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Abstract
In this paper, we prove two mutually independent theorems on the family of Fock-Bargmann-

Hartogs domains. Let D1 and D2 be two Fock-Bargmann-Hartogs domains in CN1 and CN2 ,
respectively. In Theorem 1, we obtain a complete description of an arbitrarily given proper
holomorphic mapping between D1 and D2 in the case where N1 = N2. Also, we shall give
a geometric interpretation of Theorem 1. And, in Theorem 2, we determine the structure of
Aut(D1 × D2) using the data of Aut(D1) and Aut(D2) for arbitrary N1 and N2.

1. Introduction

1. Introduction
This is a continuation of our previous paper [9], and we retain the terminology and nota-

tion there.
In this paper, we prove two mutually independent theorems on the Fock-Bargmann-

Hartogs domains

Dn,m(μ) =
{
(z, w) ∈ Cn × Cm ; ‖w‖2 < e−μ‖z‖

2 }
in CN = Cn × Cm introduced by Yamamori [16].

Let D1 = Dn1,m1 (μ1), D2 = Dn2,m2 (μ2) be two equidimensional Fock-Bargmann-Hartogs
domains in CN and let f : D1 → D2 be a proper holomorphic mapping. Then we know the
following:

(†) f : D1 → D2 is necessarily a biholomorphic mapping from D1 onto D2, provided that
m1 ≥ 2.

In view of this, it would be natural to ask what happens when m1 = 1. One of the main
purposes of this paper is to clear up this matter. In fact, in our first Theorem 1, we clarify the
structure of the space consisting of all proper holomorphic mappings between two equidi-
mensional Fock-Bargmann-Hartogs domains. By the way, the fact (†) was first proved by
Tu-Wang [15; Theorem 1.1]. After that, Kodama [9; Theorem 2] gave an alternative proof.
In their proofs, it was a key point to verify that the complex Jacobian determinant J f of f
does not vanish everywhere on D1. For the verification of this, Tu-Wang used some known
facts in algebraic geometry and Kodama employed a technique in Lie group theory. Any-
way, both the proofs are a little bit long and complicated. Taking this into account, we give
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a new proof of (†) in Theorem 1, which is a very short and simple one by making use of
the well-known maximum principle for plurisubharmonic functions defined on a connected
complex analytic subvariety of CN .

In order to state our precise result, let us here introduce the holomorphic self-mapping ρk

of Cn × C given by

ρk(z, w) =
(√

kz, wk
)

for (z, w) ∈ Cn × C,
where k = 1, 2, . . .. It is obvious that the restriction of ρk to the Fock-Bargmann-Hartogs
domain Dn,1(μ), say again ρk, gives rise to a proper holomorphic self-mapping of Dn,1(μ);
and moreover, it is not an automorphism of Dn,1(μ) unless k = 1, i.e., ρ1 = idDn,1(μ). For
given positive real numbers μ, ν, we also define the non-singular linear mapping

Lμ,ν : Cn × Cm → Cn × Cm by Lμ,ν(z, w) =
(√
μ/νz, w

)
for (z, w) ∈ Cn × Cm. Then Lμ,ν induces a biholomorphic mapping, denoted by the same
notation, Lμ,ν : Dn,m(μ)→ Dn,m(ν).

With these notations, our first result can be stated as follows:

Theorem 1. Let D1 = Dn1,m1 (μ1), D2 = Dn2,m2 (μ2) be two equidimensional Fock-
Bargmann-Hartogs domains in CN and let f : D1 → D2 be a proper holomorphic map-
ping. Then we have the following:

(I) If m1 ≥ 2, then f : D1 → D2 is necessarily a biholomorphic mapping from D1 onto D2.
Moreover, we have (n1,m1) = (n2,m2) in this case and, by putting (n,m) = (n j,mj), Dj =

Dn,m(μ j) for j = 1, 2, f : D1 → D2 can be written in the form

f = g ◦ Lμ1,μ2 with some g ∈ Aut(D2).

(II) If m1 = 1, then m2 = 1 and hence n1 = n2. Moreover, by putting n = n j, Dj = Dn,1(μ j)
for j = 1, 2, f : D1 → D2 can be written in the form

f = g ◦ ρk ◦ Lμ1,μ2 with some k ∈ N and some g ∈ Aut(D2).

In particular, f : D1 → D2 is a biholomorphic mapping if and only if k = 1.

Therefore, together with the result in [6] (see Fact A in the next section), Theorem 1 gives
us an explicit expression of any proper holomorphic mapping between two equidimensional
Fock-Bargmann-Hartogs domains in CN .

Here we shall give a geometric interpretation of Theorem 1. (For the detailed arguments,
see Section 3.) For the given two Fock-Bargmann-Hartogs domains Dj = Dn j,mj(μ j) in CN

for j = 1, 2, let C(D1,C
N) be the set of all continuous mappings from D1 to CN equipped

with the compact-open topology. Note that in our case the compact-open topology coincides
with the topology of uniform convergence on compact sets in D1. Moreover, C(D1,C

N) is a
Hausdorff space satisfying the second axiom of countability. Now, let us denote by

B(D1,D2) the set of all biholomorphic mappings from D1 onto D2; and

P(D1,D2) the set of all proper holomorphic mappings from D1 to D2.

Then we have the natural inclusions: B(D1,D2) ⊂ P(D1,D2) ⊂ C(D1,C
N). From now on,
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we assume that P(D1,D2) � ∅ and we always consider P(D1,D2) as well as B(D1,D2) as
a topological space in the topology induced from that of C(D1,C

N). Thus B(D1,D2) and
P(D1,D2) are also Hausdorff spaces satisfying the second axiom of countability. Notice
here that Aut(D2) acts continuously on P(D1,D2) by the natural action-mapping

Φ : Aut(D2) × P(D1,D2)→ P(D1,D2) given by Φ( f , p) = f · p
for f ∈ Aut(D2) and p ∈ P(D1,D2), where f · p is of course the composite mapping of f
and p. It then follows immediately from Theorem 1 that B(D1,D2) is just the Aut(D2)-orbit
passing through the point Lμ1,μ2 ∈ P(D1,D2). Moreover, in the case where m1 = 1, let us
put, for k = 1, 2, . . .,

pk = ρk ◦ Lμ1,μ2 and Pk = Aut(D2) · pk,

the Aut(D2)-orbit passing through the point pk ∈ P(D1,D2). Then our Theorem 1 can
be interpreted as follows: Each orbit Pk is open and closed in P(D1,D2) and Pk with the
relative topology from P(D1,D2) is homeomorphic to the connected Lie group Aut(D2). In
particular, Pk is the connected component of P(D1,D2) containing the point pk and the space
P(D1,D2) can be decomposed into the connected components Pk:

P(D1,D2) =

⎧⎪⎪⎨⎪⎪⎩ B(D1,D2) if m1 ≥ 2,⋃∞
k=1 Pk if m1 = 1.

Moreover, it can be seen that P(D1,D2) is closed in C(D1,C
N). Thus, considering the special

case where D1 = D2, we have the following:

Let D be an arbitrary Fock-Bargmann-Hartogs domain in CN and let { fν} be a sequence
of proper holomorphic self-mappings of D. Assume that { fν} converges uniformly on every
compact set in D to a mapping f : D → CN. Then f is necessarily a proper holomorphic
self-mapping of D. In particular, let {ϕν} be a sequence in Aut(D) which converges uniformly
on compact subsets of D to a mapping ϕ : D→ CN. Then ϕ is a holomorphic automorphism
of D.

This would be interesting when we recall the following well-known theorem of H. Cartan
[3]: Let W be a bounded domain inCN and let {ϕν} be a sequence in Aut(W) which converges
uniformly on compact subsets of W to a mapping ϕ : W → CN . Then the following three
properties are equivalent:

(a) ϕ ∈ Aut(W) (b) ϕ(W) � ∂W (c) Jϕ(p) � 0 at some point p ∈ W.

Next let us consider two arbitrary Fock-Bargmann-Hartogs domains D1 and D2. Then,
how can we describe the structure of Aut(D1×D2) using the data of Aut(D1) and Aut(D2)? In
connection with this, Peters [11; Satz 3.4] proved the following fact, which is a generaliza-
tion of the theorem of H. Cartan [4] proved for bounded domains: Let X and Y be connected
hyperbolic complex spaces in the sense of Kobayashi. Then the natural isomorphism from
Aut(X) × Aut(Y) into Aut(X × Y) induces an isomorphism

(‡) Auto(X) × Auto(Y) � Auto(X × Y),

where Auto(∗) denotes the identity component of Aut(∗).
Our second purpose is to establish the following theorem, which tells us that the analogue

of (‡) is still valid for the Fock-Bargmann-Hartogs domains:
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Theorem 2. Let Dj = Dn j,mj(μ j) be an arbitrary Fock-Bargmann-Hartogs domain in CN j ,
where Nj = n j + mj, for j = 1, 2. Then we have the following:

(I) If (n1,m1) = (n2,m2), then

Aut(D1 × D2) =
(
Aut(D1) × Aut(D2)

) ∪ {
I ◦ f ; f ∈ Aut(D1) × Aut(D2)

}
,

where I is the involutive automorphism of D1 × D2 defined by

I(z1, w1, z2, w2) =
(√
μ2/μ1 z2, w2,

√
μ1/μ2 z1, w1

)
on D1 × D2

under the natural identification (z1, w1, z2, w2) =
(
(z1, w1), (z2, w2)

) ∈ D1 × D2.

(II) If (n1,m1) � (n2,m2), then

Aut(D1 × D2) = Aut(D1) × Aut(D2).

Therefore, for any Fock-Bargmann-Hartogs domain Dj in CN j for j = 1, 2, every holo-
morphic automorphism of D1 × D2 can be described explicitly in terms of the natural coor-
dinate system in CN1 × CN2 .

Finally it should be remarked that, since the Fock-Bargmann-Hartogs domains contain
non-trivial complex Euclidean spaces, our Theorem 2 is not an immediate consequence of
Peters [11]. However, using efficiently the fact (‡) by Peters and some result on algebraic
automorphisms of Reinhardt domains in CN due to Shimizu [13; Section 3], we will be able
to prove Theorem 2.

After some preparations in the next Section 2, we prove our Theorem 1 and give a geo-
metric interpretation of Theorem 1 in Section 3. And, Theorem 2 will be proved in the final
Section 4.

2. Preliminaries

2. Preliminaries
Throughout this paper, we usually consider the elements ζ of CN as the row vectors.

However we also think of ζ as the column vectors, as the need arises.
In this section, we collect some basic concepts and results on the Fock-Bargmann-Hartogs

domains and Reinhardt domains. For later purpose, we also recall the structure of the holo-
morphic automorphism group Aut() of an elementary Siegel domain  .

Let us start with recalling the structure of the Fock-Bargmann-Hartogs domain Dn,m(μ) in
CN = Cn × Cm. We set for a while

D = Dn,m(μ), ΔD = {(z, w) ∈ D ; w = 0} � Cn and D∗ = D \ ΔD.

Then we know that ΔD coincides exactly with the degeneracy set

{p ∈ D ; dD(p, q) = 0 for some point q � p}
for the Kobayashi pseudodistance dD of D [9]. Hence, dD induces a true distance on D∗ and,
in particular, D∗ is hyperbolic in the sense of Kobayashi [7].

Concerning the automorphism group of D, we have the following result due to Kim-Ninh-
Yamamori [6; Theorem 10]:
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Fact A. The automorphism group Aut(D) of the Fock-Bargmann-Hartogs domain D is
generated by the following mappings:

ϕA : (z, w) 
→ (Az, w), A ∈ U(n);

ϕB : (z, w) 
→ (z, Bw), B ∈ U(m);

ϕv : (z, w) 
→
(
z + v, e−μ〈z,v〉−(μ/2)‖v‖2w

)
, v ∈ Cn.

More precisely, every automorphism ϕ of D can be written as the composite mapping ϕ =
ϕv ◦ ϕB ◦ ϕA of automorphisms ϕA, ϕB and ϕv of the above type.

In particular, denoting by Aut(D) · (zo, wo) the Aut(D)-orbit passing through a given point
(zo, wo) ∈ D, we have the following: Aut(D) · (zo, wo) is a real analytic submanifold of D
with

(2.1) dimRAut(D) · (zo, wo) =

⎧⎪⎪⎨⎪⎪⎩ 2n if wo = 0,

2(n + m) − 1 if wo � 0.

Let T N := (U(1))N be the N-dimensional torus. Then T N acts as a group of holomorphic
automorphisms on CN by the standard rule

α · ζ = (
α1ζ1, . . . , αNζN

)
for α = (αi) ∈ T N , ζ = (ζi) ∈ CN .

Let D be an arbitrary Reinhardt domain in CN . Then, just by the definition, D is invariant
under this action of T N . Thus, each element α ∈ T N induces an automorphism πα of D given
by πα(ζ) = α · ζ for ζ ∈ D, and the mapping ρD sending α to πα is an injective continuous
group homomorphism of T N into Aut(D). The subgroup ρD(T N) of Aut(D) is denoted by
T (D). We have one more important topological subgroup Autalg(D) of Aut(D) consisting of
all elements ϕ of Aut(D) such that each component of ϕ is given by a Laurent monomial,
that is, setting ϕ = (ϕ1, . . . , ϕN) by coordinates, ϕi are given by

ϕi(ζ) = αiζ
ai1
1 · · · ζaiN

N , 1 ≤ i ≤ N,

where (ai j) ∈ GL(N,Z) and (αi) ∈ (C∗)N . We call Autalg(D) the algebraic automorphism
group of D and each element of Autalg(D) is called an algebraic automorphism of D. It
follows in particular from this definition that, if D contains the origin 0 of CN , then every
algebraic automorphism ϕ of D reduces to a simple linear mapping of the form

(2.2) ϕ(ζ) =
(
α1ζσ(1), . . . , αNζσ(N)

)
for ζ = (ζi) ∈ D,

where (αi) ∈ (C∗)N and σ is a permutation of {1, . . . ,N}. Moreover, concerning the algebraic
automorphisms of Reinhardt domains in CN , we have the following result due to Shimizu
[13; Section 3]:

Fact B. Let ϕ be a holomorphic automorphism of a Reinhardt domain D in CN. Then ϕ is
an algebraic automorphism of D if and only if ϕ has the property that ϕT (D)ϕ−1 = T (D).

Next we recall the structure of the holomorphic automorphism group Aut() of the ele-
mentary Siegel domain

 =
{
(u, v) ∈ C × Cn ; Im u − ‖v‖2 > 0

}
in Cn+1.

This domain is holomorphically equivalent to the unit ball Bn+1 in Cn+1 via the correspon-
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dence φ :  → Bn+1 given by

(2.3) φ(u, v) =
(
u − i
u + i
,

2v1
u + i
, . . . ,

2vn
u + i

)
for (u, v) = (u, v1, . . . , vn) ∈  .

Let SU(n + 1, 1) be the special indefinite unitary group of signature (n + 1, 1). Then it is
well-known that every automorphism of Bn+1 is a linear fractional transformation described
by using some element of SU(n+1, 1), and we have Aut() = φ−1Aut(Bn+1)φ. Hence, every
automorphism F of  is also a linear fractional transformation of Cn+1. In fact, expressing
F = (F0, F1, . . . , Fn) with respect to the coordinate system (u, v) = (u, v1, . . . , vn) in C×Cn =

Cn+1, we can see that each Fi has the form

(2.4) Fi(u, v) =
αi0u +

∑n
j=1 αi jv j + βi

γ0u +
∑n

j=1 γ jv j + δ
, 0 ≤ i ≤ n;

where all the coefficients αi j, βi, γi (0 ≤ i, j ≤ n) and δ are suitable complex constants. (For
the precise description of F ∈ Aut(), see [8; Section 3].) Let Aff(Cn+1) be the Lie group
consisting of all non-singular complex affine transformations of Cn+1 and set

Aff() =
{
F ∈ Aff(Cn+1) ; F() = 

}
.

Then Aff() is a closed subgroup of Aff(Cn+1). We call Aff() the affine automorphism
group of  and each element of Aff() is called an affine automorphism of  . As for the
group Aff(), we know the following (cf. [10; Section 2]):

Fact C. Every affine automorphism F of the elementary Siegel domain  in C × Cn can
be written in the form

F(u, v) =
(
ku + a + 2i〈Bv, b〉 + i‖b‖2, Bv + b

)
for (u, v) ∈  ,

where a ∈ R, b ∈ Cn and 0 < k ∈ R, B ∈ GL(n,C) with k‖v‖2 = ‖Bv‖2 for all v ∈ Cn or
(1/
√

k)B ∈ U(n).

3. Proof of Theorem 1 and a geometric interpretation of Theorem 1

3. Proof of Theorem 1 and a geometric interpretation of Theorem 1Throughout this section, we denote by D1, D2 the equidimensional Fock-Bargmann-
Hartogs domains in CN and let f : D1 → D2 be a proper holomorphic mapping as in
Theorem 1.

3.1. Proof of Theorem 1.
3.1. Proof of Theorem 1. First of all, by a result of Tu-Wang [15; Theorem 2.5], f

extends holomorphically to a connected open neighborhood W of D1, the closure of D1 in
CN . We set

Vf = D1 ∩ {ζ ∈ W ; J f (ζ) = 0}.
To prove the assertion (I) of Theorem 1, we assume that m1 ≥ 2. Once it is shown that

f : D1 → D2 is a biholomorphic mapping, it follows from Tu-Wang [15; Theorem 1.2] or
Kodama [9; Fact 5] that (n1,m1) = (n2,m2) and f has the form f = g ◦ Lμ1,μ2 with some
g ∈ Aut(D2). Thus, in order to complete the proof of the assertion (I), it suffices to show
that f : D1 → D2 is biholomorphic. To this end, note that D2 is a simply connected domain
in CN . Then we have only to verify the following:
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Lemma 1. The set V f is contained in ΔD1 . In particular, if m1 ≥ 2, then Vf = ∅.
Moreover, if m1 = 1 and Vf � ∅, then Vf = ΔD1 .

Proof. For the verification of the first assertion, we may assume that Vf � ∅; and so Vf

is a complex analytic subvariety of D1 of dimC Vf = N − 1 > 0. Moreover, Vf ∩ ∂D1 = ∅
by the same method as in the proof of [2; Theorem 2] or [12; Lemma 1.3]; accordingly, Vf

may be regarded as a closed complex analytic subvariety of CN contained in D1.
Choosing an irreducible component V of Vf arbitrarily, we wish to show that V ⊂ ΔD1 .

To this end, we introduce the function h on V given by

h(z, w) = ‖w‖2 for (z, w) ∈ V.

Then h is a continuous plurisubharmonic function on V and

h(z, w) = ‖w‖2 < e−μ1‖z‖2 ≤ 1 for all (z, w) ∈ V ⊂ D1.

Once it is shown that h(z, w) ≡ 0 on V , we conclude that V ⊂ ΔD1 . Assume that there exists
a point ζo = (zo, wo) ∈ V such that h(ζo) = ‖wo‖2 � 0. Then

0 < ‖wo‖2 = h(ζo) ≤ sup{h(ζ) ; ζ ∈ V} =: M ≤ 1;

and hence, there is a sequence ζν = (zν, wν) ∈ V, ν = 1, 2, . . ., such that

‖wo‖2/2 ≤ ‖wν‖2 ≤ M, ν = 1, 2, . . . , and lim
ν→∞ h(ζν) = M.

Passing to a subsequence, if necessary, we may assume that {wν}∞ν=1 converges to some point
w∗ ∈ Cm1 with ‖w∗‖2 = M. Moreover, we have

‖zν‖2 < (−1/μ1) log
(
‖wo‖2/2

)
< +∞, ν = 1, 2, . . . ,

because ζν = (zν, wν) ∈ V ⊂ D1. Thus, passing again to a subsequence, we may further
assume that {ζν}∞ν=1 converges to a point ζ∗ = (z∗, w∗) ∈ V . Since V is now a closed subset of
CN contained in D1, it then follows that

ζ∗ ∈ V ⊂ D1 and h(ζ∗) = M.

Consequently, h(ζ) ≡ h(ζo) > 0 on V by the maximum principle for plurisubharmonic
functions on a closed connected complex analytic subvariety of CN (cf. [5; Chapter IX]).
Thus V is contained in the bounded subset {(z, w) ∈ D1 ; ‖w‖ = ‖wo‖} of CN . Accordingly,
V is a compact, irreducible complex analytic subvariety of CN contained in D1; and hence,
V = {ζo} ⊂ D1. But this contradicts the fact dimC V > 0. As a result, we have shown that
h(ζ) ≡ 0 on V and so V ⊂ ΔD1 , as desired.

Next, consider the case where m1 ≥ 2. Then dimC ΔD1 = n1 ≤ N−2 and dimC Vf = N−1,
provided that Vf � ∅. Hence, Vf ⊂ ΔD1 can only happen when Vf = ∅. Moreover, if m1 = 1
and Vf � ∅, then Vf is a complex analytic subvariety of ΔD1 � C

n1 with dimC Vf = n1;
consequently, we conclude that Vf = ΔD1 , as asserted. �

Eventually we have completed the proof of the assertion (I) of Theorem 1.

Remark 1. With exactly the same argument as in the proof of Lemma 1, one can prove
the following:
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Proposition. Let V be an irreducible complex analytic subvariety of the Fock-Bargmann-
Hartogs domain D = Dn,m(μ) in CN with dimC V > 0 and V ⊂ D. Then V is contained in
ΔD.

Before undertaking the proof of (II), we show the following:

Lemma 2. Assume that mj = 1, μ j = 1 for j = 1, 2. Then, putting n = n j, D = Dj for
j = 1, 2, we have f (ΔD) = ΔD and f (D∗) = D∗, where D∗ = D \ ΔD.

Proof. If f is a holomorphic automorphism of D, then this lemma is an immediate conse-
quence of the fact that the Kobayashi pseudodistance dD is invariant under f and that ΔD is
just the degeneracy set for dD.

We now consider the case where f is not a holomorphic automorphism of D. Then Vf

is a complex analytic subvariety of D of dimC Vf = n. In order to prove that f (D∗) ⊂ D∗,
consider here the proper holomorphic mapping F := f ◦ f : D→ D. Then, since Lemma 1
remains true for any proper holomorphic mapping from D1 onto D2, we have Vf ⊂ VF = ΔD;
and hence, Vf = ΔD. Assume that there exists a point ζo ∈ D∗ such that f (ζo) ∈ ΔD. Then
JF(ζo) = J f ( f (ζo))J f (ζo) = 0 and ζo ∈ VF = ΔD, a contradiction. Therefore we have
f (D∗) ⊂ D∗.

Next we assert that f (ΔD) = ΔD. Indeed, assume that there exists a point p ∈ ΔD with
f (p) ∈ D∗. Then there exists a small open Euclidean ball B(p) with center p such that
f (B(p)) ⊂ D∗. Recall that the Kobayashi pseudodistance dD of D is identically zero on
ΔD and dD is a true distance on D∗. Then, by the distance-decreasing property of dD under
holomorphic mappings, we have

dD( f (p), f (q)) ≤ dD(p, q) = 0 for all q ∈ B(p) ∩ ΔD;

which implies that f (q) = f (p) for all q ∈ B(p) ∩ ΔD. Thus f (ΔD) = { f (p)} by ana-
lytic continuation. Anyway, in such a case, f −1( f (p)) is not a finite subset of D. However
this contradicts the fact that f : D → D is a proper holomorphic mapping. Therefore
f (ΔD) ⊂ ΔD. Since f (ΔD) is also a complex analytic subvariety of D of dimC f (ΔD) = n by
Remmert’s proper mapping theorem, we conclude that f (ΔD) = ΔD. Accordingly, we obtain
that f (D∗) = D∗ because f (D) = D; proving the Lemma 2. �

We can now prove the assertion (II) of Theorem 1. First consider the case where f :
D1 → D2 is a biholomorphic mapping. It then follows that f (ΔD1 ) = ΔD2 and f induces a
biholomorphic mapping from ΔD1 � C

n1 onto ΔD2 � C
n2 because the degeneracy sets for

Kobayashi pseudodistances are invariant under biholomorphic mappings, in general. Hence
n1 = n2 and so m2 = m1 = 1. Moreover, putting n = n j and Dj = Dn,1(μ j) for j = 1, 2,
we know by [15; Theorem 1.2] or [9; Fact 5] that f has the form f = g ◦ Lμ1,μ2 with some
g ∈ Aut(D2). Therefore we obtain the assertion (II) in the case where f : D1 → D2 is a
biholomorphic mapping, since ρ1 = idD2 .

Consider next the case where f : D1 → D2 is not a biholomorphic mapping. To prove
that m2 = 1, assume to the contrary that m2 ≥ 2. Then dimC ΔD2 = n2 ≤ N − 2. On the
other hand, f (ΔD1 ) is a complex analytic subvariety of D2 of dimC f (ΔD1 ) = n1 = N − 1 by
Remmert’s proper mapping theorem. Thus ΔD2 is too small to contain f (ΔD1 ); and hence,
there exists a point p ∈ ΔD1 with f (p) ∈ D∗2 := D2 \ ΔD2 . Choose a small open Euclidean
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ball B(p) ⊂ D1 with center p such that f (B(p)) ⊂ D∗2. Then, with exactly the same argument
as in the proof of Lemma 2, it can be seen that f −1( f (p)) is not a finite subset of D1, a
contradiction. Therefore we conclude that m2 = 1 and n1 = n2, as required.

From now on, we set n = n j for j = 1, 2. The proof will be divided into two cases as
follows:

Case 1. (μ1, μ2) = (1, 1): In this case, we put D = Dj for j = 1, 2 and use the following
notation: For the domain D∗ = D \ ΔD, we set

 =
{
(z, w) ∈ Cn × C ; |w|2e‖z‖

2
= 1

}
= ∂D,

the subset of ∂D∗ consisting of all Cω-smooth strictly pseudoconvex boundary points of D∗.
We also set

 =
{
(u, v) ∈ C × Cn ; Im u − ‖v‖2 > 0

}
,

the elementary Siegel domain in Cn+1. Note that f () ⊂  and f can be regarded as a proper
holomorphic self-mapping of D∗ by Lemma 2; and, via the mapping φ given in (2.3),  is
now biholomorphically equivalent to the unit ball Bn+1 in Cn+1.

Consider here a holomorphic mapping � from  into Cn × C∗ defined by

�(u, v) =
(
v, eiu/2

)
for (u, v) ∈  .

Then it is easily seen that�() = D∗ and  is the universal covering of D∗ with the covering
projection �. Clearly, � is, in fact, defined on C × Cn and �(∂) =  .

Now, pick a point p1 ∈  arbitrarily and put p2 = f (p1) ∈  . Notice that f | � id

because f � idD. Thus we may assume that p1 � p2. Let q1, q2 ∈ ∂ such that �(q j) = p j

for j = 1, 2. Since Vf ∩  = ∅, there exist connected open neighborhoods V1,V2 of p1, p2,
respectively, such that f gives rise to a biholomorphic mapping, say again f , from V1 onto
V2. Moreover, since � is a covering projection from C × Cn onto Cn × C∗ with �(∂) =  ,
we can find connected open neighborhoods W1,W2 of q1, q2, respectively, such that both the
restrictions

Π j := �|W j : Wj → Vj for j = 1, 2,

are biholomorphic mappings, after shrinking V1 sufficiently small, if necessary. Thus we
obtain a biholomorphic mapping

F := Π−1
2 ◦ f ◦ Π1 : W1 → W2

with

F(W1 ∩ ) = W2 ∩  and F(W1 ∩ ∂) = W2 ∩ ∂ .
As an immediate consequence of the main result of Alexander [1], F now extends to a
holomorphic automorphism, denoted by the same letter F, of  . Therefore

(3.1) � (F(ξ)) = f (�(ξ)) for all ξ ∈ 
by analytic continuation. Let us represent F as F = (F0, F1, . . . , Fn) with respect to the
coordinate system (u, v) = (u, v1, . . . , vn) in C × Cn = Cn+1 and assume that F has the form
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written in (2.4). Note that

�−1(�(ξ)) = {(u + 4πν, v) ; ν ∈ Z} for any ξ = (u, v) ∈  .
Then the equation (3.1) tells us the following fact: For any point ξ = (u, v) ∈  and any
integer ν, there exists an integer n(ξ, ν) such that

F0(u + 4πν, v) = F0(u, v) + 4πn(ξ, ν);

Fi(u + 4πν, v) = Fi(u, v), 1 ≤ i ≤ n.
(3.2)

Since F is an automorphism of  , the integer n(ξ, ν) is uniquely determined by (ξ, ν) and
depends continuously on ξ ∈  for each fixed ν ∈ Z. Consequently, n(ξ, ν) is independent
on ξ; and so, we may write n(ξ, ν) = n(ν). Also, it is clear that n(ν) = 0 if and only if
ν = 0. Moreover, since  is a complete hyperbolic manifold in the sense of Kobayashi [7],
the closure of the set {ξ ∈  ; d (p, ξ) < r} is a compact subset of  for all p ∈  and all
0 < r ∈ R. Thus

(3.3) |n(ν)| → +∞ if and only if |ν| → +∞.
Now we assert that F is an affine automorphism of  . Indeed, this can be verified as

follows. If we set

g(u, v) = γ0u +
n∑

j=1

γ jv j + δ and hi(u, v) = αi0u +
n∑

j=1

αi jv j + βi

for 0 ≤ i ≤ n, then Fi(u, v) = hi(u, v)/g(u, v) and by (3.2)

4πν · α00 + h0(u, v)
4πν · γ0 + g(u, v)

=
h0(u, v)
g(u, v)

+ 4πn(ν);

4πν · αi0 + hi(u, v)
4πν · γ0 + g(u, v)

=
hi(u, v)
g(u, v)

, 1 ≤ i ≤ n;
(3.4)

for any point (u, v) ∈  and any integer ν.
If γ0 � 0, then it follows from (3.4) that

αi0/γ0 = Fi(u, v) on  for 1 ≤ i ≤ n;

which contradicts the fact that F is an automorphism of  . Thus γ0 = 0. In this case, it
follows at once that αi0 = 0 for each i = 1, . . . , n. Therefore, Fi does not depend on the
variable u; accordingly, it has the form Fi(u, v) = Fi(v) for every 1 ≤ i ≤ n. Next, consider
the first equation in (3.4). If α00 = 0, then F does not depend on the variable u. But this is
absurd because F is an automorphism of  . Thus α00 � 0 and

n∑
j=1

γ jv j + δ = α00 · ν/n(ν) on  ,

where ν is any integer with ν � 0. Clearly, this can only happen when γ j = 0 for all
1 ≤ j ≤ n; and hence, g(u, v) = δ on  and F reduces to an affine automorphism of  , as
asserted.

Let us express the affine automorphism F of  as in Fact C in Section 2. Then, if we write
B =
√

kB̃ with B̃ ∈ U(n), it follows from (3.1) that



Two Theorems on Certain Domains 749

(3.5) f
(
v, eiu/2

)
=

(
B̃
√

kv + b, e−〈B̃
√

kv,b〉−(1/2)‖b‖2e(a/2)i(eiu/2)k
)

for all (u, v) ∈  . Moreover, since f is a single-valued holomorphic mapping defined on D,
the positive real number k has to be an integer. With the notation as in Fact A, let us now
introduce an automorphism g of D defined by

g = ϕb ◦ ϕe(a/2)iE1 ◦ ϕB̃,

where a ∈ R, b ∈ Cn, B̃ ∈ U(n) are the same objects appearing in (3.5) and E1 denotes the
identity matrix of degree one. Then the equation (3.5) can be rewritten as

f (z, w) = g ◦ ρk ◦ L1,1(z, w) for all (z, w) ∈ D∗,

since L1,1 = idD. Therefore we conclude that f = g◦ρk ◦ L1,1 on D by analytic continuation;
thereby the proof of the assertion (II) of Theorem 1 is completed in Case 1.

Case 2. (μ1, μ2) � (1, 1): In this case, putting D = Dn,1(1), let us consider the biholo-
morphic mapping Lμ j,1 : Dn,1(μ j) → D for j = 1, 2 defined in the Introduction. Then the
composite mapping

f̃ := Lμ2,1 ◦ f ◦ L−1
μ1,1 : D→ D

is a proper holomorphic self-mapping of D. Hence, f̃ can be written in the form

f̃ (z, w) =
(
B̃
√

kz + b, e−〈B̃
√

kz,b〉−(1/2)‖b‖2e(a/2)iwk
)

on D

as in (3.5); accordingly,

f (z, w) =
(
B̃
√

kz∗ + b∗, e−μ2〈B̃
√

kz∗,b∗〉−(μ2/2)‖b∗‖2e(a/2)iwk
)

= g ◦ ρk ◦ Lμ1,μ2 (z, w) on Dn,1(μ1),

where we have put z∗ =
√
μ1/μ2 z, b∗ = b/

√
μ2 and

g = ϕb∗ ◦ ϕe(a/2)iE1 ◦ ϕB̃ ∈ Aut(Dn,1(μ2)).

Therefore we have proved the assertion (II) of Theorem 1 in Case 2; thereby the proof of
Theorem 1 is now completed. �

Remark 2. In [9], we proved that ΔD is just the degeneracy set for the Kobayashi pseu-
dodistance dD of D without using any information on Aut(D). In fact, this comes from the
fact that dD is identically zero on ΔD � Cn and that there exists a strictly plurisubharmonic
function u on D∗ with 0 < u(ζ) < 1 for all ζ ∈ D∗, which implies the hyperbolicity of D at ev-
ery point p ∈ D∗ by a result of Sibony [14]. Let f be an arbitrary element in Aut(D). Then f
preserves D∗ and it is uniquely determined by the restriction f |D∗ ∈ Aut(D∗). Therefore, our
proof here of the assertion (II) of Theorem 1 based on the explicit description of Aut() of
the universal covering space  of D∗ gives an alternative proof of Kim-Ninh-Yamamori [6;
Theorem 10] in the case where D is the Fock-Bargmann-Hartogs domain Dn,1(μ) in Cn × C.

3.2. A geometric interpretation of Theorem 1.
3.2. A geometric interpretation of Theorem 1. Throughout this subsection, we use

the same terminology and notation in the Introduction. Then, just by the definition of the
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compact-open topology, it is easily seen that the action-mappingΦ : Aut(D2)×P(D1,D2)→
P(D1,D2) is continuous. Moreover, Aut(D2) acts freely on P(D1,D2), since any proper holo-
morphic mapping p : D1 → D2 is surjective. We have now two cases to consider:

Case 1. m1 = 1: In this case, we have m2 = 1 by the assertion (II) of Theorem 1. Now,
putting (n, 1) = (n j,mj) for j = 1, 2, we assert the following:

(A.1) Every orbit Pk = Aut(D2) · pk is open and closed in P(D1,D2), and the topological
space Pk in the topology induced from that of P(D1,D2) is homeomorphic to the connected
Lie group Aut(D2). In particular, Pk is the connected component of P(D1,D2) containing
the point pk;

(A.2) P1 = B(D1,D2) and P(D1,D2) can be decomposed into the connected components
Pk: P(D1,D2) =

⋃∞
k=1 Pk; and

(A.3) P(D1,D2) is closed in C(D1,C
N).

Once the assertion (A.1) has been shown, (A.2) is an immediate consequence of (II) in
Theorem 1. So, we first verify the assertion (A.1).

To prove the closedness of Pk in (A.1), let us consider an arbitrary sequence {qν}∞ν=1 in Pk

converging to a point q ∈ P(D1,D2). It then follows from Theorem 1 that there exist some
g ∈ Aut(D2) and p� = ρ� ◦ Lμ1,μ2 ∈ P(D1,D2) such that q = g · p�. Let {gν}∞ν=1 be a sequence
in Aut(D2) such that qν = gν · pk for ν = 1, 2, . . .. According to Fact A in Section 2, we can
write

(3.6) g = ϕv ◦ ϕB ◦ ϕA, gν = ϕvν ◦ ϕBν ◦ ϕAν for ν = 1, 2, . . . ,

where v, vν ∈ Cn, B, Bν ∈ U(1) and A, Aν ∈ U(n). Thanks to the compactness of U(n) ×
U(1), one may assume that {(Aν, Bν)}∞ν=1 converges to some element (Ã, B̃) of U(n) × U(1).
Moreover, since limν→∞ qν = q, we have

(3.7) lim
ν→∞(vν, 0) = lim

ν→∞ qν(0) = q(0) = (v, 0)

for the origin 0 = (0, 0) ∈ D1 ⊂ Cn × C. Consequently, we have

(3.8) lim
ν→∞ gν = ϕv ◦ ϕB̃ ◦ ϕÃ =: g̃ ∈ Aut(D2);

and hence, g̃ · pk = limν→∞ gν · pk = g · p� or

(3.9)
(
z̃ + v, e−μ2〈z̃,v〉−(μ2/2)‖v‖2 B̃wk

)
=

(
z∗ + v, e−μ2〈z∗,v〉−(μ2/2)‖v‖2 Bw�

)
for any point (z, w) ∈ D1, where we have put

z̃ =
√

k
√
μ1/μ2 Ãz and z∗ =

√
�
√
μ1/μ2 Az.

Clearly, the equation (3.9) assures us that k = �; thereby q = g · pk ∈ Pk. Therefore we have
proved that Pk is closed in P(D1,D2), as desired.

To prove the openness of Pk in (A.1), note that P(D1,D2) =
⋃∞

k=1 Pk by Theorem 1.
Moreover, by the same argument as in the preceding paragraph, it can be checked that Pk ∩
P� = ∅ unless k = �. So, putting Pc

k =
⋃
��k P�, the complement of Pk in P(D1,D2), we

would like to prove that Pc
k is closed in P(D1,D2). For this purpose, choose an arbitrary

sequence {qν}∞ν=1 in Pc
k converging to a point q ∈ P(D1,D2). Express q, qν as
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q = g · p�, qν = gν · pn(ν) for ν = 1, 2, . . . ,

where g, gν ∈ Aut(D2) and n(ν) ∈ N with n(ν) � k for all ν. Write again g, gν as in (3.6) and
repeat the same argument as above. Then it can be seen that {(vν, Aν, Bν)}∞ν=1 converges to
some element (v, Ã, B̃) ∈ Cn × U(n) × U(1), after taking a subsequence, if necessary. Recall
that {qν}∞ν=1 converges to q in P(D1,D2). Then

lim
ν→∞

(
z̃ν + vν, e−μ2〈z̃ν,vν〉−(μ2/2)‖vν‖2 Bνwn(ν)

)
=

(
z∗ + v, e−μ2〈z∗,v〉−(μ2/2)‖v‖2 Bw�

)
uniformly on any compact set in D1, where we have put

z̃ν =
√

n(ν)
√
μ1/μ2 Aνz and z∗ =

√
�
√
μ1/μ2 Az.

It then follows at once that limν→∞
√

n(ν) Aνz =
√
� Az uniformly on any compact set in

Cn and so limν→∞ n(ν) = �. Hence, � = n(ν) � k for all ν ≥ νo with some νo ∈ N; and
consequently, q = g · p� ∈ Pc

k. Therefore we have shown that Pc
k is closed in P(D1,D2);

proving the openness of Pk in P(D1,D2).
Next, for every k ∈ N, we would like to prove that the mapping

Ψ : Aut(D2)→ Pk defined by Ψ( f ) = f · pk

for f ∈ Aut(D2) is a homeomorphism from Aut(D2) onto the subspace Pk of P(D1,D2).
Since Aut(D2) acts freely on P(D1,D2) as mentioned above, Ψ is an injective continuous
mapping from Aut(D2) onto Pk. Thus, in order to show that the inverse mapping Ψ−1 :
Pk → Aut(D2) of Ψ is also continuous, it suffices to prove thatΨ : Aut(D2)→ Pk is a closed
mapping. To this end, take a closed subset S of Aut(D2) arbitrarily and consider a sequence
{qν}∞ν=1 in Ψ(S ) converging to some point q ∈ Pk. Let g be an element of Aut(D2) and {gν}∞ν=1
a sequence in S such that q = g · pk and qν = gν · pk for ν = 1, 2, . . .. By the same reasoning
as above, one may assume that {gν}∞ν=1 converges to some element g̃ ∈ Aut(D2). Then, since
S is a closed subset of Aut(D2), it follows that g̃ ∈ S and q = g̃ · pk ∈ Ψ(S ); proving that
Ψ is, in fact, a closed mapping. As a result, we have shown that Ψ gives a homeomorphism
from Aut(D2) onto Pk; completing the proof of the assertion (A.1).

Finally we wish to prove the assertion (A.3). For this, take an arbitrary sequence {qν}∞ν=1
in P(D1,D2) converging to a point q ∈ C(D1,C

N). Express

qν = gν · pn(ν), gν = ϕvν ◦ ϕBν ◦ ϕAν for ν = 1, 2, . . . ,

as before. Also, represent q as q = (q1, q2) with respect to the coordinate system (z, w) in
Cn × C. Then we have limν→∞ vν = q1(0) as in (3.7). Hence, putting v := q1(0) ∈ Cn for
simplicity, one may assume that {gν}∞ν=1 converges to an element g̃ ∈ Aut(D2) defined in
(3.8). Moreover, since {qν}∞ν=1 converges to q in the compact-open topology, we have that

lim
ν→∞

(
z̃ν + vν, e−μ2〈z̃ν,vν〉−(μ2/2)‖vν‖2 Bνwn(ν)

)
= q(z, w)

uniformly on any compact set in D1, where z̃ν =
√

n(ν)
√
μ1/μ2 Aνz for all ν. It then follows

that

lim
ν→∞

√
n(ν)

√
μ1/μ2 Aνz = q1(z, w) − v



752 A. Kodama and S. Shimizu

uniformly on any compact set in D1; and hence,

lim
ν→∞ n(ν) = (μ2/μ1)‖q1(zo, 0) − v‖2

for any zo ∈ Cn with ‖zo‖ = 1. Since n(ν) ∈ N for all ν, this says that there exists a large
νo ∈ N such that n(ν) = n(νo) for all ν ≥ νo. Therefore we conclude that

q = lim
ν→∞ qν = g̃ · pn(νo) ∈ P(D1,D2)

by (A.2); proving the assertion (A.3).

Case 2. m1 ≥ 2: In this case, as an immediate consequence of the assertion (I) of Theo-
rem 1, we obtain that

(n1,m1) = (n2,m2) and P(D1,D2) = B(D1,D2) = Aut(D2) · Lμ1,μ2 .

Moreover, with exactly the same argument as in Case 1 above, it can be checked easily that
P(D1,D2) is closed in C(D1,C

N) and the mapping

Ψ : Aut(D2)→ P(D1,D2) defined by Ψ( f ) = f · Lμ1,μ2

for f ∈ Aut(D2) induces a homeomorphism from Aut(D2) onto P(D1,D2).

4. Proof of Theorem 2

4. Proof of Theorem 2
Throughout this section, we use the following notation: For the given Fock-Bargmann-

Hartogs domains

Dj = Dn j,mj(μ j) =
{
(z j, w j) ∈ Cn j × Cmj ; ‖w j‖2 < e−μ j‖z j‖2}

for j = 1, 2, we denote by

dD1×D2 the Kobayashi pseudodistance of D1 × D2;

ΔD1×D2 the degeneracy set for dD1×D2 ; and set

(D1 × D2)∗ = D1 × D2 \ ΔD1×D2 .

Thus, dD1×D2 induces a true distance on (D1 ×D2)∗ and (D1 ×D2)∗ is hyperbolic in the sense
of Kobayashi. Also, we often set

(k1, k2, k3, k4) = (n1,m1, n2,m2), N1 = n1 + m1, N2 = n2 + m2,

N = N1 + N2 and ζ = (ζ1, . . . , ζN) = (ζ1, ζ2, ζ3, ζ4) = (z1, w1, z2, w2).

The proof of Theorem 2 will be divided into several steps as follows:

Step 1. Auto(D1×D2) can be canonically identified with the product Lie group Aut(D1)×
Aut(D2): Since Aut(Dj) is a connected Lie group for j = 1, 2, it is obvious that Aut(D1) ×
Aut(D2) ⊂ Auto(D1 × D2). Therefore, to prove Step 1, it suffices to show the opposite
inclusion. For this, recall that

dD1×D2 ((p1, p2), (q1, q2)) = max
{
dDj(p j, q j) ; j = 1, 2

}
for p j, q j ∈ Dj, j = 1, 2, and ΔDj is just the degeneracy set for dDj for j = 1, 2. Then it is
easily checked that
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ΔD1×D2 =
(
D1 × ΔD2

) ∪ (
ΔD1 × D2

)
and (D1 × D2)∗ = D∗1 × D∗2.

Since dD1×D2 is invariant under the action of Aut(D1 × D2), we therefore have

ϕ
(
ΔD1×D2

)
= ΔD1×D2 , ϕ

(
D∗1 × D∗2

)
= D∗1 × D∗2 for all ϕ ∈ Aut(D1 × D2).

Thus, the natural restriction mapping Φ : Aut(D1 × D2) → Aut(D∗1 × D∗2) gives an injective
continuous homomorphism from Aut(D1 × D2) into Aut(D∗1 × D∗2). In particular, we have
Φ (Auto(D1 × D2)) ⊂ Auto(D∗1 × D∗2).

Choose an element f in Auto(D1 × D2) arbitrarily and set

f ∗ = Φ( f ) ∈ Auto(D∗1 × D∗2).

Since D∗1 and D∗2 are hyperbolic, we have Auto(D∗1 × D∗2) = Auto(D∗1) × Auto(D∗2) by the
fact (‡) in the Introduction. Accordingly, one can find automorphisms ϕ1, ϕ2 of D∗1, D∗2,
respectively, such that f ∗ = ϕ1 × ϕ2. This implies that, if we write

f (ζ) = ( f1(ζ), f2(ζ)) for ζ = (z1, w1, z2, w2) ∈ D1 × D2,

where f j is a mapping from D1 × D2 into Dj for j = 1, 2, and set

f ∗j = f j|D∗1×D∗2 for j = 1, 2,

then f ∗j = ϕ j for j = 1, 2; and hence, f ∗1 (resp. f ∗2 ) depends only on (z1, w1) ∈ D∗1 (resp. on
(z2, w2) ∈ D∗2). Thus, f1, f2 must be of the form

(4.1) f1(ζ) = f1(z1, w1), f2(ζ) = f2(z2, w2) on D1 × D2

by analytic continuation. Exactly the same conclusion as in (4.1) remains valid for the
inverse mapping f −1 of f . Hence, we conclude that f j ∈ Aut(Dj) for j = 1, 2 and f =
f1 × f2 ∈ Aut(D1) × Aut(D2); proving the opposite inclusion. Therefore we have shown the
assertion in Step 1.

Step 2. Every element f in Aut(D1 × D2) can be written in the form f = L ◦ g, where
g ∈ Auto(D1 × D2) and L is a linear automorphism of D1 × D2, that is, it is the restriction
to D1 × D2 of some non-singular linear transformation of CN : First of all, notice that the
automorphism group Aut(D1 × D2) has the structure of a Lie group with respect to the
compact-open topology, because its identity component Auto(D1 × D2) is a Lie group by
Step 1. Now, let T (D1 × D2) � T N be the subgroup of Aut(D1 × D2) introduced in Section
2 for the Reinhardt domain D1 × D2 in CN . Then, for the given element f ∈ Aut(D1 × D2),
f −1T (D1×D2) f as well as T (D1×D2) is a maximal torus in Auto(D1×D2) (cf. [13; Section
4]). Hence, by the well-known conjugacy theorem for maximal tori in a connected Lie
group, there exists an element g in Auto(D1 × D2) such that

g f −1T (D1 × D2) fg−1 = T (D1 × D2).

Consequently, by Fact B in Section 2, L := f ◦ g−1 is an algebraic automorphism of D1 ×D2

and f = L ◦g. Moreover, since D1 ×D2 containes the origin 0 of CN , L has to be of the form

(4.2) L(ζ) =
(
α1ζσ(1), . . . , αNζσ(N)

)
for ζ = (ζi) ∈ D1 × D2

by (2.2), where (αi) ∈ (C∗)N and σ is a permutation of {1, . . . ,N}; proving the assertion in
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Step 2.

Step 3. Analysis of L: In order to prove Theorem 2, we would like to investigate the
linear automorphism L of D1 × D2 in Step 2 more closely. To this end, represent L as

L(ζ) =
(
L1(ζ), L2(ζ), L3(ζ), L4(ζ)

)
for ζ ∈ D1 × D2

with respect to the coordinate system ζ = (ζ1, ζ2, ζ3, ζ4) in CN . Note that the coordinate
subspace Cn1 × {0} × Cn2 × {0} is contained in D1 × D2; while D1 × D2 is bounded in the
(w1, w2)-direction. Hence

L j(z1, 0, z2, 0) = 0 for all (z1, z2) ∈ Cn1 × Cn2 , j = 2, 4;

which implies that L can be expressed as

(4.3) L(ζ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
M11 M12 M13 M14

0 M22 0 M24

M31 M32 M33 M34

0 M42 0 M44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z1

w1

z2

w2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ on CN ,

where Mi j is a certain ki × k j matrix for 1 ≤ i, j ≤ 4. Moreover, by (4.2) the N × N matrix
M :=

(
Mi j

)
1≤i, j≤4

has the following property (like as a permutation matrix):

(�) Every row and every column of M contain exactly one nonzero entry.

Take now an arbitrary point ζ(wo
1) = (0, wo

1, 0, 0) ∈ D1 × D2 with wo
1 � 0. Then, by (4.3),

we have

L(ζ(wo
1)) =

(
M12w

o
1,M22w

o
1,M32w

o
1,M42w

o
1

)
.

Assume that M22w
o
1 � 0 and M42w

o
1 � 0. It then follows from Step 1 and (2.1) that

dimRAuto(D1 × D2) · L(ζ(wo
1))

= dimR
[
Aut(D1) · (M12w

o
1,M22w

o
1) × Aut(D2) · (M32w

o
1,M42w

o
1)
]

= (2N1 − 1) + (2N2 − 1) = 2(N − 1); and

dimR L
(
Auto(D1 × D2) · ζ(wo

1)
)

= dimRAuto(D1 × D2) · ζ(wo
1) = 2(N1 + n2) − 1,

since L ∈ Aut(D1 × D2). Consequently, we arrive at a contradiction:

2(N − 1) = 2(N1 + n2) − 1 or 2m2 = 1,

since L−1Auto(D1 × D2)L = Auto(D1 × D2). Thus ‖M22w
o
1‖‖M42w

o
1‖ = 0 for all wo

1 ∈ Cm1

with 0 < ‖wo
1‖ < 1; and hence, M22 = 0 or M42 = 0. Replacing ζ(wo

1) by a point ζ(wo
2) =

(0, 0, 0, wo
2) ∈ D1 × D2 with wo

2 � 0 and repeating the same argument as above, we obtain
that M24 = 0 or M44 = 0. Therefore, since M is non-singular, we now have two possibilities
as follows:

Case (a): M22 = 0, M44 = 0; Case (b): M24 = 0, M42 = 0.

In Case (a), we wish to prove that (k1, k2) = (k3, k4) and M has the form
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M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0

√
μ2/μ1M̃13 0

0 0 0 M24√
μ1/μ2M̃31 0 0 0

0 M42 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where M̃13, M̃31 ∈ U(k1) and M24, M42 ∈ U(k2). For this, recall that M is a non-singular
N × N matrix having the property (�). Then, in Case (a) one can check that k2 = k4 and

det M24 � 0, det M42 � 0 and M14 = 0, M34 = 0, M12 = 0, M32 = 0.

Therefore, L has the form

L(z1, w1, z2, w2) = (M11z1 + M13z2,M24w2,M31z1 + M33z2,M42w1)

for (z1, w1, z2, w2) ∈ CN .
Notice that ∂D1 × ∂D2 is the subset of ∂(D1 ×D2) consisting of all non-smooth boundary

points of D1 × D2. Then the linear automorphism L of D1 × D2 maps ∂D1 × ∂D2 onto itself.
Thus

(4.4) ‖M24w2‖2 = e−μ1‖M11z1+M13z2‖2 , ‖M42w1‖2 = e−μ2‖M31z1+M33z2‖2

whenever ‖w1‖2 = e−μ1‖z1‖2 , ‖w2‖2 = e−μ2‖z2‖2 . Taking the points (0, w1, 0, w2) with ‖w1‖ =
‖w2‖ = 1, we therefore have

‖M24w2‖ = 1, ‖M42w1‖ = 1; and hence, M24, M42 ∈ U(m1).

Together with (4.4), this implies that

(4.5) μ2‖z2‖2 = μ1‖M11z1 + M13z2‖2, μ1‖z1‖2 = μ2‖M31z1 + M33z2‖2

for any boundary point (z1, w1, z2, w2) ∈ ∂D1 × ∂D2. Notice that these equations hold for
arbitrary elements (z1, z2) ∈ Cn1 × Cn2 because one can always find elements (w1, w2) ∈
Cm1 × Cm2 in such a way that (z1, w1) ∈ ∂D1 and (z2, w2) ∈ ∂D2. Thus, considering the
special case where

(z1, z2) = (z1, 0) ∈ Cn1 × Cn2 (resp. (z1, z2) = (0, z2) ∈ Cn1 × Cn2 )

in (4.5), we obtain that M11 = 0 (resp. M33 = 0). In particular, since M is a non-singular
N × N matrix and since k2 = k4 as shown above, it follows that k1 = k3. Moreover, we now
have by (4.5) that

μ2‖z2‖2 = μ1‖M13z2‖2, μ1‖z1‖2 = μ2‖M31z1‖2 for all (z1, z2) ∈ Cn1 × Cn2 .

Therefore,
√
μ1/μ2M13 and

√
μ2/μ1M31 are unitary matrices, as desired.

In Case (b), we assert that M has the form

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
M11 0 0 0

0 M22 0 0
0 0 M33 0
0 0 0 M44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where Mii (1 ≤ i ≤ 4) are all unitary matrices. Indeed, in Case (b) we have det M22 � 0 and
det M44 � 0, since M is non-singular. Then M12 = 0, M32 = 0 and M14 = 0, M34 = 0 by
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(�). Hence, L has the form

L(z1, w1, z2, w2) = (M11z1 + M13z2,M22w1,M31z1 + M33z2,M44w2)

for (z1, w1, z2, w2) ∈ CN . So, by the same reasoning as in Case (a), we have

‖M22w1‖2 = e−μ1‖M11z1+M13z2‖2 , ‖M44w2‖2 = e−μ2‖M31z1+M33z2‖2

whenever ‖w1‖2 = e−μ1‖z1‖2 , ‖w2‖2 = e−μ2‖z2‖2 . Therefore, M22 and M44 are unitary matrices;
and hence,

‖z1‖2 = ‖M11z1 + M13z2‖2, ‖z2‖2 = ‖M31z1 + M33z2‖2

for all (z1, z2) ∈ Cn1 × Cn2 as in Case (a). Accordingly, we conclude that

M13 = 0, M11 ∈ U(n1) and M31 = 0, M33 ∈ U(n2);

as asserted.

Step 4. Completion of the proof: Using the result obtained above, we shall complete the
proof of Theorem 2. For this purpose, choose an element f of Aut(D1 × D2) arbitrarily.
Then, by Step 2, f can be written in the form

f = L ◦ g with some element g ∈ Auto(D1 × D2).

Consider the case where (n1,m1) = (n2,m2). We then have two Cases (a) and (b) as in
Step 3. In Case (a), let us define the linear transformation T of CN by setting

T (z1, w1, z2, w2) =
(
M̃31z1,M42w1, M̃13z2,M24w2

)
on CN ,

where M̃31, M42, M̃13 and M24 are the unitary matrices appearing in Case (a) of Step 3. Then
T can be regarded as an element of Aut(D1)×Aut(D2) by Fact A and the linear automorphism
L of D1×D2 can be expressed as L = I◦T , where I is the involutive automorphism of D1×D2

defined in the statement of Theorem 2. Therefore we have

f = I ◦ (T ◦ g) with T ◦ g ∈ Aut(D1) × Aut(D2)

by Step 1.

In Case (b), the linear automorphism L of D1 × D2 has the form

L(z1, w1, z2, w2) = (M11z1,M22w1,M13z2,M24w2) on D1 × D2.

Thus, L ∈ Aut(D1) × Aut(D2) and f = L ◦ g ∈ Aut(D1) × Aut(D2) by Step 1.
As a result, we have shown that

Aut(D1 × D2) ⊂ (
Aut(D1) × Aut(D2)

) ∪ {
I ◦ f ; f ∈ Aut(D1) × Aut(D2)

}
in any case. The opposite inclusion is now obvious; thereby we have completed the proof of
the assertion (I) of Theorem 2.

Finally, consider the case where (n1,m1) � (n2,m2). Then, only the Case (b) occurs in
Step 3. Hence

Aut(D1 × D2) = Aut(D1) × Aut(D2);
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proving the assertion (II) of Theorem 2.
Therefore the proof of Theorem 2 is now completed. �
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