) + Θ2(EU - Eu)} .

If θ2 φ θ~2, then (94 = - 1 whence θ = εiθ~\ with ε = ± 1 . We get the

following set of generators of &s'

aE31 + βE15, θaE21 + θ~ιβElA , aE51 - βE13 , θaE41 - θ~ιβE12 ,

£̂ 33 — 2£qi + £?55, E22 — 2En + £J44 ,

1?22 — £?44 , E33 — £?55 .

An easy calculation in the Lie algebra shows that we get all Eij and Eji for

2 < j < 5 whence β s - sl(5, C). If θ2 = θ~2, then θ2 = ± 1 = ε. If n ^ 0, we

show as before that 0 S ~ 5l(5, C). Now suppose that n = 0. The following
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elements are C-linear generators of &s-

aE31 + βElb, aE21 + βElήt, aE51 + βE13 , aE41 + βE12

cE34 + d £ 2 5 , c£?23 + dE54 , c £ 5 2 + d£743 , c#45

We get (5 5 ~ sl(5, C) if cε + rf φ 0, and © 5 ^ 50(5, C) otherwise. In the

latter case (δs — so(5, C) leaves the symmetric bilinear form L = — aEn +

α^(£;24 + ^42) + ^(-^35 + #53) invariant.

To prove (b), consider a selfdual equation D 5 1 . Still under conditions 2.1.1
and 3.1, we can rearrange the parameters in such a way that

(1) either μ = 0 and v_ — (&Ί, —V\,v2, —^1, | )

(2) or μ = \ and u, = (^1,-^1,^2,-^1,0).
In case (1) we have

λ = 2, ε = l , C~Λ = — 1 , c + rf-0

and in case (2)

λ = 3, ε = - l , C~Λ = - 1 5 c = d .

Let us show that n = 0 in both cases, which implies that <5S — so(5, C) by
(a). We have

5

aβ = -2 5 JJ sinπ(^ - μ)
i=i

and

where 6 = e~2iπμ and α̂  = e~2i7ΓI/j for 1 < j < 5. In case (1) we get

η — ζ~2λ^42 = —4(1 — cos2iπ^χ — cos2iπz^2 + cos2iπ^i cos2ΐπz^2)

which is equal to
aβ
— - -2 4(sinπι/ 1) 2(sinπι/ 2) 2

Δ

whence n = η — ψ = 0. The proof is similar in case (2). Now to compute

G we note that the formal monodromy is M = diag(l,P) in case (1) and
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M = diag(—1, — iP) in case (2), where P denotes the permutation matrix P4

defined in 3.2. In both cases we have MιLM — L, where L is the invariant
symmetric bilinear form of 0 5 ~ 50(5, C). Hence M belongs to Gs if and
only if det M = 1, that is G ~ 0(5, C) in case (1) and G ~ S0(5, C) in case
(2). This ends the proof. D

7. Equations D71.

In this section we consider equations

with the irreducibility condition μφv% mod Z, for all % — 1,... ,7.

Notations 7.1. With notations as in 2.2, we get

7 '

2 μ 2 , " , , e

2*π o (2τr)6i

Let e r (resp. e'r) for 1 < r < 7 denote the elementary symmetric functions
on (e-^^j j^xγ (resp. on (e2iπiΌi<i<7) and let

b = e~2iπμ , c = -e~2iπτ (e 2 - beλ + b2), d = e 2 ^ (e'2 - fr"1^ + b~2)

= e i ^ ( 6 - 1 - e ' 1 ) , i = - e - ^ ( 6 - e i ) , η = -ζ~3X(b3 - b2e, + be2 - e3)

For all fc G Z, we define £ , 2 < i t < 7 , byfe = A; modulo 6.

The exponential torus in this case is

and Lie T is generated by

Ti = £/22 — -S44 — -E55 + £77 a n d T2 = £"33 + £44 — .£?66 ~~ £77

The formal monodromy is M — diag(e~2 ί π μ, e^P) where P denotes the
permutation matrix P6 defined in 3.2. The Lie algebra &s is generated by
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Ti, τ2 and the infinitesimal Stokes matrices consisting of all conjugates by
M r , r G Z, of

aβ
so = So-I- -fE47 = aE41 + βE17 + jE32 + δE56 + nE47

and

si=Si-I = cEie + dE37 .

The adjoint action of T on these matrices yields the following family of

generators for <δs

σi<r = θ6r+iaE^iΛ + θ-^-'β^r-i + 7^3^,2^ + SE^^ for 0 < i < 5,

φi = cEiΛ±1 + dE^i+s for 2 < i < 7,

£ i > i ±3 f o r 2 < j < 7 ,

and T\ T2

Theorem 7.2. Consider an irreducible equation D7Ϊ with cdηδ φ 0.

(i) 7/ the parameters moreover satisfy the following conditions:

7 \ 1
j e - + Z, aβ = 2η, cδ = άy, c3 + d3 = 0 and cθ2 + d = 0,

2

Lie algebra &$ i>s isomorphic to

(1) 0 2 (C) if aβθ + 2Ί

2 = 0

(2) 50(7, C) eZse.

(ii) 05 25 isomorphic to 5l(7, C) otherwise.

Proof. To prove (ii), suppose that the conditions of (i) do not hold.

Case 1: If (7μ - Σ]=ι Vj) ^ | + Z or, equivalently, if λ + 6μ $ Z, then:

a) if λ + 6μ E \ + Z, the following elements

θ'aEi-r,! + θ-rβEliίά±zL, for 0 < ϊ < 5

belong to ®s and generate ΰί(7, C),

b) if λ-h 6μ ^ I + Z then 06 7̂  θ~6. From {σ^i, σ i)2, "̂i,3}o<i<5, we easily
get all elementary matrices Eij and JE^i, for 2 < j < 7, as elements of 0 5

generating s[(7, C).
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Case 2: If λ + 6/i G Z then θ3 = θ~3. To show that <5S ^ BI(7, C) it

is sufficient to show, in all following cases, that the elements J£? i f < + 3 |

belong to (S s since we then get all Eltj and EjΛ for 2 < j < 7 by computing

i,oj #4^,7^] for all i = 0,... ,5.

a) If n ^ 0 the result follows easily.

b) If n = 0, we consider three cases.

If c3 + d3 φ 0 we get the result by taking Lie brackets of elements

If cδ φ dj we note that

^g-i for 0 < i < 5.

If c3 + d3 = 0 and c5 = c?7, suppose that the last condition cθ2 + d = 0 of
(i) does not hold, or equivalently that θ φ ζβ~ι , with ^ = — ~. Consider all
elements [σ5jo,<7o,o] and [^0,^+1,0] for 0 < i < 4. For instance, for i = 0 we
get

Ko,*i,o] = (^"^46 - ΘE37)aβ - ξ2(E46 - ^ 3 7 )

and since (.E46 — ξE37) belongs to 65, so do E46 and ^ 3 7 . This proves (ii).

Now suppose that all the conditions of (i) are satisfied. With ξ as above,
we have θ = ξθ'1 whence θ = εξ'1 with ε = ± 1 . Let a' = ^ and β' = &.
The following elements then belong to ©5

σό = α ; S 4 i + β'E17 + E32 - ξE66

σ[ = (εξα'^31 + εβΈ16)ξ + E27 - ξE45

σ'2 = (ξ2a'E21 + β'Elb)ξ2 + E76 - ξE34

σ'3 = εa'E7l + eβΈ1A + E65 - ξE23

σ\ = {ξa'E61 4- β'E13)ξ + E54 - ξE72

σ'b = {eξ2a'Ebl + εβ'E12)ξ2 + E43 - ξE67 .

Case 1: If a'β' φ —2ε^, consider all elements {[σi,σl

r(i+2)]}0<i<b and

{σr(i+i)}0<2<5 where r(j), for 0 < r(j) < 6, denotes the remainder of an

integer j modulo 6. These elements generate the following ones

which together with

{Ψi}2<i<7 1 E22 — # 5 5 , E33 — EQQ a n d E44 — E77
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form a C-basis of ©5. We show that &s is isomorphic to so(7, C) since it
leaves invariant the bilinear symmetric form

L = -aξ2En + β(E25 + E52) + βξ(E36 + E63) + βξ\EA7 + EΊA).

Case 2: If a'β' — —2εξ then the elements {σι

i: ψi}2<i<7 and r l 5 r2 form
a C-basis of <δs- We know by theorem 3.8 that &s is semisimple in this
case. It is easy to see that the subalgebra generated by τλ and τ 2 is a Cartan
subalgebra of (5 s and we deduce from the classification of semisimple Lie
algebras (cf. [T]) that (85, which is of rank 2 and of dimension 14, is of type

02- •

For the following statements 7.3, 7.4 and 7.5, we refer to corresponding
results of Katz in ([K2], Th. 3.6, Cor. 3.6.1 and Section 4.1).

T h e o r e m 7.3. Consider an irreducible equation DΊλ such that cdjδ ^ 0.
(1) // the following conditions hold:

cδ =

+ 2j2 = 0, the differential Galois group is

JG2 xG2 xZ/rnZ if μ + | = ^ , where r,m are coprime integers,

\G2xC* ifμϊQ.

(ii) Otherwise

Ό(7,C) ί/μSZ

— ^ SO(7, C) x Z/mZ if μ+ \ — ̂ , where r,m are coprime integers,

(2) Otherwise

(SL(7, C) xZ/raZ if Σ] = i* / i = —? where r,m are coprime integers
T~ \GL(7,C) else.

To prove this theorem, we need the following fact (also used by Katz in

[K2], Lemma 4.1.1).



DIFFERENTIAL GALOIS GROUPS 399

Lemma 7.4. Let H be a subgroup o/SO(7, C) which is isomorphic to G2.
Then H is equal to its normalizer in SO(7, C).

Proof. The group of outer automorphisms of G2 is trivial (cf. [He], IX.5.4,
X.3.29), as can be deduced from the Dynkin diagram of G2. If m G SO(7, C)
acts by conjugation on H, there exists h G H such that m~1gm = h~ιgh for
all g G H. Since mh~ι acts trivially on H and the representation of G2 is
irreducible, we get by Schur's lemma that mh~ι is a scalar matrix, whence
mh~l =1. D

Proof of Theorem 7.3. To prove part (i) of (1), we may write M = —e~2i7r/iMl5

with Mi E SL(7, C). Since aβθ + 2j2 = 0 w e know that Gs is isomorphic
to G2 and that Gs leaves the form L (defined in the proof of 7.2) invari-
ant. It is easy in this case to check that Mi also leaves L invariant, that is,
Mx G SO(7, C). But Mi, as well as M, acts by conjugation on G 5, hence
Mi G Gs by Lemma 7.4. The Galois group G, topologically generated by
Gs and M, is therefore isomorphic to G2 xK, where K denotes the Zariski
closure in C* of the subgroup generated by —e~

2iπμ.
To prove part (ii) of (1), suppose that aβθ + 2η2 φ 0. We get G ~ G s xK

as before, where we know by theorem 7.2 that Gs — SO(7, C).

The proof of (2) is similar to the proof of Th. 3.9. We know by Th.

7.2 thatjSs = SL(7,C) in this case and we can write M = e~^^^ViMu

where Mi G Gs- This implies that G is topologically generated by Gs and
the scalar matrix e~ 3 ^ = 1 "'* J, which proves (2). •

These results take an easier form in the selfdual case.

Corollary 7.5. Consider a selfdual equation

D71 = z(d + μ) - (d + v - 1) Π(d + vj -l)(d- vά - 1)

where d = z— and {μ,v} — < 0, - >. Let (si)i<i<3 denote the elementary

symmetric functions in (cos2π^ )1<J <3 and let ε = e2iπμ. Suppose that 1 —
εsi φ 0 and 5 + 4(s2 - εsi) Φ 0.

(i) // si — 2s2 + 2εs3 = 1 or, equivalently, if v + Vι + v2 + v$ G Z for a
proper ordering of the parameters Vj, then
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(ii) Otherwise

" \θ(7 ,C) </μ = 0

Note that the condition si — 2s2 + 2εs3 = 1 of (i), reflecting a condition
on entries of the Stokes matrices 5 0 and 5 π , is actually equivalent to the
condition v + vλ + v2 + u3 G Z given by Katz in ([K2], 4.1).

Proof of the corollary: Under the conditions of 7.5, we may order the pa-
rameters in such a way that v_ — (uu —vλ,v2, —v2,vz, —vz,v). There are two
cases:

Case (a): μ = 0, v = \
Case (b): μ — | , v — 0.

Let ε = e 2 ί π μ . It is easy to check that the condition cdηδ φ 0 is here

equivalent to

1 — εsi Φ 0 and 5 + 4(«§2 ~~ 2εsχ) Φ 0.

In case (a) we get

- - Ί - 1, ί-1, 7- ^

/Λ \y 3

Qί/3 ::::: = 2 II sin TΓ̂ Ί .

We get η = ψ = 8(1 - sx + θ2 - θ3), so that the conditions of Th. 7.2 are
satisfied. We show that

( A \

α/3<9 + 272 = -{aβ - 2η2) = - 8 1 - ^ J cos 2 π ^ - 1 I .

In case (b) we have

- ' 3 c ~ 7 ~ ~ J ' ~J '
3

α/3 = 27 TT cos2 πvj , 7 = 2 e ^ ( l + sλ),

aβ - 2j2f = 8 I 1 - 52 c o s 2 2 π ί y i + 2 J | cos 2πi/, .
V /
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In both cases we get aβ + 2θ~ιj2 = 1 — s\ + 2s2 — 2εs3. The condition
aβθ + 272 = 0 equivalently says that v + z/x + z/2 + uz is an integer (for such
an ordering of the parameters). To see it we show that

1—s\+2s2 —2εs3 = — (εcos2π^3+cos2π(i/i+z/2))(£Cθs2πz/3+cos2π(z/1— v2)).

If ε = —1, that is if v — 0, the former expression is equal to zero if and
only if

+ u2) or z/3 = ±(vι — v2) mod Z.

If ε = 1, that is if v = | , the same holds if

±i/ 3 = - - (i/i + v2) or ± 1/3 = - — (1/1 - v2) mod Z.

This ends the proof. D

We illustrate the criterions of Th. 7.3 and Cor. 7.5 with the following
examples.

Proposition 7.6. The differential Galois group of

(1) £>n = ^ 0 + 1 ) - 0 3

(2) Dn =zd-f[(d- ^jj^) is G ~ G2 xZ/2Z
j=ι ^ 14 /

(3) £> 7 1 = ί r (0±l)_ή(0- l ) is G~G2xZ/7Z.
r = 0

/. Both equations (1) and (2) are selfdual and it is easy to check that

their parameters satisfy the conditions of Cor. 7.5. (i). To prove (3),

we first replace D71 by an equivalent equation where μ = ±γ^ and v =

(—f, -f, -y, 0, y, | , | ) . If we express all conditions of Th. 7.3 in terms of

b = e~2iπμ = e1^*, we get η = ^ = - 1 , d3 = - c 3 = 1, cδ = dη = 1,

02 = - ^ - e " * and £ = - 2 2 = 1. This is case (1) (i) of Th. 7.3, with

μ + i = f o r i . D

7.7. Application: An example of Katz. In ([K2], Th. 2.10.5), Katz
computes the Galois group of

dί7 dί
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(and more generally of j^ϊ~f j[t~\fl -, where / is a polynomial in t) and shows
that it is G2, using in particular the fact that L is selfdual. This equation
has a single irregular singularity at oo and in Section 6.1 of [K2], Katz shows
how L is a particular case of equations arising as "Kummer pullbacks" of
hypergeometric equations, in the same way as the Airy equation is related
to the classical (hypergeometric of order 2) Kummer equation.

Our method enables us to recover the Galois group of L directly from
Prop. 7.6 as follows.

Corollary 7.8. The differential Galois group of

4 ±dt 2

is isomorphic to G 2 .

Proof. We get L from the hypergeometric equation D7λ — z(d±γ^)—Y[r=Q(d—
7f) by a change of variable z — ± 7 ( | ) 7 . (More precisely, the equation D71

with μ = f̂ , ε' = ± 1 , is changed into -£r + εtft + ^ by z = 7ε( | ) 7 ,
ε = ±1). By Th. 7.2 we can check that this D71 has <SS — 02, where <SS

 a s
before denotes the Lie algebra of the subgroup Gs topologically generated by
the Stokes matrices and the exponential torus of D71. It is easy to see that
D7ι and L have the same set of Stokes matrices and the same exponential
torus, but different monodromy. The (actual) monodromy of D71 at oo (or
equivalently at 0) is an element of order 7, since the monodromy exponents
at 0 are {e~^i:}o<r<6 The monodromy of L at oo is therefore trivial. By
1.14.2, we see that the Galois group of L is generated by the group Gs of
D7ι and the monodromy of L at oo, that is, Gal(L) = Gs = G 2 . D

As a byproduct of this example, we get the following simple topological

generators of G 2.

Corollary 7.9. The group G2 can be topologically generated by
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{Sπ, -P, - or by {Sπ, So, -P}, where

Λ o o o o o o\
01000 00
00100 01
00010-10
00001 00
00000 10
0 0 0 0 0 0 1/

(I 0 0 00 0-2

00000 0 1

0 1000 0 0

0 1100 0 0

αOOlO-1-1

0 0001-1 0

00000 1 0

So =

J

/
1 0 0 0 0 0 -2<

01000 0 0
01100 0 0
αOOlO 0-1
0 000 1-1 0
00000 1 0
00000 0 1

(\ 0 0 0 0 0 0^

0000001
0100000
0010000
0001000
0000100
0 0 0 0 010/

Here So and Sπ denote the Stokes matrices of D7ι = z(d + γ^)~
dγ\l=1(d2 — jg) corresponding to the Stokes rays argz = 0 and argz = π
respectively, and M denotes the monodromy at oo, all with respect to the

same fundamental solution 2.2, with a = ^π% Πj=o ( s i n (^ΐP*)) • τ h e

proof of this result was given in [M2].
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