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DIFFERENTIAL GALOIS GROUPS OF CONFLUENT
GENERALIZED HYPERGEOMETRIC EQUATIONS: AN
APPROACH USING STOKES MULTIPLIERS

CLAUDE MITSCHI

In memory of Ellis Kolchin

We explicitly compute the differential Galois groups of
some families of generalized confluent hypergeometric equa-
tions by a method based on the asymptotic analysis of their
irregular singularity at infinity. We obtain the Galois group
directly from a particular set of topological generators. These
are formal and analytic invariants of the equation, reflecting
the asymptotic behaviour of the solutions. Our calculations
yield classical groups as well as as the exceptional group G-.

0. Introduction.

The differential Galois groups of all irreducible confluent hypergeometric dif-
ferential equations have been determined by Katz and Gabber, after previous
work of Beukers, Brownawell and Heckman (see [BBH] and [K2]). Their
proofs use purely algebraic arguments, and rely on global characterizations
of semisimple algebras. The aim of the present paper is to recover these
differential Galois groups in a number of cases by explicitly giving some of
their topological generators. It is indeed a classical result of Schlesinger that
the local differential Galois group of a meromorphic differential operator at
a regular singular point is topologically generated by the monodromy acting
on a fundamental solution. The presence of exponential factors in formal so-
lutions at an irregular singularity and the fact that the corresponding formal
series may be divergent give rise to new Galois automorphisms, reflecting the
asymptotic behaviour of the solutions. These particular automorphisms of a
solution field are the elements of the exponential torus, the Stokes multipliers
and the formal monodromy, which together generate the differential Galois
group topologically by a theorem of Ramis (cf. [R1], [MR2]). We show
how Ramis’s theorem can be applied to determine explicitly the differential
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Galois group over C(z) of generalized confluent hypergeometric equations
D, (y) = 0 where

q9

Dgp = (—l)q—sz(8+u]~) - H(a+ v; —1),

Jj=1 Jj=1

with 9 = zd% , 1 < p < g, and with complex parameters x;, v, such that all
u; are distinct modulo Z for 1 <1 < p.

The results were announced in [M1], [M2]. Our method, relying on the
computation of Stokes matrices, allowed us in a joint work [DM] with A.
Duval to determine the Galois group of equations Dj3; and Ds,, including in
the reducible cases. The present paper deals with higher order irreducible
equations.

Our aim is to illustrate on these examples how the analytic invariants
introduced by Birkhoff ([Bi]) and generalized by Sibuya [Si], Balser, Ju-
rkat, Lutz ([BJL]) and Malgrange ([Mal]), as well as the formal invariants
obtained from the canonical form of Levelt-Turrittin ([L1], [Tu]), play an
essential role in the algebraic structure of the differential Galois group.

Let us detail the content of each section. In Section 1 we recall the main re-
sults in differential Galois theory and complex analysis needed in the proofs.
In Section 2 we define a formal fundamental solution for the general equa-
tion D,,. In Section 3 we prove some general results for the Galois group
G = Galg(;)(Dgp). We explicitely compute G for equations Dy, in Section
4, for selfdual equations Dy, 2,—2 in Section 5, for equations Dj; in Section
6, and for equations Dy; in Section 7.

1. Generalities.

For basic facts on differential Galois theory we refer to [B], [Kal], [Ko],
[L2], [MR1] and [S]. An overview of recent developments is presented in
Bertrand’s Bourbaki lecture [Be] on the subject.

We consider a linear differential system
AY =90Y —AY =0

where A is an n X n matrix with entries in some differential field (K, @) whose
field of constants is C, and Y is an unknown matrix function with entries in
some differential field extension of K. Up to K-equivalence (that is a change
Y = PZ with P € GL(n, K) of A into a system in Z) one may suppose that
A is the system naturally obtained from a linear differential operator

D=3“+an_16"—1+---+a0
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with coefficients in K.

Definition 1.1. The differential Galois group Galg(A) of A over K is
the group of differential K-automorphisms of a Picard-Vessiot extension of
K relative to D. It is defined up to isomorphism and represented as an

algebraic subgroup of GL(n,C) with respect to a fundamental solution of
A.

Definition 1.2. Let A be a linear differential system with coefficients in
C(z). The global (resp. local at a point a € P!(C)) differential Galois group
G (resp. G,) of A over P*(C) (resp. at a € P}(C)) is the group Galg(A)
where K = C(z) (resp. K is the field C{z, }[z, "] of germs of meromorphic
functions at a € P!(C), where z, denotes a local uniformisant at a).

1.2.1. Let us fix a base-point z, of P!(C) \ S, where S denotes the set of
singular points of D and let ¥,, denote an analytic germ of fundamental
solution of D at z,. We may analytically continue ¥, to a “sectorial” germ
of fundamental solution at every a € S, provided that we fix a number of
choices. More precisely let U,, for every a € S, be an open disc with center
a, together with a local parameter z, at a, and such that U, NS = {a}.
Let d, be a fixed ray from a in U,, together with a point b, € d, in U,
and a path v, from z, to b,. Analytic continuation of ¥,, along <, and d,
provides an analytic germ ¥, of fundamental solution on a germ of open
sector with vertex a, bisected by d,. Let GG, be the local Galois group of D
over C{z,}[z,]™! with respect to &,. If we “conjugate” elements of G, by
the analytic continuation described above, we get an injective morphism of
algebraic groups G, — G with respect to the representation of these groups
in GL(n, C) given by ¥, and X,, respectively. Thus all G,, a € S, can
be simultaneously identified with closed subgroups of G and we have the
following result.

Proposition 1.3. The global Galois group G is topologically generated in
GL(n, C) by the subgroups G,, where a runs over S.

Proof. Let u be an element of the Picard-Vessiot extension of C(z) gener-
ated by the entries of ¥, in C{z — zo}[(z — zo~')] (we choose z, in the
finite plane). With notations as above, suppose that u is invariant by the
subgroups G,, a € S, all these subgroups of GL(n, C) being defined with
respect to ¥, (via the prescribed analytic continuations). Then, by nor-
mality of Picard-Vessiot extensions, u extends to a meromorphic functian
on P1(C), that is, a rational function u € C(z). Equivalently, by differential
Galois correspondence, G is the Zariski closure in GL(n, C) of the subgroup
generated by the (finite) union of the closed subgroups G,, that is, G is
generated as a group by the G,. (|
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When K = C{z}[z~!], we know from the classical theory that the system
AY = 0 admits a formal fundamental solution

(1.4) Y(z) = H(z)z"e®

where ¢ = z (0 € N*), L € M,(C), H € GL(H;C[[:L‘]][$_1]) and Q =
diag(qs, ... ,q,), where ¢; € t71C[t71], i =1,.

We may moreover suppose that ¢ > te*"/° permutes the polynomials g; and
that [e?"°L Q] = 0 if o # 1, while [L, Q] = 0 if 0 = 1. Note that ¥ is given
here in terms of formal series in z, rather than ¢. This can easily be deduced
from ([BJL], Th.I, p. 199).

Notatlons 1.5. A solution Y being given as in (1.4), let K = C[[z]][z"}],

= C{t}[t7"], K, = C[[t]][t™Y], ¢ = e¥/° and let K denote the differential
extensmn of Kt generated by the entries of 2 and e? (considered as symbols
as long as no determination has been fixed for log(z)). Let £L = K (Y) denote
the Picard-Vessiot extension of K generated by the entries of Y in K and let
G denote the differential Galois group Galg(A).

Definition 1.6.  The formal monodromy M € G of A relative to ¥ is
defined by Y (t¢) = Y(t)M and the formal monodromy group Gu is the
closed subgroup of G topologically generated by M.

Definition 1.7.  The ezponential torus T(A) of A relative to 17 is the
group of differential / K- -automorphisms of the differential extension K, (eQ) =

Kt(e‘l1 .. ,em)of K.. By extending these automorphisms to X, we can iden-
tify 7(A) with a subgroup of G. It is a torus 7 ~ (C*)", where r denotes
the rank of the Z-module generated by the polynomials g;. More precisely,
we may order these g;, or equivalently the columns of }7, in such a way

that {q1,...,¢.} is a Z-basis for Y., ; Zg;. Then there exist monomial func-
tions a,41,... ,a, such that 7(A) consists of all matrices T'(A;,... ,A,;) =
diag(ly,... ,l,), where \;,... , A, are arbitrary complex parameters and

li = >‘i7 ’l S T

li:a’i(Al7"' ,)\T), 'L>T'

Remark 1.8. The formal monodromy and the exponential torus are formal
invariants, depending only on the K -equivalence class of A or, with other
words, on the connection defined by A over K. They generate topologi-
cally the formal Galois group Galz(A) corresponding to the Picard-Vessiot

extension K(Y) of K (cf. [Be]).
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Lemma 1.9. The formal monodromy M acts by conjugation on T. Hence
T is a normal subgroup of Galp(A).

Proof. For a given choice of ¥ as in (1.2.1) there exists a permutation o € G,
such that ¢;(te’") = ¢a(i)- The change of variable ¢ — te*™ operates on
polynomials in ¢ (considered as functions of z = t) as the usual monodromy,
hence preserving any possible algebraic relation between the functions ¢;. If
we order these as in 1.7 we get, for every T'(\y, ... , A,) = diag(ly,... ,l,) € T

MT(\, ... MM = diag(laq)s - - slagm) = Tlaq)s- -+ » bagr))
whence MTM-' € T. Od

From now on we shall assume that all non-zero (g; —g;) for 1 <i4,5 <n
have the same degree k. This is enough for our purpose.

Definition 1.10. All angular directions and sectors are to be considered on
the universal covering of the unit circle or, with other words, on the Riemann
surface of the logarithm. A singular direction for A with respect to ¥ is a
bisecting ray of any maximal angular sector where Re(g;(z>) — ¢;(z7)) < 0
for some 7,5 =1,... ,n.

Definition 1.11. For a given £ > 0 and a given direction d the formal
series f = 3,50 anz™ € C[[z]] is k-summable in the direction d if there exists
a germ V of open sectors bisected by d with opening greater than «/k and
a holomorphic function f on V, satisfying inequalities:

n—1

f(z) - Z apz”

p=0

Vr € W,¥n € N*,

|z|~" < Cw(n)V* AT,

on every proper subsector W C V', with constants Ay and Cy depending on
W only. The function f is then unique, since the difference f—g with another
function g satisfying the same inequalities would be “exponentially flat” of
degree k on a sector with opening greater than m/k, whence identically zero
by Watson’s lemma (cf. [W], p. 295). The function f is called the “k-sum
of f along d 7. These definitions easily extend to formal Laurent series.

In order to define the Stokes multipliers as elements of the Galois group
we need the following fundamental result (cf. [R4], [Tu]):

Theorem 1.12 (Turrittin, Martinet-Ramis).  With notations as before,
the matriz H is k-summable in every non-singular direction d and if H
denotes the k-sum of H along d, then Y = Hz"e? is an actual solution of
A. Moreover H can be obtained from H by a Borel-Laplace transform, which
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yields an injective morphism of differential algebras from the algebra of k-
summable series along d to the algebra of germs of holomorphic functions
on germs of sectors bisected by d.

Let « be a singular direction for A at 0 and let ot = o+ ¢ (resp. a~ =
a — €) where € > 0 be non-singular neighbouring directions of a. Let Y+
(resp. Y- ) be actual solutions of A obtained from ¥ by (1.12) on a germ
of sector bisected by at (resp.a_).

Definition 1.13. With respect to a given formal fundamental solution Y
as in (1.4), the Stokes matriz (or multiplier) S, € GL(n,C) corresponding
to the singular line o of A at 0 is defined by Y,- = Y,+S, on a.

Note that this definition is independent of the choice of o™ and a~ as soon
as these are sufficiently near o (cf. [M2], p. 158). Moreover, if we identify
S, with its conjugate by Borel-Laplace transform then the map Y —»YS,
appears as a differential automorphism of £, that is an element of G (cf.
[M2], 2.3.10, Th. 2.3.11). The formal monodromy M clearly operates by
conjugation on the set of Stokes matrices by M So M-t = b2 -

Note that the Stokes multipliers are analytic invariants, which only depend
on the K-equivalence class of A.

The actual monodromy M can be recovered from the formal monodromy
and the Stokes matrices by the formula

(1.14) M =MS,, ...S,

r

where 0 < @ ... < a, < 27 are the singular rays lying in the z-plane.

All results in the forthcoming sections are based on the following descrip-
tion of G (cf. [Be], [MR], [R1], [R2], [R3] and also [LR] for a different
proof of this theorem).

Theorem 1.15 (Ramis). With respect to a formal solution Y given as
n (1.2.1) the analytic differential Galois group G of A at 0 is the Zariski
closure in GL(n, C) of the subgroup generated by the formal monodromy M\,
the ezponential torus T (A) and the Stokes matrices S, for all singular rays
.

2. Confluent generalized hypergeometric equations.

We consider the family of differential equations:

p q
(2.1) Dy = (-1)""2[[(0+p;) = [[(O+v; - 1)
j=1

J=1
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where 0 = zfz—, 1 < p < g and u;, v; are complex parameters. Throughout
this paper we will assume that

(2.1.1) all p; are distinct modulo Z, for 1<i<p.

These equations have exactly two singularities, a regular singular one at
0 and an irregular one at co. Let G denote the global differential Galois
group Galg(,)(Dyp) and Go (respectively Go,) the local Galois group at 0
(repectively oo). The local differential Galois subgroup G, corresponding
to the regular singularity at 0 is topologically generated by the monodromy
operator at 0. This is a well-known result due to Schlesinger(cf. [Sch]). As
outlined in 1.2.1, both Gy and G, appear as subgroups of G relatively to a
given germ of fundamental solution 3., at a base-point z, € P!(C)\ S, and
with respect to prescribed sectors and paths. We see that the action on X,
of the monodromy round 0 coincides here with the (inverse) monodromy
round oo, so that Gy actually is a subgroup of G, that is, G = G in
this case. To compute G, we shall therefore first determine a fundamental
solution of D, at infinity.

Notations 2.2. For a given equation D, as in (2.1) let

il 1 P q
0O=4q—Dp, C=e21/a /\=§(0+1)+Zﬂj—2w.

Jj=1 j=1
For z = (z;,... ,z,) € C? and a € C, let

(z+a)=(z,+a,...,z,+a)
) = (T1,... ,%i... ,T,) € CP71
(

=4

I, =

I@) = [[T()
(&)n = Hl‘i(il?i+ 1)---(z; +n—1).

For ¢ € CP and b € (C\Z™)? let

(@)n 2"
F (Qa Qa Z) = -
oFy 2 G
and
G™ | » a — L / H;'Zzl F(bj — S) H?:l 1-‘(]‘ — aj + S) 2%ds
i b 2im Jy ;1'=m+1 L'(1-0b;+s) H?:n-{—l I'(a; —s)
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for a suitable path ~.

A classical computation yields a formal fundamental solution:

Dp(2) = 27" Fpoa (1 + e — 1,1 — pr5 277)
for k=1,...,p,
0, = e“’cjzl/v@(ze”"j)

for j€Z and 1-[-%]<j

(2.3) Y(z) =

IA

(5]

1
o

where © is a formal series in the ramified variable z+.

The Mellin transform of D, is a difference equation of order one. Special
solutions of it can therefore be expressed by means of the I'-function. The
corresponding solutions of D, are G-functions in the sense of Meijer (cf.
[Me]), namely

Gk(z) — qu (—Z‘l — Mk, (1 “/_‘)2)

l1-v

1 / F(1—v—s)T(ux+s)
= emszsds
2im Jy  D((L—p—s)})

on one hand (k=1,...,p), and

1—p 1 /I’(l——g—s)
£y - - =0 s
1~g) 2ir J . TA—p—s" %

Go(Z) = Ggg <Z

on the other hand, where the paths «y; and -, from —ioo to +i00 both leave
the points (—v; +n), j=1,...,¢, n € N, on the right whereas ~; also has
to leave the points (—uy —n), k=1,... ,p, n € N, on the left.

As |z| tends to infinity, the asymptotic expansion of Gy, (respectively Gy)
is
(14 p —v)
L1+ px — )

(respectively e=7*""2*/?@(z)) on suitable sectors of the universal covering
of the z-plane at the origin. Analytic continuation of the G-functions G,
and G}, (or of linear combinations of these) on the t-plane (t° = z) yields
1-sums of Y along all non-singular lines.

—im R

2 Fy (L — s L= 270,

The singular lines of D,, at oo are the bisecting lines of maximal sectors
of decay for e=7¢’t or e’ ="t for j k € N and j # k. From the natural
fundamental solution of D,, at 0 consisting of generalized hypergeometric
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series, Meijer (cf. [Me]) deduced useful linear formulas relating the different
determinations of the multivalued functions G, and G. These formulas were
used in [DM] to compute the Stokes matrices of D,.

Notation 2.4. As in 1.13, we define the Stokes matrices relatively to
the formal fundamental solution ¥ of D, given in 2.3. Let S; € G denote
the Stokes matrix corresponding to a singular ray d and let s; denote the
corresponding element of the Lie algebra & of G. These infinitesimal Stokes
matrices are well-defined by exp s; = S, since the Stokes matrices are easily
seen to be unipotent from their definition.

The formal monodromy M is represented by the matrix
= DO

where D = diag (e"*"£) and R = e*"*?P,, if we denote by P, the permu-
tation matrix of order o

00 - 1
10 - 0
P,=10" :
0 10

Let ng, for k € Z and 0 < i < ¢(0) — 1, (¢ denoting the Euler function)
be integers defined by
w(o)-1

¢l = N gt

=0

The exponential torus 7 = T(D,,) has dimension ¢(o) and consists of all

diagonal matrices diag(ly,... ,l,) where

Iy =1 when 1<k <p,
(2:5) p(2)=1 ynon

vk =110 A when 1<k<o,
for arbitrary complex parameters Ao, ... , Ay(o)—1-

Remark 2.6. The torus 7 is a subgroup of SL(g,C) if and only if
Y71 ¢? =0, or equivalently if o # 1.
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3. General results.

Let us first give a useful irreducibility criterion due to Beukers, Brownawell
and Heckmann (cf. [BBH]).

Theorem 3.1 (Beukers, Brownawell, Heckmann). The equation D,, or
equivalently the corresponding representation of G in GL(q, C) is irreducible
if and only if p; Zv;modZ foralll1 <t <pand1 <j<gq.

For a different proof of this result, see [DM].

The following result is a consequence of ([K2], Cor. 3.6.1). We give a
different proof, using the invariants introduced in Section 2.

Theorem 3.2 (Katz). If the equation D,, is irreducible and such that the
complex numbers {f1, ... , p, X\, 1}, with X as in 2.2, are Z-linearly indepen-
dent, then G is ismorphic to GL(q, C).

Proof. The formal monodromy group G is isomorphic to G4, x Gp where
G = {diag(ts, ... stp,ty. .. ), tiyeo. ,tp,t € C*}
denotes the identity component of G, and Gp is the subgroup generated by

the permutation matrix
" — I0
s \oPR, /"
The Lie algebra of G, is generated by
q
{Eii}lsisp and Z Eii
i=p+1

where E;;, for 1 <i,j < ¢q denote the elementary matrices of gl(g, C).

i) If 0 is odd, we know (cf. [DM], Th. 5.1, 5.3, p. 37) that the Stokes
matrices relative to the singular rays arg¢ = 0 and arg¢ = Z can be written
as follows:

p
So=T+Y B, o0,

=1

P
Sg =1 + ZﬁiEi,q
i=1

where all coefficients o; and (3, are non-zero (cf. [DM], proof of Th.6.2, p.
42). We clearly have so = Sy — I and sz = S= — I. An easy computation
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shows that for 1 < ¢ < p the matrices E o+ EfL i and E;, belong to &. If we
conjugate Sy and Sz repeatedly by m, we prove in the same way that all
E;;for (i,5) € {1,...,p} x{p+1,... ,q}U{p+1,... ,q} x{1,... ,p}, are
elements of & and generators of gl(g, C) at the same time.

ii) If o is even, then (cf. [DM], Th. 5.1.b, 5.2.a, 5.2.b, p. 37) we have

14 P
So=) aiBpgi+ 2; BiEi, + N

where all coefficients 3, and «; as before, are non-zero whereas NN is a linear
combination of elements {E; ;},+1<i j<, and satisfies N2 = 0, so that we get

a;f;
sog=2=50—1— Z Ep+2,q

=1

and fori=1,...,p

P
So + Z[Sm Ejjl, Ei| =20;Ep g

Jj=1
r T
14

So — Z[SOa Ejj]a Eii = 2ﬁz{Ei,q .

L J=1 i

All conjugates of Sy by m, satisfy similar formulas and we conclude as in

(i)- O

We can slightly refine this generic result under some irreducibility condi-
tions for the Lie algebra representation of G.

Notations 3.3. Let G5 denote the (connected) subgroup of G topologically
generated

(i) by the Stokes matrices alone if g —p =1,
(ii) by the Stokes matrices and the exponential torus otherwise,

and let 85 denote the Lie algebra of Gs. Note that &5 is a subalgebra of
sl(q, C).

Lemma 3.4. The subgroup Gs is normal in the Galois group G and G is
topologically generated by Gg, M and T ~ C* ifgq—p=1, by Gs and M
otherwise.

Proof. By 1.9 and 1.14 we know that M acts by conjugation on Ggs. If
g —p=1then T = {diag(1,...,1,X), A € C*}, which is easily seen in this
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case to act on G5 by conjugation (cf. [DM], Th.5.1, p. 37). The result then
follows from Theorem 1.15. O

Remark 3.5. If o # 1 the Stokes subgroup G topologically generated by
the Stokes matrices may not be normal in G. This is due to the fact that
the adjoint action of 7 on the infinitesimal Stokes matrices, which may be
interpreted as a “Fourier expansion” of these (cf. [MR2]) yield elements of
® which do not necessarily belong to &,; = Lie G;, as shown below.

Ezample 3.6. Consider an equation of order three

Dy = 2(0 +p) —fI(3+Vj - 1).

i=1
The Stokes group G in this case is generated by
So =1+ aby + BEi3 + vEas

where «a, 8,7 € C (cf. [DM)]), and all conjugates of S, by M = mE, +
[(Ey3 + E3;) where m,l € C*. One may choose the parameters of D3, in
such a way that 8 = 0, ay # 0 and | = m (take for instance D3 =
2(0+3)—(0-1)*(0—3)). Let Sy = MSoM ™" = I + aE3; +vE3;. The Lie
algebra &,; is generated by so = aFo; + vEs; and s; = aFs3; + vF3, and is
isomorphic to sl(2, C), with basis {so, s1, [s0,51]}-

Let T; = diag(1,t,t™!) be an element of 7. We get

Ad(T})(s0) = taFy +t*vyE,; and  Ad(Ty)(s1) = taEs, + t*vEs,

for all ¢ € C* and conclude that &,; is not invariant by the adjoint action
of T, since otherwise F,, Fy3, Fs;, FE3» would belong to &, which has
dimension 3.

We denote by e, (resp. e.), for 1 < r < g, the elementary symmetric
functions on (672" ),<;<, (resp. on (€™ )i<;<,) and by h, (resp. h)
the complete symmetric functions on (e72#i), ¢ <, (resp. on (€*™i);<;<,)
defined by

he= ), RO DSLES
a1+-tap=r
a€NP
Forr=1,...,qlet

r

(3.7) A, =Y (-1)*eh,; and B, =) (-1)ejh,_,.

=0 =0
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Theorem 3.8. If the parameters u, v of Dy, are such that A, # 0 for 1 <
r <[] and B, #0 for 1 <r < [92551], then the representation of Gg in
C1 relative to Dy, is irreducible and so are consequently the representations
of & = Lie G and G. Moreover, in this case, &g is semisimple.

Proof. 1t is close to the proof of ([DM], Th. 6.2, p. 41). Let {e;}i<i<q
denote the canonical basis of C?, and V,, (resp. V,) the subspace generated
by ei,... ,e, (resp. by epi1,... ,€,). Let F denote an invariant subspace of
C? by Gs. There are three cases:

(i) If F CV, , then for any v = Y }_, vrex, € F, and n € Z we have

p
Sz% (v) = MS,M™! (v) =v+ <Z vk,yke—nin(2uk+%)) e,
k=1
where e, € V, and v, #0, k= 1,... ,p (cf. [DM]), whence Szz= (v) belongs
to F for all n € Z if and only if v = 0.
(ii) If V, C F, let S; denote the matrix S, (resp. Sz) if o is even (resp.
odd). Then
14
Sl(eq) = Zékek + w
k=1
where w € V, and 6, # 0,k = 1,...,p. The image of e, by the Stokes
matrice M S; M ~! lies in F for all n € Z if and only if

P
(2
§ : 5ke—nz7r( 2 +2uk)ek
k=1

lies in F for all n € Z. Therefore V,, C F and F = C? by (ii).

(iii) Assume FNV, # (0). If o = 1 we are in case (ii), so let ¢ # 1. For a
proper choice of the parameters {\;}1<i<4(s) as in (2.5), the corresponding
matrix Ty = diag(ly,... ,l;) of T has distinct eigenvalues lpyq,...,l, in V,,
so there exists 49, with p+1 < 45 < g, such that the eigenvector e;, of T lies
in FNV,.

- a) Let 0 # 2 mod 4. Since A, and B, are non-zero, it is possible for every
1=1,...,q to find a Stokes matrix S such that

S(eio) = €4 +m;e;, m; € C*

in the following way. One can find integers 7,!, withp+1 < j,l < ¢ and
(I—=3) = (i — o) mod o and a Stokes matrix S’ equal to Sp, Sz, Sz or Sa=
according to the parity of o such that

S'(e;) = e, + mje;, m; € C*
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and one can take S = Mdo—3§' Mi~do,

b) If 0 = 2 mod 4, then for every ¢ with p+1 <1 < ¢, i # i and
i # (i + %) mod o, there is a Stokes matrix S such that S(e;,) = e;, + mge;
where m; € C*. This implies that e; € FNV,. Let _Jo be such that
p+1<j, <qandjo = (o + §) mod o and let S, = = M7"S,M~" where
T =q—1. We get

p
Si(ei) = €io + ) _ Orex + Gjpej,
k=1
where 64,...,6,, 0;, € C*. Let t = ;, in T, = diag(ly,... ,l;) as above. In
the present case, o being even, we can write

To = diag(l,..., L lp1,... 510 2,l;+1, ce p+ <)
and we may choose Tj such that t # 1. We get

P
ToSoTy  (e:,) = €i +1 ) Oxer + 705065,
k=1

Since e;,, S,(e;,) and TpSoTy ' (e;,) belong to FNV, we get e;, € FNV,
and finally V, C F, hence F = C? by (ii).

The representation of the connected subgroup Ggs being irreducible, so
are the corresponding Lie algebra representations of &s = Lie Gg and of
® = Lie G. Since &5 C sl(q, C), the Lie algebra &s must be semisimple (cf.
[Hu], p. 102). This ends the proof of 3.8. ]

The following result is to be compared with ([K2], Th. 3.6). Note that
our hypothesis imply “Lie-irreducibility” in the sense of [K2], so that we, as
expected, recover part (2) of Katz’s result.

Theorem 3.9. If q — p is odd and if the representation of & Nsl(q, C) is
irreducible, then

(i) G=GL(q,C) ifg—p=1orif 3 ,v; ¢ Q
(i) G ~SL(q,C) X Z/vZ if q—p # 1 and 3, v; = T where r,v are
coprime integers.

Proof. Let G, be the connected subgroup of G corresponding to the sub-
algebra & N sl(q,C) of &. It is clearly generated by Gs and the identity
component of Gy N SL(g,C). Since 0 = g — p is odd, the subgroup Gy
contains the Stokes matrix

+Zﬂz iq

Qla
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(cf. [DM], Th. 5.1 (a) and Th. 5.3 (ii), p. 37-38), where the coefficients S;
are all non-zero since both (2.1.1) and the condition of Th 3.1 are satisfied.
A result by Beukers and Heckman (cf. [BH], Prop. 6.4) states that the
only irreducible connected subgroups of SL(g, C) which can be normalized
by an element v € SL(q, C), with rank(v — I) = 1, are SL(g, C) and also
Sp(g, C) if ¢ is even. But for G; C SL(g,C) and v = Sz we claim that
this last case does not occur. To prove the claim, we suppose that there
exists an antisymmetric invertible matrix U = (u;;) such that g'Ug = U
for all g € Gy, in particular for the conjugates S, = I + 3-7_; @ E,; of Sp
by M", where a,; € C*, 1 <r <o and 1l < ¢ < p. This implies that
u;; = 0 for 1 <¢,5 < p, whence o # 1. The exponential torus 7 must then
belong to G,. Take T = diag(1,...,1,lp41,...,l,) € T such that I; # 1
for p+1 < i < gq. Then T*UT = U implies that u;; = uj; = 0 for all 4,5,
1<i<pandl<j<gq,so that rank(u) < ¢ — 1, a contradiction. It follows
that G, = SL(q, C). If ¢ — p = 1, then det(7) = C*, so that G = GL(g, C)
in this case. Since G; = SL(g,C) and det M = P OME "7 we can write

— 2im

M=¢ < :=1”’M1, with M, € SL(q,C) C G. If g—p # 1, this shows that
2im q

G is topologically generated by SL(g, C) and the scalar matrix e~ ¢ &=1"].
The latter generates a cyclic group of order v if Z;’.=1 v; is a reduced rational
number Z, and generates topologically C* if 3°7_, v; ¢ Q. This proves (i)
and (ii) in this case. a

We recall that two linear differential equations of the same order with
coefficients in C(z) are rationally equivalent if the corresponding differen-
tial systems are C(z)-equivalent, which implies that their differential Galois
groups are equal.

Definition 3.10. The differential equation
n-—1 )
D =9" + Z aia’
=1
where & = £ and a; € C(z) for 1 < i < n—1is selfdual if it is rationally
equivalent to the dual equation

n—1
D*=(-9)"+ Z(—a)iai .
=1
The following criterion (cf. [K2], Prop. 3.2, p. 93) will be useful.

Proposition 3.11 (Katz). Two irreducible equations D, and D, with
parameters (p,v) and (u',v') respectively are rationally equivalent if and
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only if
(p,v) = (¢',¥) mod Z7*

for a suitable ordering of the parameters.

In what follows we shall only consider irreducible equations. We refer to
Katy Boussel’s thesis for an algebraic study of the Galois group of reducible
hypergeometric equations (cf. [Bol], [Bo2]).

4. Equations Dg,.
We now consider irreducible equations of the form

4

Dyy = 2(0+m)(0+pa) = [[(0+ v - 1)

=1
where the complex parameters u;, us, v1,... , vy satisfy as before the condi-

tions p; # pp and p; Zv; mod Z foralli=1,2 and j =1,... ,4.
Notations 4.1. Let:

2 4
Z Z v; (asin 2.2)
n= e Hmita) _ Z e~ 2 (ki +3)

j=1
g; = P = 1,2
_2wD(1 4 g — o)
B = T(L+ g1 — v))
20T (1 + po — p1)

NJICO

'S

STy
_ 4T (i — pa)
ITj= D(v5 — )
§ = 4im®T(p1 — po)
H;=1 I'(vj — p2)
m = ay + (0.

Lemma 4.2. For any irreducible equation Dy, the following holds:

(i) «,B,7,0 are defined and non-zero
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(i) and
8 4 4
ay+efd = ——— sinm(v; —p1) — € || sinw(y; — .
Y+ B T ]l;Il (Vi — ) ;1;11 (vj — p2)
Proof. Assertion (i) follows from 3.1 and assertion (ii) from the formula
™
()l (1-2)=
(@)1 -2) sinmz
where z € C\Z. a

We begin with the selfdual case, where G' can be completely determined.

4.3. Invariants. The Stokes matrices are the conjugates S, of
So =1+ aE31 + ﬂE32 + "/E14 + (5E24 + 77E34

by M ", where r € Z. More precisely, if S, = exp s, we get
(i) for even r

Sy =1+ 67aEs + 60;8E3; + 07" vEyy + 0,70 Egy + nEsy
Sy = B;QEgl + GQ,BE;Q + 0;r7E14 + 92—T6E24 + nE34,
(ii) for odd r
S, =1+ 07aEy +0;8E, +0"vE 3 + 0,76 Eas + nEys
8y = 070Ey + 056Es, + 07" YE 3 + 0,70 Ey; + nEys
where n =n — 7.
The exponential torus in this case is
T = {diag(1,1,t,t7"), t € C*}

and its Lie algebra is generated by 7 = E33 — E;4. The Lie algebra & is
generated by 7 and the infinitesimal Stokes matrices s, where r € Z. The
formal monodromy is

M\ = 6_2””1 En + 6~2i”u2E22 + eiﬂ-)\ (E34 + E43).

In the following we recover, for the identity component G° of G, a result
of Katz (cf. [K2], Cor. 3.6.1 and Th. 3.4). We will say that a semidirect
product A x B is trivial if the action of B on A is trivial, that is, A x B is
actually a direct product.
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Theorem 4.4. Any irreducible selfdual equation D,y is rationally equivalent
to one of the following equations:

2
(a) Dy =2(0+p)(0—p) - [[0+v-1)(0-v; - 1)
j=1

with p,v1,vy € C, 2u ¢ Z and p+v; ¢ Z,1 = 1,2. In this case the

differential Galois group is isomorphic to

(i) @ non-split extension of Z/2Z by a non-trivial semidirect product
SL(2,C) x C* if2u=3and (1 +v, =% orvy —1n = 3) mod Z,

(i) Sp(4,C) otherwise.

2
]=1
Here G is isomorphic to
(i) SO(4,C) ifvri+w#Landv; — vy #; mod Z,
(i1) @ non-trivial semidirect product (SL(2,C) x C*)x Z/2Z otherwise.

(©) D42=z(8+u)(8—u)—8<8—%)(3+u——1)(8—u—1)

with 2p ¢ Z, and G is isomorphic to O(4,C).

Proof. By 3.1, 3.10 and 3.11 the given equation is selfdual if and only if, in
addition to the irreducibility conditions 3.1, the parameters yu on one hand,
v on the other hand can be rearranged in pairs either of opposite numbers
modulo Z or of half integers. It must therefore be of type (a), (b) or (c).

Case (a): We have A = 2 and m = oy 4+ 3 = 0 by Lemma 4.2 and also
6, =0, 0, = —0~! where = e~ i"(3+2m)

To prove (i), let us show that &5 is isomorphic to a semidirect product
s[(2,C) x C. Since in this case § = 0 and #* = 1, the set of infinitesimal

Stokes matrices reduces to {so, s;} where

So = aBsy 4+ 0Ey + BE3s + vE4
and

s1 = 0(aE4y — 0Ey; — BE4 +YEy3) .

Denoting h = [sq,s:1], we get h = 20(adE21 — ByE; + ay(FEs3 — Ey)),
whence
[h,so] = 4ayfsy and [h,s;]| = —4aybs;.
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Since a7y # 0, the matrices sy and s; generate a subalgebra isomorphic to
s[(2,C) on which Lie T acts by

[1,80] =80 and |[7,81] = —sy,

the elements sg, s;, h and 7 being linearly independent. We clearly have
G NT = (I). Here the Stokes group Gy, is generated by Sy and S, so that
we get Gs = G4 X T. In the new basis {v;,v,,v3,v4} of C* where

B B —po —p0
- —a —ab —ab
vl = O K U2 = 0 b US = 0 ? U4 = 1 b
0 1 0 0

So and S are represented by

1% 0 0 l1—-u —u 0 0
= _ |01 0 0 s u 1440 0
=loot4u w | T 0 0 1-3
00 —u 1—u 0 0 01

where u = 2a860. It is easy to check that G, acts as SL(2,C) on each
subspace (v;,v;) and (v3,v4). The formal monodromy generates a finite
subgroup Gy =~ Z/4Z acting non-trivially on Gs and M*> = —I € Gs
whereas M ¢ Gs. This proves (i).

To prove part (ii) of (a), let us show that &5 admits the following basis:
B = {aFs + 0Ea, aEy + 0E3, aEs; — 0By, aEy — 6B,
Eys, By, Ess, Ess, Eyy — Esy, Es3 — Eyy}.

The conditions of (ii) imply that 2u # ; mod Z or n # 0. To see this, let

us first assume that 2 = 7 mod Z. Then

2
n=e") (e7¥™ 4 e¥™i) = de" cos m(vy + 1) cos (v — 1),
i=1

whence 7 # 0. Note also that m = 0, so that n = n and s, = S, — I for
r € Z. The adjoint action of 7 on g gives

[7,8:] =8, + NE3q if riseven and [s,, 7] = s, + nEy if r is odd,

so we see that nFE34, nEy3, (s, —2nFE3,) belong to &5 for all even r while
(sr — 2nEy3) belong to & for all odd . We have

Sy — 'f}E34 = 0’(04E31 + 5E24) + e_r(ﬁEgg + ’)’E14) if r is even,



384 CLAUDE MITSCHI

and

Sy —nEs3 = 0"(aEyy — 6Ea3) — 07" (BB — vEy3) if ris odd.

Now assume that 2u # 1 mod Z. Since A = £ and . ¢ Z by (2.1.1) we get
0% # 0=2. Comparing (s, —nEs4) (resp. (s, —nEys)) and (sr42 —nEs4) (resp.
($r4+2 —1nE43)) for all even (resp. odd) r, it is easy to show that the elements
aFE3, +0FE,,, aFE4y +0F;3 which is proportional to BFE; —YE 3, aE4 —0F,;3,
aFEs3y; — 0E;4 which is proportional to 8FE3, + yE14, all belong to &g. Taking
Lie brackets of these elements we get Fis, Es, FEj3 — FEay, Esq, E43 as
elements of &g in view of ad # 0.

If 24 = £ mod Z, then n # 0 and 6% = 1. The set of matrices s, reduces
to {so, s1} and since nFE34 and nEy; are elements of &5 so are F34, Fy3 and

so —NE3y = B3 + 6Ey + BEsy + vEy,

0(s1 — nFEs4) = aEy — 0Ey3 — BEss + vEns,
[E4s,50 — NE34] = aFy — 0Eo3 + BEy — 7B,
0[E34,51 — NEss] = aBs + 0By — BEs; — vEy, .

We conclude as before that B is a basis of 5. Therefore the latter consists
of all matrices u such that u*L+ Lu = 0 where L is the antisymmetric matrix

L = a(Eys — Ey ) + 0(Esy — Eys).

We get Gs ~ Sp(4, C). Since the formal monodromy also satisfies MLM =
L, it follows that G = Gs ~ Sp(4, C).

Case (b): We have A = 2 and

+ 8o
n=4cosm(vy +1p)cosm(vy —1p) = # = %
and by Lemma, 4.2
ay £ 6 = —8((sin w14 sin muy)? £ (cos vy cos wyy)?)

whence n =n— 7 =0, 6 =1 and 6, = —1. The set of Stokes matrices
reduces to

SO =1+ aFEs; + ,BE32 + ’)’E14 + 0FEo + ’I]E34
and

Sy =1+ aFEy — BEs +vE13 — 6Ey3 +nEys,
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and the formal monodromy is
M= Ey1 — Ey + E34 + Eys.

To prove part (i) of (b), let vy + 15 # £ and v; — 1, # £ mod Z. Since

n = 0, the Lie algebra & is generated by
S0 = alsy + BE3 + yE14 + 6 Eay
sy = aBy — BEyp +vE;3 — 0Fs;
and 7 = F33 — FE4. From
(S0, 51) = 2a0Ey, — 20yEy5 + (ary — 86)(E33 — Ey4)
we deduce that k = adFEy; — fyE;, belongs to 5. Moreover
[k, 0] = av(BE32 + 6 Eaq) — BS(vE14 + aEsp)

and

[k,s1] = ay(BEs + 8Eo3) + Bé(vE13 + aFy) .

Since ary + 3 # 0, by comparing s and [k, so] (resp. s; and [k, s1]), we get
the following elements of &g

{@FE31 + vE14, BE3; + 0Es4, 0Ey + vE13, BEs + 0Es3} .

Together with k& and 7, these elements form a basis of &g, which therefore
consists of all matrices u such that u! R+ Ru = 0, where R is the symmetric
matrix

R = adEy; + fyEy; — v6(Ess + Eys).

It is easy to show that U'RU = R for U = S,, Si, M and for U € T, so
that G ~ SO(4, C).

To prove part (ii) of (b) we assume that v; + v, = + and v; — 1, = ; mod
Z. Then m = ay + $§ = 0, whence ay — 36 # 0. We have

[[s0, 1], 80] = 2(86 — ay)sy and [[so, $1], $1] = 2(cvy — Bd)s; .

This implies that the subalgebra generated by sp and s; is isomorphic to
sl(2, C) with Lie T acting by [7, so] = So, [7,51] = —s1. As in (a), we prove
that Gs is isomorphic to a semidirect product SL(2,C) x» C*. We have
M? = I whereas clearly M ¢ Gs, and M acts non-trivially on Gs. This
proves (ii).
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Case (¢): We have A\ =1, ay — 86 =0, m = ay + 3§ # 0 and
m . .
n=5 = 4sinm(v + p)sinw(v — p)
whence n = 0. Denoting 6§ = —e~2"* we have 0, = 60, 6, = —6~! and
S, =0"aFEs3 + 07 "BE3; + 0" "yE 4 +0"0E,, if ris even
and

Sp = 9raE41 + H_T,BE42 + B_T’)’Elg + HT(SEzg if r is odd.

If 2 # £ mod Z then 6* # 62 since 2u ¢ Z. If 2u = § mod Z, then all
s, are colhnear either to sy or to s; since 8?2 = —1. We have

so = B3 + BE3 +vE14 +0Ey and sy = 0(aEy — BEs; —vEi3+ 0Es3).
Since ary = 34 it is easy to show in both cases that

B = {aFEs + 0Ey, aFE3; + 6E14, aEy + 0E 3, aFEy + 0Eay;,
Ei — Es,, E33 — Eu}

is a basis of &5, which is therefore isomorphic to the Lie algebra so(4,C)
consisting of all matrices u € s{(4, C) such that u'Q + Qu = 0. Here Q is
the symmetric matrix

Q = a(E12 + E21) - 6(E34 + E43) .

It follows from M!'QM = Q and det M = —1 that Gs ~ SO(4,C) and
G ~ O(4, C), which completes the proof of Theorem 4.4. [l

In the general case of an irreducible equation D, we would compute G
following the same scheme: we first determine the Lie algebra &g, then the
corresponding connected subgroup Gs of G and then we obtain G by letting
M (or M and T ~ C* if ¢ = 1) act on G5 or we determine & by the action
of By (or &) and C if 0 = 1) on Gg.
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4.5. Table for Bg. In the table below we list all possible Lie algebras ¢
obtained for different values of the parameters y and v.

Let I = 2(py + p2) — Zj:l v; and m = ay + 36, n =n — 7 as before.

p—p2 €1 +7Z
lelz 1¢lz
n#0|ln=0
n=20 n#0| or and
m#0m=0
les;+2Z leZ
m=0 |m#0m=20 m#0
oy =6 | oy # o
&s [sl(2,C)xC s0(4,C) sl@4,C) E°(4’C)
p—pp ¢ 5 +Z
lel+z leZ 1¢lz
n=20 n#0 m =20 m#0
ay=p6 |ay#pB6
&s | s0(4,C) s[@4,C) sp@,C) s[@4,C)

Sketch of the proof of the results in 4.5: We first prove that &g is generated
by 7 = E33 — E44, nEs4, nE,3 and

Oy = G{aEgl + 9;,8E32 + 01—T’YE14 + 0;T6E24, r € 2Z

and

Op, = GICYE41 + 0;,3E42 + 6‘1_’7E13 + 92_T5E23, T e 2Z + 1 y
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where 0; = e~(*+24) for j = 1,2 and where nEs,, nEy; are obtained by
the adjoint action of 7 on &,. The rank over C of each family (0,),c2z
and (0,)re2z41 18 < 4 if and only if one of the following holds:

0202 =1, 620;2=1, 0'=1 or 6:=1.

This is equivalent (still under assumptions of 2.1) to 62 = 62 or 6? = 65
where

1
912:03 - 01:—92 =4 HI—H2€§+Z

and

62 =0;% o (A+u1+u2)€2Z©2u1+u2 Zuje 1y

Remark.
(i) The only case where the representation of &g is reducible is G5 ~
s[(2,C) x C where n = 0 (the irreducibility condition of 3.8 does not hold).
(ii) The different degeneracy cases reflect the inclusions

sl(2,C) x C C s0(4,C) ~sl(2,C) x sl(2,C) C sp(4,C) C sl(4,C).

As an example we will compute G for an irreducible non selfdual equation
Dys.

Proposition 4.6. The differential Galois group of

1 1\2 1
Dys = 2(0 + 1) <a+u+§) ‘(‘““‘5) (8+u+1)

where p € C, is isomorphic to
(i) (SO(4,C) x Z/2Z) x C* if u ¢ Q (the semidirect product beeing non-
trivial)
(ii) an extension of Z/vZ by SO(4,C) if u = % where 7,s are coprime
integers and

[V
=

if rel+2Z,
if re2+47Z,
if €827,

if re4+8Z.

ENEEECIE Bl

Proof. We have

A:—2,u—-g, Op=—-0,=1,n=2, ay=00=2, m=4, n=0
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and the formal monodromy is
M\ = C—Zi"u (Eu - E22 + i(E34 + E43)).

The Lie algebra &5 is isomorphic to s6(4, C) since it admits the following
basis

B = {E3; — Eyu, Evi — Egp, aE3 + 6Ey, aF3; + 0Fy,
CYE41 + (5E23, aE42 =+ 6E13}

which leaves invariant the symmetric bilinear form given by the matrix
L= a(Elz + E21) - 6(E34 + E43) .

If u ¢ Q, the formal monodromy group G is isomorphic to G, x (M)
where the identity component GY, is the group of scalar matrices and the
subgroup (M;) ~ Z/AZ is generated by M, = diag(l,—1,%,7) with M}? €
T C Gsbut M, ¢ Gs. Replacing M, by TM; where T = diag(1,1,i,—1) € T
we see that the quotient Z/2Z splits off, so that we finally get

G ~ (SO(4,C) x Z/2Z) x C*.

If u € Q, let 7 denote the order of e2™*. We get (ii) by computing G NG
for different values of r. O

5. Equations D;, 2,

The calculations of Section 4 can be extended to the more general case
of an equation Ds;2,—2. We shall treat the case of an irreducible selfdual
equation, in a “generic” case where the parameters y and v respectively
can be arranged in pairs of opposite numbers modulo Z. Note that our
assumptions actually imply that the equation is not “Kummer induced” in
the sense of ([K2], Lemma 3.5.6) and that Th. 3.6 of Katz ([K2]) could be
applied here to determine the identity component G° of G. Computing G
directly from a set of generators, we get:

Theorem 5.1. The differential Galois group of

g-1 q
Dig2q-2 = ZH 0 + pa-1)(0 — par-1) H (0+vap—1 —1)(0 — vor—1 — 1)
k=1 k=1

where for all 1 <k, 1 <qg-1

1 1 .
Kak—1 + par—1 ¢ §Z, and  flog—1 — Mai—1 & '2-Z ifk#1,
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s isomorphic to Sp(2q, C).

Proof. Let prop = —pigp_; for 1 <k <qg—1and vo = —vg_; for 1 <k <gq.
We have in this case A = (04 1)+ 5_; p; — X4, ¥; = 5. The exponential
torus is 7 = {diag(1,...,1,t,t7!), t € C*} and Lie T is generated by

T = Eaq_1,24-1 — Eaq2,. The Stokes matrices are the conjugates by M of

2¢—2 2¢9—2
So=1+ Z apEay 1 + Z BrEk2q + NE2g-1,24
k=1 k=1
where
T'(1 4+ py — I'(p:
o = 2 Qe g e T
(L + py — v) Iy — p)

29—2 2q
n = e—-iﬂ/\ E : e——2i7r,u,— _ z :e—2i7ru, .
j=1 j=1

Let 0, = e”"O+203) for 1 <j <2¢—2, m=33 B andn=rn— z.
As in Section 4, we show that &g is generated by 7, nFEaq_124, NFag2q-1
and

2q—2 2q—2

o= OraxBs1x+ Y 0 BuEra, foralleven r
k=1 k=1
2g9—2 2q—-2

o= OrapBagi+ Y 05 BiErz-1 forallodd r.
k=1 k=1

Under the assumptions of the theorem we have 67 # 67 and 67 # 67 for
1 <k, <2q—2andk # . The elements {0,},cz generate the same Lie
algebra as the elements
;B 1,i + Bis1Fit1,2
iy1Fog 141 + BiFi o
aiE2q,i - ,Bi+1Ei+1,24—1
(0788 E2q,i+1 - ,BiEi,2q-—1
for all odd 7 such that 1 <7 < 2g— 3. We get the following set of generators
of QSS:
i Eoy_1,i+ Biv1Fit1,24
;B iv1 + Biv1Eizg1
aiE2q—-1,i+1 - ﬁi+1 Ei,Zq

,Bi+1Ei+l,2q—l - aiEi+1,2q—l
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for all odd i such that 1 <1 <2q—3,
oiBiv1Ejr1: + oiBit1Eiya i
;Biy1Ej i1 + ajfiv1Ei j
for all odd 7,7 such that 1 <7< j<2q-3,
azﬂj+1Ej,i - ajﬁi+1Ei+1,j+1
for all odd ¢, such that 1 <4,5 < 2¢q — 3 and
Eag-12¢s Bagag-1, PBag-12¢-1 — E2q2¢ -

One can check that these g%+ q generators are C-linearly independent and
form a basis of &5. Up to scalar multiplication, the following permutation
of the canonical basis of C*

12,... q¢ g¢g+1...,2
13 2¢g-1 2 ...,2q
changes the previous set of matrices into the classical basis of sp(2¢, C):

{Eq+i,j + EQ+j,i ’ Ei,tH-j + Ej,q+i}15i’jsq U {Eij - Eq+i,4+j}1sl"j5q .

More precisely, with respect to the given fundamental solution, &5 consists
of all matrices u such that u’L + Lu = 0, where L is the block-diagonal
antisymmetric matrix L = diag (m,,ma,... ,m,_1,m), defined by

_ 0 —az-1f; _(05
= <a2i—-1ﬁi 0 ) and m = (—,3 O)

with .
-
B=]]B; and B;=p(B)" for 1<i<q-—1.
Jj=1
Since €™ = —i, the formal monodromy also leaves the form L invariant and
we get G ~ Gg ~ Sp(2q, C). a

6. Equations Dy;.

In this section we consider particular cases of equations

D51 = z(3+u) - f[(6+VJ - 1)

j=1
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Notations 6.1. With the notations of 2.2 we get here

in

5 5
o=4, A=§+H—jz=;yj’ (=e?

B % = (2m)ti
o T +p—y)’ G T —p)
If A, and B, are defined as in 3.7, let

0%

c=(4,d=€e"(By, n=(""4, n=1- a2_,6 , and § = e~ (3+20)

Part (b) of the following result is to be compared with ([K2], Cor. 3.6.1).

Theorem 6.2. Consider an trreducible equation Ds; with parameters
W, V1,... ,vs such that cd # 0. The following holds.
(a) The Lie algebra &5 is isomorphic to
(i) so(5, C) if the following conditions af = 2n, 5u—2§3=1 v; € 3+2
and c0*+d =0 hold,
(it) sl(5,C) otherwise.
(b)  Furthermore, if the equation is selfdual, the differential Galois group
s isomorphic to
(i) O(,C)ifpe
(ii) SO(5,C) otherwise.

Proof. The exponential torus relative to Ds; is
T = {diag(1,t1,t2, 7', 85"), t1,t2 € C*}

and its Lie algebra is generated by 71 = Es; — Eyy, T2 = FE33 — E55. The
formal monodromy is

2
M = e ™ E); + e'¥ <E25 + Z E3+i,2+i) .

=0

With notations as in 6.1, the Stokes matrices are the all successive conjugates.
by M of

SO =1+ CICE31 + ﬂEls + ﬂE35 and S% =1+ CE34 + dE25 .
We have S) = exp sp and Sz = exp sz where

so = aF3 + BE;s + nEss and sz = cE3y +dEss.
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The adjoint action of 7 on the infinitesimal Stokes matrices yields the
following elements of &

0o = 04 aEs; +074"BE,;

o1 = 0V 1oE,  +0--18E,,
0y = 0420 Ey,  +0-4"28E,,
05 = 03B, +0-"38E,,

(%)

for r € Z and

{CE34 + dE25, CE23 + dE54, CE52 + dE43, CE45 + dEgg,
nEszs, nEs3, nEyy, nE42}

which together with 7; and 7, generate Gg.
Case 1: Suppose that 8* # 0~* or equivalently that 7 + 5y — Z;zl v; ¢2Z.
Then it is easy to show that &5 ~ sl(5, C).

Case 2: Suppose that * = 6—* (and therefore = +1). Then, up to scalar
multiplication, the first family (X) reduces to

aFs; +BE;s
0aE, +67'BE,
6’aFs; +072GE;s
*aEy +073BE);.

o)

The family (X') generates the following elements of the Lie algebra

{67 'Esy —O0Eys, 0 °Es; —6°Ey, 07 'Ey —0Fs,, 0 'Es —0Ey,
672(Es3 — En) + 6*(Eyy — Ess), 07%(Ex — Enp) + 6*(Bn — By} .

If 62 # 072, then 6* = —1 whence 0 = i~ !, with ¢ = £1. We get the
following set of generators of &g:

aEs; + BE:s, 0aEy + 07 BEw, aEs; — BE3, 8aEy — 07 BE;,,
E33 —2E1y + Es5, Ey — 2E1; + Eyy,
Ey, — Eyy, E33 — Ess.

An easy calculation in the Lie algebra shows that we get all E;; and E;; for
2 < j <5 whence 5 ~ 5l(5,C). If 0> = 7%, then 0> = +1 =¢. If n # 0, we

show as before that &5 ~ sl(5, C). Now suppose that n = 0. The following
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elements are C-linear generators of Bgs:

aBs + BEs, aby + BEys, aFEs + B3, aby + BE;,,
cEsy + dEss , cEos + dEsy, cEsy + dEy3, cEys + dEs, ,
E3y —€Eys, E3y —€Eys, Ey3 —€FEsy, Esy —€Ey3,
Ey — By, E33 — Ess .
We get &5 ~ s((5,C) if ce + d # 0, and G5 ~ s0(5, C) otherwise. In the

latter case &5 ~ s0(5, C) leaves the symmetric bilinear form L = —aF;; +
OCB(E24 + E42) + ﬁ(Egg, + E53) invariant.

To prove (b), consider a selfdual equation Ds;. Still under conditions 2.1.1
and 3.1, we can rearrange the parameters in such a way that

(1) either p =0 and v = (v1, —v1, v, —11, 3)
(2) orp=j;andy=(v,~vi,vz,~1,0).
In case (1) we have

A=2, e=1, (*=-1, c+d=0
and in case (2)
A=3, e=-1, (*=-1, c=d.
Let us show that n = 0 in both cases, which implies that &5 ~ s0(5,C) by
(a). We have
5
aff = -2° H sinm(v; — p)
j=1

and

1<i<k<5

5
Ay = — (b? -bY a;+ >, ajak)
Jj=1
where b = 72" and a; = e %™ for 1 < j < 5. In case (1) we get
n=(24, = —4(1 — cos 2imy; — cos 2imy, + €cos 29y, cos 21Ty
which is equal to
off
2

whence n = n — —";—ﬂ = 0. The proof is similar in case (2). Now to compute
G we note that the formal monodromy is M = diag(1, P) in case (1) and

= —2*(sin 714 )2 (sin 71,)?
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M= diag(—1, —iP) in case (2), where P denotes the permutation matrix P,
defined in 3.2. In both cases we have M*LM = L, where L is the invariant
symmetric bilinear form of &5 ~ s0(5,C). Hence M belongs to G if and
only if det M = 1, that is G ~ O(5,C) in case (1) and G ~ SO(5,C) in case
(2). This ends the proof. O

7. Equations D;;.

In this section we consider equations
7
Dy = 2(0 +p) — H (@+v; —1)

with the irreducibility condition y # v; mod Z, for all:i =1,...,7.
Notations 7.1. With notations as in 2.2, we get

0=67 =—+M Zyja = Tﬂa

_ 2 _ (2m)%
“= P LT e

Let e, (resp. el) for 1 < r < 7 denote the elementary symmetric functions
on (e72"i) <7 (vesp. on (e*™7);<;<7) and let

b=e 2 c=—e %3 (e, —bey +b7), d=e T () —bte, +b7?)
y=eT (b —€), §=—eF(b-e), 1=~ —bes +ber )
of

6=e (5% m=oy+B§ and n=n-—.

For all k € Z, we define k, 2 < k <7, by k = k modulo6.

The exponential torus in this case is
= {diag (1, t1, 29, t] o, 871, 85, tats "), ta, 2 € C*}
and Lie 7 is generated by
T = Eyy — Eyy — Ess + Eq7 and 7y = E33 + Eyy — Ege — Enr.

The formal monodromy is M = diag(e~2™*, ¢'5* P) where P denotes the
permutation matrix P; defined in 3.2. The Lie algebra & is generated by
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71, T2 and the infinitesimal Stokes matrices consisting of all conjugates by
M", reZ,of

(e
Sg = So - I - ——21—8‘E47 = C¥E41 + ,3E17 + ’)/Egg + (5E56 + ’I’LE47

and

S%=S —IZCE46+dE37.

o3

The adjoint action of 7 on these matrices yields the following family of

generators for &g

Oir = 96’"+"aEﬂ,1 -+ 0—6r—iﬁE1’u + ’YEE‘_‘LM + (SE~5___2‘6__,: fOI' 0 S ) S 5 5
(’1[)1' = CEi,£'+__2 + dEﬂ,ﬂ for 2 S 1 S 7,

Ei,ﬁ fOI‘2§_ZS7,
and T1 To.

Theorem 7.2. Consider an irreducible equation D7, with cdyé # 0.

(i) If the parameters moreover satisfy the following conditions:

7
1
(’M“Z%’) € §+Z, af=2n,cd=dy, G+d*=0and c§?>+d =0,

=1

then the Lie algebra s is isomorphic to

(1) 82(C) if apf+29*=0
(2) s0(7,C) else.

(ii) ®Bgs is isomorphic to sl(7,C) otherwise.

Proof. To prove (ii), suppose that the conditions of (i) do not hold.

Case 1: If (7M - Z;zl V,-) ¢ + + Z or, equivalently, if A + 6p ¢ Z, then:
a) if A\ +6p € ; + Z, the following elements

0’aEi__r,1 + H—T,BELH_;;_T, for 0 S 7 S 5
belong to &5 and generate s[(7, C),
b) if A+ 6p ¢ 1+ Z then 6% # 675. From {0;,, 0;2, 0i3}o<ics, We easily

get all elementary matrices E; ; and Ej, for 2 < j < 7, as elements of &g
generating s[(7, C).
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Case 2: If A+ 6p € Z then #® = 2. To show that &5 ~ sl(7,C) it
is sufficient to show, in all following cases, that the elements {E, z+3}2<2<7
belong to &g since we then get all E; ; and Ej, for 2 < j < 7 by computing
[a,-,o,EL_iL__,.] forall i =0,...,5.

a) If n # 0 the result follows easily.

b) If n = 0, we consider three cases.

If c® + d® # 0 we get the result by taking Lie brackets of elements

{Biirs + Biy s}

2<i<T
If ¢d # dvy we note that
|10, Y61 = (c6 — d) B,

5-4,2—i

for0<:<5.

If  + d® = 0 and cd = dvy, suppose that the last condition c6? +d = 0 of

(i) does not hold, or equivalently that 8 # £0~!, with £ = —%. Consider all
elements [0 o, 00,0] and [0, 0i41,0] for 0 < ¢ < 4. For instance, for i = 0 we

get
[000,01 0] (9 E46—9E37)01,3 52(E46 §E37)

and since (E4 — £F37) belongs to &g, so do Eyss and E3;. This proves (ii).

Now suppose that all the conditions of (i) are satisfied. With ¢ as above,
we have § = {6~ whence § = e{~! with e = 1. Let o' = $ and ' = g
The following elements then belong to B¢

0o = &' Ey + 'Ey7 + B3y — EEse
o) = (e€0/'Es; + €' Er6)€ + Ear — EEy5
0y = (E2d'Ey + B'E5)€? + Eqe — EE3y
03 = €a'Eqy + €' Erq + Egs — {Ens
oy = (£ Eey + B'E13)€ + Esq — EErn
Ué = (5§2alE51 + 6,5'5712)52 + Ey3 — {Fer .
Case 1: If o/f # —2e&, consider all elements {[0},0, 5]}, <ics and

{ar(z+1)}0< <5 Where r(j), for 0 < r(j) < 6, denotes the remainder of an
integer j modulo 6. These elements generate the following ones

{g’ ‘aEiy + BB, i3, Biiys — £Biga ’+3}2<i<7

which together with
{1/)i}25i57, Ey — Es5, FEs3 — Egs and Ey — Ery
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form a C-basis of 5. We show that &g is isomorphic to so(7,C) since it
leaves invariant the bilinear symmetric form

L = —af®Ey; + B(Eas + Esz) + BE(Ese + Eez) + BE*(Ear + Fu4) .

Case 2: If o/3' = —2¢£ then the elements {0}, 1;}s<i<7 and 71, 7 form
a C-basis of 5. We know by theorem 3.8 that &5 is semisimple in this
case. It is easy to see that the subalgebra generated by 7; and 7, is a Cartan
subalgebra of &5 and we deduce from the classification of semisimple Lie
algebras (cf. [T]) that &5, which is of rank 2 and of dimension 14, is of type
92- O

For the following statements 7.3, 7.4 and 7.5, we refer to corresponding
results of Katz in ([K2], Th. 3.6, Cor. 3.6.1 and Section 4.1).

Theorem 7.3. Consider an irreducible equation D+, such that cdvyé # 0.
(1) If the following conditions hold:

7
(7;4—21@) €%+Z, aff=2n, cd=dy, +d*=0 and c#*+d=0,

j=1
then
(i) if aB0 + 2% = 0, the differential Galois group is

m?

G~ {G2 XZ/mZ  if u+ 1 =L, where r,m are coprime integers,
- |Gy xC* ifué¢ Q.

(ii) Otherwise

0(7,C) ifuez
G ~ (S0(7,C) x Z/mZ  if p+ 3 =L, where r,m are coprime integers,
SO(7,C) x C* ifuéQ.

(2) Otherwise
N SL(7,C)xXZ/mZ if 23:1 v;= =, where r,m are coprime integers
~ |GL(7,0) else.

To prove this theorem, we need the following fact (also used by Katz in
[K2], Lemma 4.1.1).
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Lemma 7.4. Let H be a subgroup of SO(7,C) which is isomorphic to G,.
Then H is equal to its normalizer in SO(7, C).

Proof. The group of outer automorphisms of G, is trivial (cf. [He], IX.5.4,
X.3.29), as can be deduced from the Dynkin diagram of G,. If m € SO(7,C)
acts by conjugation on H, there exists h € H such that m~'gm = h~'gh for
all g € H. Since mh™! acts trivially on H and the representation of G, is
irreducible, we get by Schur’s lemma that mh~! is a scalar matrix, whence
mh™! = 1. a

Proof of Theorem 7.3. To prove part (i) of (1), we may write M=- e~2imk M,
with M, € SL(7,C). Since a0 + 2y*> = 0 we know that G5 is isomorphic
to G, and that Gg leaves the form L (deﬁned in the proof of 7.2) invari-
ant. It is easy in this case to check that M1 also leaves L invariant, that is,
M, € SO(7,C). But M,, as well as M, acts by conjugation on Gg, hence
M, € Gs by Lemma 7.4. The Galois group G, topologically generated by
Gs and M , is therefore isomorphic to G, X K, where K denotes the Zariski
closure in C* of the subgroup generated by —e~2"¥.

To prove part (ii) of (1), suppose that a0+ 2y> # 0. We get G ~ Gs xK
as before, where we know by theorem 7.2 that Gg ~ SO(7, C).

The proof of (2) is similar to the proof of Th. 3.9. We know by Th.

—_ i 7 L~
7.2 that Gs = SL(7,C) in this case and we can write M = e T L M,
where M; € Gs. This implies that G is topologically generated by G's and

i 7 .
the scalar matrix e~ & 205=1" [ , which proves (2). O

These results take an easier form in the selfdual case.

Corollary 7.5. Consider a selfdual equation

3
Dy =2(0+p)—(@+v-1) H +v;—-1)(0—-v; —1)

1
5 (" Let (s;)1<i<3 denote the elementary
symmetric functions in (cos 2mv;)1<;<3 and let € = e*™*. Suppose that 1—
€s; #0 and 5+4(sy —esy) #0.

(1) If 2 —2sy +2es3 = 1 or, equivalently, if v+ + v, +v3 €Z for a

proper ordering of the parameters v;, then

|G, xZ/2Z2  ifu=0.

d
where 0 = Zo and {p,v} = {0
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(ii) Otherwise

~

SO(7,C) ifp=3
0(7,C) ifu=0
Note that the condition s} — 2s, + 2es3 = 1 of (i), reflecting a condition
on entries of the Stokes matrices S, and S, is actually equivalent to the
condition v + v; + v, + v3 € Z given by Katz in ([K2], 4.1).
Proof of the corollary: Under the conditions of 7.5, we may order the pa-

rameters in such a way that v = (v, —vy, vy, —1s, 13, —v3,v). There are two
cases:

Case (b): p =3
Let ¢ = e*™, It is easy to check that the condition cdyd # 0 is here
equivalent to

?

Case (a): p=0, v=
1
> 124

1—es1#0 and 5+4(s; —2es;1) #0.

In case (a) we get

3
A=3, 0=-1, —=-=-1, £=1, 7:2(200527rz/j~1),
Jj=1

—(27)7 3
(2m) =27 H:sin2 ;.

S R ) o1

We get n = 9‘—29— = 8(1 — s; + s2 — s3), so that the conditions of Th. 7.2 are

satisfied. We show that
3
aff + 2y = —(af —27y*) = -8 |1~ ZcosZﬂ'vj -1 .
j=1

In case (b) we have

3 .
af=2"[[cos’mv;, y=2eF(1+351),

=1

nz‘az_ﬂ:_8(1+31+82+33),

- 3 3
af —2v%5> =8 (1 — > " cos® 2mv; + 2 [ ] cos 27ryj) .

j=1 j=1
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In both cases we get a8 + 207'y* = 1 — s? + 25, — 2es3. The condition
af6 + 2v? = 0 equivalently says that v + v + v, + v is an integer (for such
an ordering of the parameters). To see it we show that

1—83+2s5—2es3 = — (€ cos 23 +c08 27 (v; +11) ) (€ cos 2wz +cos 27 (v —13)) .
If e = —1, that is if v = 0, the former expression is equal to zero if and
only if

v3==x(y+1v,) or v3=+x(v; —vp) mod Z.
If € = 1, that is if v = , the same holds if

1 1
:l:I/3E~2-—-(I/1+U2) or iu3_:_§—(1/1—-z/2) mod Z.

This ends the proof. O

We illustrate the criterions of Th. 7.3 and Cor. 7.5 with the following
examples.

Proposition 7.6. The differential Galois group of

2
i) is G~ G2

(1) D71=z(8+§)-83 (32_ =

7 .
@) D71=z8—H< —31——1-) is G~ GxZ/2Z

i 12
1 6 r .
(3) D71=z(8iﬁ)—g<0—7) is G~G,xZ/TZ.

Proof. Both equations (1) and (2) are selfdual and it is easy to check that
their parameters satisfy the conditions of Cor. 7.5. (i). To prove (3),
we ﬁrst replace D;; by an equivalent equation where p = :i:ﬁ- and v =

(-3,-2,-1,0,%,2,3). If we express all conditions of Th. 7.3 in terms of
b—e‘2“’“=e*m, 2getvy-—— -1,d =-c=1,¢6 =dy =1,
9> =—-¢ =¢% and 3 = -2 = 1. This is case (1) (i) of Th. 7.3, with
p+i==2ori O

7.7. Application: An example of Katz. In ([K2], Th. 2.10.5), Katz
computes the Galois group of
d’ d 1

IL=w "% "2
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' _fd_1 f', where f is a polynomial in t) and shows

(and more generally of £>—f £ —3

that it is G,, using in particular the fact that L is selfdual. This equation
has a single irregular singularity at oo and in Section 6.1 of [K2], Katz shows
how L is a particular case of equations arising as “Kummer pullbacks” of
hypergeometric equations, in the same way as the Airy equation is related

to the classical (hypergeometric of order 2) Kummer equation.

Our method enables us to recover the Galois group of L directly from
Prop. 7.6 as follows.

Corollary 7.8. The differential Galois group of

d’ d 1

1s isomorphic to G,.

Proof. We get L from the hypergeometric equation D, = z(@:l:flz)~nf=0(3~
Z) by a change of variable z = £7(£)". (More precisely, the equation D,
with p = %, ¢’ = %1, is changed into —d%; + etd + % by z = 7e(L)7,
e = £1). By Th. 7.2 we can check that this D;; has &g ~ gy, where &g as
before denotes the Lie algebra of the subgroup Gs topologically generated by
the Stokes matrices and the exponential torus of D;;. It is easy to see that
D+, and L have the same set of Stokes matrices and the same exponential
torus, but different monodromy. The (actual) monodromy of D;; at oo (or
equivalently at 0) is an element of order 7, since the monodromy exponents
at 0 are {62_'5"4}0956. The monodromy of L at oo is therefore trivial. By
1.14.2, we see that the Galois group of L is generated by the group G of
D7, and the monodromy of L at oo, that is, Gal(L) = G5 = Ga. O

As a byproduct of this example, we get the following simple topological
generators of Gj.

Corollary 7.9. The group Go can be topologically generated by



DIFFERENTIAL GALOIS GROUPS 403

{S,,—P,—eT M} or by {Sy,So, —P}, where

10000 00 (10000 O—Qa*w
01000 00 01000 0 O
00100 01 01100 0 0
S,=100010-10| So=|a0010 0-1
00001 00 00001-1 0
00000 10 00000 1 0
00000 01 00000 0 1
10000 0—2a7t 1000000)
00000 0 1 0000001
01000 0 0 0100000
M=]|01100 0 0 P=1]0010000
@0010-1-1 0001000
00001-1 0 0000100
00000 1 0 0000010

Here S, and S, denote the Stokes matrices of Dy = 2(0 + &)-—

T3, (8% — -:%) corresponding to the Stokes rays argz = 0 and argz = 7

respectively, and M denotes the monodromy at oo, all with respect to the
. -1
same fundamental solution 2.2, with o = %w% H?:o (sm (gz_;am)) . The

proof of this result was given in [M2].
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